Quantum Physics and Graph Spectra

Chris Godsil

Bristol, July 2009

Chris Godsil

3

Outline

1 Background

2 State Transfer

- Operators and Walks
- Periodicity and State Transfer
- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Awful Graphs

Summary

Quote

Hydrogen is a colorless, odorless gas which given sufficient time,

Chris Godsil

Summary

Quote

Hydrogen is a colorless, odorless gas which given sufficient time, turns into people. (Henry Hiebert)

Chris Godsil

Awful Graphs

Operators and Walks

1 Background

2 State Transfer

Operators and Walks

- Periodicity and State Transfer
- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Operators and Walks

Unitary Operators

Suppose X is a graph with adjacency matrix A.

Definition

We define the operator $H_X(t)$ by

 $H_X(t) := \exp(iAt).$

Chris Godsil

Bac	kgr	ou	nd

Awful Graphs

Operators and Walks

An Example

We have

$$H_{K_2}(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}$$

Note that $H_X(t)$ is symmetric, because A is, and unitary because

$$H_X(t)^* = \exp(-iAt) = H_X(t)^{-1}.$$

Chris Godsil

Operators and Walks

Probability Distributions

If ${\boldsymbol{H}}$ is unitary, the Schur product

$H\circ\overline{H}$

is doubly stochastic. Hence each row determines a probability density. (It determines a continuous quantum walk.)

Chris Godsil

Awful Graphs

Operators and Walks

State Transfer

Definition

We say that perfect state transfer from the vertex u to the vertex v occurs at time τ if

$$|(H_X(\tau))_{u,v}| = 1.$$

Example:

$$H_{K_2}(\pi/2) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

thus we have perfect state transfer between the end vertices of K_2 at time $\pi/2$.

Chris Godsil

Awful Graphs 00000000000 000000000 000

Operators and Walks

More Examples

Since

$$H_{X\square Y}(t) = H_X(t) \otimes H_Y(t)$$

it follows that if perfect state transfer from u to v in X occurs at time τ , then we also have perfect state transfer from (u, u) to (v, v) in $X \square X$ at time τ .

So we get perfect state transfer between antipodal vertices in the $d\text{-cube}~Q_d$ at time $\pi/2.$

Chris Godsil

Awful Graphs

∃ nar

・ロト ・回ト ・ヨト ・ヨト

Periodicity and State Transfer

Outline

- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Bac	kgro	und

∃ nar

Periodicity and State Transfer

Squaring

If perfect state transfer from 1 to 2 occurs at time $\tau,$ then

$$H_X(\tau) = \begin{pmatrix} 0 & \gamma & 0 & \dots & 0 \\ ? & 0 & ? & \dots & ? \\ \vdots & \vdots & & Q \\ ? & 0 & & & \end{pmatrix}$$

where $|\gamma| = 1$. Consequently $|(H_X(\tau))_{2,1}| = 1$ and

$$H_X(2\tau) = \begin{pmatrix} \gamma^2 & 0 & 0 & \dots & 0 \\ 0 & \gamma^2 & 0 & \dots & 0 \\ \vdots & \vdots & & Q \\ 0 & 0 & & & \end{pmatrix}$$

Chris Godsil

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Periodicity and State Transfer

Periodicity

Definition

We say that X is periodic at the vertex u with period τ if $|(H_X(\tau))_{u,u}| = 1$. We say X is *periodic* if it is periodic at each vertex (with the same period).

Lemma (Godsil)

If perfect state transfer from u to v occurs at time τ , then X is periodic at u and v with period 2τ .

Awful Graphs

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

Periodicity and State Transfer

Spectral Decomposition

We have

$$A = \sum_{\theta} \theta E_{\theta}$$

where θ runs over the distinct eigenvalues of A and the matrices E_{θ} represent orthogonal projection onto the eigenspaces of A.

Awful Graphs 00000000000 0000000000 000

Periodicity and State Transfer

Spectral Decomposition

We have

$$A = \sum_{\theta} \theta E_{\theta}$$

where θ runs over the distinct eigenvalues of A and the matrices E_{θ} represent orthogonal projection onto the eigenspaces of A. Further if f is a function on the eigenvalues of A, then

$$f(A) = \sum_{\theta} f(\theta) E_{\theta}$$

and therefore

$$H_X(t) = \sum_{\theta} \exp(i\theta t) E_{\theta}.$$

Chris Godsil

Awful Graphs

Periodicity and State Transfer

Integer Eigenvalues

Lemma

If the eigenvalues of X are integers, it is periodic with period 2π .

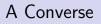
Proof.

$$H_X(\pi) = \sum_{\theta} E_{\theta} = I.$$

Chris Godsil

Awful Graphs 00000000000 0000000000 000

Periodicity and State Transfer



Theorem (Godsil)

If X is a connected regular graph, then it is periodic if and only if its eigenvalues are integers.

Chris Godsil

Awful Graphs 00000000000 0000000000 000

Periodicity and State Transfer

Paths

The graph P_3 has perfect state transfer between its end-vertices. It eigenvalues are

$-\sqrt{2}, \quad 0, \quad \sqrt{2}.$

We do not get perfect state transfer between end-vertices on P_n when $n \ge 4$. We do get perfect state transfer in the Cartesian powers of P_3 . (Christandl et al)

Awful Graphs

Vertex-Transitive Graphs

Outline

2 State Transfer

- Operators and Walks
- Periodicity and State Transfer

Vertex-Transitive Graphs

Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra <□> <@> < 注→ < 注→ < 注→ < 注→ のへ()

Awful Graphs

Vertex-Transitive Graphs

An Involution

Theorem (Godsil)

If X is vertex transitive and perfect state transfer occurs at time $\boldsymbol{\tau},$ then

$$H_X(\tau) = \gamma \begin{pmatrix} 0 & 1 & & & \\ 1 & 0 & & & \\ & 0 & 1 & & \\ & 1 & 0 & & \\ & & & \ddots & \\ & & & & 0 & 1 \\ & & & & 1 & 0 \end{pmatrix} = \gamma T$$

▲□▶▲@▶★≧▶★≧▶ ≧ のへの

Chris Godsil

Vertex-Transitive Graphs

A Central Automorphism

The involution T must be an automorphism in the center of $\operatorname{Aut}(X).$ Hence

Chris Godsil

Vertex-Transitive Graphs

A Central Automorphism

The involution T must be an automorphism in the center of $\operatorname{Aut}(X).$ Hence

Corollary

If perfect state transfer takes place on the vertex-transitive graph X, then |V(X)| must be even.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Chris Godsil

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

Vertex-Transitive Graphs

The Multiplicity Polynomial

Definition

Assume X is vertex transitive with integer eigenvalues and let m_{θ} denote the multiplicity of θ as an eigenvalue. Let μ be the polynomial defined by

$$\mu(z) := \sum_{\theta} m_{\theta} z^{\theta}.$$

Chris Godsil

Vertex-Transitive Graphs

A Necessary Condition

Lemma (Godsil)

If X is vertex transitive and perfect state transfer takes place at time τ , then $\exp(i\tau)$ is a root of $\mu(z)$.

Proof.

 $\operatorname{tr}(T) = 0.$

(And $\exp(ri\tau)$ will be a root for each odd integer r.)

Chris Godsil

Vertex-Transitive Graphs

Cubelike Graphs

If X is cubelike, then

$$A(X) = P_1 + \dots + P_k$$

where P_1, \ldots, P_k are commuting involutions. So

$$H_X(t) = \prod_{r=1}^k \exp(itP_k) = \prod_{r=1}^k (\cos(t)I + i\sin(t)P_r)$$

◆□> ◆□> ◆目> ◆目> ◆目> ○日 のへぐ

Chris Godsil

Awful Graphs

Vertex-Transitive Graphs

Cubelike Graphs

If X is cubelike, then

$$A(X) = P_1 + \dots + P_k$$

where P_1, \ldots, P_k are commuting involutions. So

$$H_X(t) = \prod_{r=1}^k \exp(itP_k) = \prod_{r=1}^k (\cos(t)I + i\sin(t)P_r)$$

Corollary (Bernasconi, Severini, Godsil)

We have perfect state transfer on X at time $\pi/2$ if and only if $P_1 \cdots P_k \neq I$.

Chris Godsil

State Transfer ○○○○○ ○○○○○○ ○○○○○ ○○○○○ Awful Graphs

Vertex-Transitive Graphs

Severini

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬ⊙

Chris Godsil Quantum Physics and Graph Spectra

Awful Graphs

Some Questions

1 Background

2 State Transfer

- Operators and Walks
- Periodicity and State Transfer
- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Some Questions

Antipodal Vertices

If X has diameter d, we say that vertices at distance d are antipodal. In all examples we have where perfect state transfer takes place, the vertices involved are antipodal.

Question

Is antipodality necessary? (It is if X is distance-regular.)

Chris Godsil

Awful Graphs 00000000000 0000000000 000

Some Questions

Antipodal Vertices

If X has diameter d, we say that vertices at distance d are antipodal. In all examples we have where perfect state transfer takes place, the vertices involved are antipodal.

Question

Is antipodality necessary? (It is if X is distance-regular.)

I suspect antipodality is not necessary. In fact

Question

If $|V(X)| \geq 3,$ can we get perfect state transfer between two adjacent vertices?

Chris Godsil

Bac	kgro	und

Some Questions

Question

What is the minimum number of edges in a graph where perfect state transfer takes place between two vertices at distance d?

Chris Godsil

We say that perfect mixing occurs at time τ if, for all vertices u and v in X,

$$(H_X(\tau))_{u,v}| = \frac{1}{\sqrt{|V(X)|}}.$$

(For example Q_d at time $\pi/4$.

Question

What can we usefully say about graphs where perfect mixing occurs?

Chris Godsil

・ロン ・回 と ・ ヨ と ・ ヨ と …

3

Matrices

Outline

2 State Transfer

- Operators and Walks
- Periodicity and State Transfer
- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Matrices

Walk Matrices

Definition

Let A be the adjacency matrix of the graph X on n vertices and let 1 denote the all-ones vector of length n. The walk matrix of X is the $n \times n$ matrix

$$\begin{pmatrix} \mathbf{1} & A\mathbf{1} & \dots & A^{n-1}\mathbf{1} \end{pmatrix}$$
.

Chris Godsil

Matrices

Automorphisms

The automorphism group of X is (isomorphic to) the group of permutation matrices P that commute with A.

Lemma

If $P \in Aut(X)$ then P fixes each column of W.

Chris Godsil

Matrices

Automorphisms

The automorphism group of X is (isomorphic to) the group of permutation matrices P that commute with A.

Lemma

If $P \in Aut(X)$ then P fixes each column of W.

Proof.

 $P\mathbf{1} = \mathbf{1}$ and therefore:

$$PA^r \mathbf{1} = A^r P \mathbf{1} = A^r \mathbf{1}.$$

3

Chris Godsil

Matrices

Asymmetric Graphs

Corollary

If rk(W) = n then X is asymmetric.

・ロト・日本・日本・日本・日本・日本

Chris Godsil

Background	State Transfer 000000 0000000 0000000 00000	Awful Graphs 00000000000 000000000000000000000000
Matrices		
Awfulness		

Definition

A graph X is awful if its walk matrix is invertible.

Chris Godsil

Background	State Transfer 000000 0000000 0000000 000000	Awful Graphs 0000000000 0000000000000000000000000
Matrices		
Awfulness		

Definition

A graph X is awful if its walk matrix is invertible.

Exercise

A graph is awful if and only if its complement is.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Chris Godsil

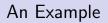
Matrices

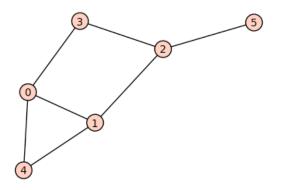
The Scapegoat

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣∝⊙

Chris Godsil Quantum Physics and Graph Spectra

Matrices





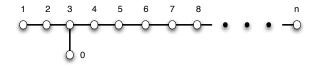
Chris Godsil Quantum Physics and Graph Spectra

Bac	karo	und
Dac	rgiu	unu

Awful Graphs

Matrices

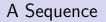
More Examples



Chris Godsil

Bac	kgr	ou	nd

Matrices



6	7	9	10	15	19	21	22	25	27	30	31
34	37	39	42	45	46	49	51	54	55	57	61
66	67	69	70	75	79	81	82	85	87	90	91
94	97	99	102	105	106	109	111	114	115	117	121

Chris Godsil

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

Matrices

Awful Algebra

Theorem (Godsil)

Let X be a graph with adjacency matrix A. The following claims are equivalent:

X is awful.

Chris Godsil

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

Matrices

Awful Algebra

Theorem (Godsil)

Let X be a graph with adjacency matrix A. The following claims are equivalent:

X is awful.

 The matrices A and J generate the algebra of all n × n matrices.

Chris Godsil

Matrices

Awful Algebra

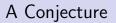
Theorem (Godsil)

Let X be a graph with adjacency matrix A. The following claims are equivalent:

- X is awful.
- The matrices A and J generate the algebra of all n × n matrices.
- The matrices $A^i J A^j$ ($0 \le i, j < n$) are a basis for the space of $n \times n$ matrices.

Chris Godsil

Matrices



Conjecture

Almost all graphs are awful.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Chris Godsil

Spectra

Outline

2 State Transfer

- Operators and Walks
- Periodicity and State Transfer
- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Spectra

Walk Equivalence

Definition

Let X and Y be graphs with walk matrices W_X and W_Y respectively. We say that X and Y are walk equivalent if

$$W_X^T W_X = W_Y^T W_Y.$$

Chris Godsil

Spectra

Walk Equivalence

Definition

Let X and Y be graphs with walk matrices W_X and W_Y respectively. We say that X and Y are walk equivalent if

$$W_X^T W_X = W_Y^T W_Y.$$

Note that

$$(W^T W)_{i,j} = \mathbf{1}^T A^{i+j} \mathbf{1}.$$

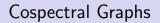
Hence any two k-regular graphs on n vertices are walk equivalent.

・ロト・日本・ 山田・ 山田・ うらの

Chris Godsil

Awful Graphs

Spectra



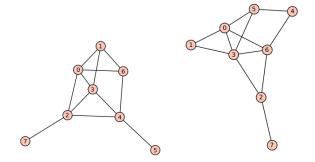
Lemma

If two graphs X and Y are cospectral with cospectral complements, they are walk equivalent.

Chris Godsil

Spectra

Two Walk-Equivalent Awful Graphs



Chris Godsil

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Spectra

Walk-Equivalent Awful Graphs

Theorem (Wang & Xu)

If X and Y are walk-equivalent awful graphs, then $Q = W_X W_Y^{-1}$ is orthogonal, $Q^T A_X Q = A_Y$ and $Q\mathbf{1} = \mathbf{1}$.

Chris Godsil

Spectra

	2	0	0	0	0	0	0	0 \
	0	1	-1	1	1	0	0	0
	0	0	0	1	-1	0	1	1
1	0	1	1	0	0	0	1	-1
$\overline{2}$	0	-1	1	1	1	0	0	0
	0	0	0	-1	1	0	1	$\begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ \end{array}$
	0	0	0	0	0	2	0	0
	$\sqrt{0}$	1	1	0	0	0	-1	1/

Chris Godsil

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Spectra

Rationality

The matrix Q is clearly rational. The experimental evidence seems to indicate that usually 2Q is integral. If 2Q is integral, the structure of Q is known (Wang & Xu). Up to permutation equivalence we have:

Background	State Transfer 000000 0000000 0000000 000000	Awful Graphs ○○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○
Spectra		

Structure I

lf

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

then we may have one of the matrices

$$\frac{1}{2} \begin{pmatrix} A & B \\ B & A \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} A & B & 0 \\ B & 0 & A \\ 0 & A & B \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} A & B & 0 & 0 \\ B & 0 & A & 0 \\ 0 & A & 0 & B \\ 0 & 0 & B & A \end{pmatrix}, \dots$$

Chris Godsil

Spectra

Structure IIa

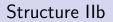
Otherwise we have one of

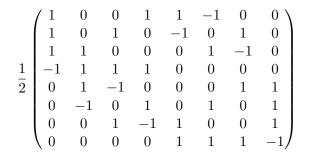
$$\frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & -1 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & -1 \\ -1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 & 1 \end{pmatrix}$$
$$I + P^2 + P^3 - P^4, \quad P^7 = I.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Chris Godsil

Spectra





 $I + Q_1 + Q_2 + Q_3 - Q_1 Q_2 Q_3, \quad Q_i^2 = I, \ Q_i Q_j = Q_j Q_i.$

Chris Godsil

Physics

Outline

2 State Transfer

- Operators and Walks
- Periodicity and State Transfer
- Vertex-Transitive Graphs
- Some Questions

3 Awful Graphs

- Matrices
- Spectra
- Physics

Chris Godsil Quantum Physics and Graph Spectra

Bac	kgro	und
Duc		ana

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Physics

Generation

Theorem (Godsil)

If X is awful and A is its adjacency matrix, then the matrices

 $\exp(iAt), \quad \exp(iJt) \qquad (t \ge 0)$

generate a dense subgroup of the unitary group.

Chris Godsil

Bac	kgro	und
Duc		ana

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Physics

Generation

Theorem (Godsil)

If X is awful and A is its adjacency matrix, then the matrices

 $\exp(iAt), \quad \exp(iJt) \qquad (t \ge 0)$

generate a dense subgroup of the unitary group.

Proof.

Play with Lie algebras.

Chris Godsil

Awful Graphs

Physics

Sparser Generators?

Let D denote the diagonal matrix of valencies of X. If X is connected then ker(A - D) is spanned by 1. By spectral decomposition, it follows that $J = \mathbf{11}^T$ is a polynomial in A - D.

Lemma

If X is awful, then A and D generate the algebra of all $n\times n$ matrices.

・ ・ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ うへで

Chris Godsil