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ABSTRACT

These notes provide an introduction to some properties of the
Colin de Verdière number of a graph. They are heavily dependent
on a survey by Van der Holst, Lovász and Schrijver. There are
two possible novelties. We make use of matrix perturbation the-
ory, and offer an alternative interpretation of the so-called strong
Arnold hypothesis.

1. Perturbation

The following discussion summarizes Theorems II.5.4 and II.6.8 of Kato [].
Let A and H be real symmetric n× n matrices. We concern ourselves

with the eigenvalues of A + tH, for small values of t; we will see that it is
possible to view these as perturbations of the eigenvalues of A. Assume θ
is an eigenvalue of A with multiplicity m, and let P be the projection on
to the associated eigenspace. Then there is a matrix-valued function P (t)
such that

(a) P (0) = P .
(b) P (t) is a real analytic function of t, and a projection.
(c) The column space of P (t) is invariant under A + tH.

Note that rk(P ) = m. As rk(P (t)) = tr(P (t)), it follows that rk(P (t)) is a
continuous integer-valued function. Therefore
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(d) rkP (t) = m.

From (c) it follows that the column space of P (t) is a sum of eigenspaces
of A + tH. These eigenspaces can be viewed as arising by splitting the
θ-eigenspace of A.

The eigenvalues associated with these eigenspaces are analytic func-
tions θ1(t), . . . , θk(t) such that θi(0) = θ. If U is a matrix whose columns
form an orthonormal basis for the columns of P = P (0), then P = UUT

and the derivatives θ′1(0), . . . , θ′k(0) are the eigenvalues of UT HU . The di-
mension of the θi(t) eigenspace equals the dimension of the θ′i(0)-eigenspace
of UT HU .

1.1 Lemma. Let Q be a symmetric matrix and suppose that the columns
of the matrix U for an orthonormal basis for ker(Q). If K is symmetric
then the corank of Q+ tK equals the corank of Q for all sufficiently small
values of t if and only if UT KU = 0.

Proof. The matrix UUT is the orthogonal projection onto ker(Q). As
UT U = I, we see that UT KU = 0 if and only if PKP = 0.

2. The Strong Arnold Hypothesis

If A and B are two matrices of the same order, we use A ◦ B to denote
their Schur product, which is defined by the condition

(A ◦B)i,j = Ai,jBi,j .

If X is a graph on n vertices, we define a generalized Laplacian for X
to be a symmetric matrix Q such that Qu,v < 0 if u and v are adjacent
vertices in X and Qu,v = 0 is u and v are distinct and not adjacent. (There
are no constraints on the diagonal entries of Q.) Examples are the usual
Laplacian and −A, where A is the adjacency matrix of X. Note that we
have not assumed that the least eigenvalue of Q is simple, although this
will hold if X is connected, by Perron-Frobenius.

We associate two spaces of symmetric matrices to each generalized
Laplacian Q. Let NQ denote the space of symmetric n × n matrices H
such that

H ◦ I = H ◦Q = 0

and let KQ denote the space of symmetric n× n matrices K such that

QK = 0.
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We say that Q satisfies the Strong Arnold Hypothesis if NQ ∩ KQ = 0.
This is often abbreviated to SAH. If θ is an eigenvalue of Q, we say that
its associated eigenspace satisfies the SAH if Q− θI does.

To give a very small example, suppose that ker Q has dimension one,
and is spanned by a vector x. Any symmetric matrix H such QH = 0 must
be a multiple of xxT , but (xxT )i,i = (xi)

2 and if I ◦ xxT = 0 then x = 0.
Hence, if dim kerQ = 1, then Q satisfies the SAH.

We now describe a second version of the SAH. The space of symmetric
n× n matrices is an inner product space, relative to the bilinear form

〈A,B〉 = tr(AB).

We have the following:

2.1 Lemma. The SAH holds for Q if and only if N⊥
Q +K⊥Q is the space

of all symmetric n× n matrices.

Clearly NQ consists of the symmetric matrices H such that Hu,v = 0
whenever uv ∈ E(X). Hence H ∈ N⊥

Q if and only if Q+tH is a generalized
Laplacian for all sufficiently small values of t.

To characterize K⊥Q, we need a preliminary result.

2.2 Lemma. Let Q be a symmetric matrix with corank m, and let U
be a matrix whose columns form an orthonormal basis for ker Q. Then a
symmetric matrix K satisfies QK = 0 if and only if there is a symmetric
matrix B such that K = UBUT .

Proof. The stated condition is sufficient, we prove that it is also necessary.
If QK = 0 then the column space of K lies in kerQ. As K is symmetric,
there is a matrix U1 whose columns lie in the column space of K and a
symmetric matrix B1 such that K = U1B1U

T
1 . There is a matrix, R say,

such that U1 = UR and therefore K = U(RB1R
T )UT , as required.

It follows that K⊥Q consists of the matrices H such that 〈UBUT ,H〉 = 0
for all symmetric matrices B. As

〈UBUT ,H〉 = tr(UBUT H) = tr(UT HUB) = 〈UT HU, B〉,
we see that H ∈ K⊥Q if and only if UT HU is orthogonal to all symmetric
matrices B. But this implies that UT HU = 0 and therefore K⊥Q consists
of the symmetric matrices H such that UT HU = 0. Using Lemma 1.1, we
conclude that H ∈ K⊥Q if and only if Q + tH has the same corank as Q, for
all sufficiently small values of t.
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3. Quadratic Rank

The quadratic map q from Rm to R(m+1
2 ) maps a vector (u1, . . . , um) to the

vector
(uiuj)i≤j .

If U is an n×m matrix then q(U) denotes the n×
(
m+1

2

)
matrix we get by

applying q to each row of U . The quadratic rank of U is the rank of q(U).
The quadratic rank of U is less than

(
m+1

2

)
if and only if the columns

of q(U) are linearly independent. This happens if and only if there are
scalars bi,j , not all zero, such that for each row of B we have

∑
i,j:i≤j

bi,juiuj .

Equivalently, there is an m×m symmetric matrix B such that uT Bu = 0.
(Note that, if i 6= j then Bi,j = bi,j/2.) In other terms, the quadratic rank
of U is less than

(
m+1

2

)
if and only if the rows of U lie on a homogeneous

quadric. It follows that, if R is an invertible m×m matrix then U and UR
have the same quadratic rank. Consequently the quadratic rank of U is a
property of its column space, rather than of the matrix itself.

If vT
1 , . . . , vT

n are the rows of U then the quadratic rank of U is the
dimension of the space spanned by the matrices vvT . In particular, the
quadratic rank of U is

(
m+1

2

)
if and only if the matrices viv

T
i span the

space of all m×m symmetric matrices.

Let X be a graph on n vertices. A representation of X in Rm is a map
ρ from V (X) into Rm. Usually this map is chosen so that the geometry
of the image of V (X) reveals some information about X, but this is not a
requirement of the definition.

It is often convenient to describe ρ by an n × m matrix, U say, with
rows indexed by V (X). Then ρ(v) is the v-row of U . Eigenspaces of
a generalized Laplacian Q provide useful representations—simply choose
U to be a matrix whose columns form an orthogonal basis for the given
eigenspace.

Suppose ρ is a representation of a graph X and let U be the matrix
with rows

ρ(v), v ∈ V (X), ρ(v)− ρ(w), uv ∈ E(X).

We define the quadratic rank of ρ to be the quadratic rank of U . Note that
if X has e vertices and e edges then any representation of X has quadratic
rank at most v + e.
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If the quadratic rank of ρ is less than
(
m+1

2

)
then there is an m × m

symmetric matrix B such that

ρ(u)T Bρ(u) = 0, ∀u ∈ V (X) (1)

and
(ρ(u)− ρ(v))T B(ρ(u)− ρ(v)) = 0, ∀uv ∈ E(X). (2)

Given (1), we see that (2) is equivalent to the condition

ρ(u)T Bρ(v) = 0, ∀uv ∈ E(X).

We can summarize our deliberations thus:

3.1 Lemma. Let ρ be a representation of X in Rm. The quadratic
rank of ρ is less than

(
m+1

2

)
if and only if there is a non-zero homogeneous

quadric which contains the image of each vertex of X and the lines that
join the images of each pair of adjacent vertices.

Finally we give the connection to the SAH.

3.2 Theorem. Let Q be a generalized Laplacian for X and let θ be an
eigenvalue of Q with multiplicity m. Then the θ-eigenspace of Q satisfies
the SAH if and only if the associated representation has quadratic rank(
m+1

2

)
.

Proof. Let U be an n×m matrix whose columns form an orthonormal basis
for the θ-eigenspace of Q and let ρ be the corresponding representation. The
SAH fails for this eigenspace if and only if there is a non-zero symmetric
matrix B such that I ◦ (UBUT ) = 0 and (Q− θI) ◦ UBUT = 0.

The matrix B defines a projective quadric. We have I ◦ (UBUT ) = 0
if and only if the image of each vertex of X lies on this quadric. We have
(Q − θI) ◦ UBUT = 0 if and only if ρ(u)T Bρ(v) = 0 for each edge uv.
Hence B exists if and only if the SAH fails and, as we saw above, B exists
if and only if the quadratic rank of ρ is less than

(
m+1

2

)
.

The rank of matrix is equal to the largest integer k such that the
determinant of some k × k submatrix is non-zero. Given this, it is not
hard to see that a small perturbation of a matrix cannot increase its rank.
Further, if the columns of a matrix are linearly independent then a small
perturbation does not change its rank. It follows that if an n×m matrix U
has quadratic rank

(
m+1

2

)
, then any small perturbation of U has quadratic

rank
(
m+1

2

)
.

We note that the quadratic rank is defined for any subspace of Rn, not
just for eigenspaces. There is one simple but useful consequence of this.
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3.3 Lemma. Suppose W is a subspace of Rn with dimension m and
quadratic rank

(
m+1

2

)
. If W1 is a subspace of W with dimension k, its

quadratic rank is
(
k+1
2

)
.

4. A Minor-Monotone Parameter

Let X be a graph and let Q denote the set of all generalized Laplacians Q
such that:

(a) λ1(Q) is simple.
(b) The λ2-eigenspace of Q satisfies the SAH.

The Colin de Verdière number of X is the maximum multiplicity of λ2,
over all matrices in Q. We denote it by µ(X).

4.1 Theorem. If e ∈ E(X) then µ(X \e) ≤ µ(X).

Proof. Let Y denote X \e and let Q be a generalized Laplacian for Y such
that λ2 has multiplicity equal to µ(Y ). Let Ξ be the adjacency matrix of
e, viewed as a subgraph of X with |V (X)| vertices. By Lemma 2.1, we can
write Ξ as a sum N + K where N ∈ N⊥

Q and K ∈ K⊥Q.
Therefore Q+tK is a generalized Laplacian for X when t 6= 0. As K ∈

K⊥Q, it follows from Lemma 1.1 that λ2(Q + tK) = λ2(Q) has multiplicity
equal to µ(Y ) whenever t is small enough. By our remarks at the end of
‘quadrk’, the representations of X associated with λ2(Q + tK) and λ2(Q)
have the same quadratic rank, and so the SAH holds for Q + tK.

Since the multiplicity of λ2(Q + tK) is constant for small t, we also
see that λ1(Q + tK) is simple.

4.2 Theorem. If e ∈ E(X) then µ(X/e) ≤ µ(X).

Proof. Suppose e = 12 and

Q(X/e) =
(

a bT

b Q1

)
.

We assume that λ2(Q(X/e)) = 0. Let Y be the graph K1 ∪ (X/e) and let
Q = Q(Y ) be a generalized Laplacian for Y . We may assume Q(Y ) has
the form  ε 0 0

0 a bT

0 b Q1

 ,
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where ε > 0, and will be restricted further shortly. Let Ξ be the matrix

Ξ =

 0 −1 cT

−1 0 −cT

−c 0 0

 .

Here c is a non-positive vector such that Q + Ξ is a generalized Laplacian
for X. So, for example:

ci =


0, if 1 6∼ i and 2 6∼ i;
bi, if 1 ∼ i and 2 6∼ i;
0, if 1 6∼ i and 2 ∼ i;
bi/2, otherwise.

As before, Ξ = N + K, where N ∈ N⊥
Q and K ∈ K⊥Q. Consider the

matrix pencil Q+tK. For small values of t we know that the rank of Q+tK
does not change, and the SAH holds for ker(Q+tK). Choose some positive
value of t that works, and assume that ε was chosen so that ε < t2/(1− t).
If we multiply the first row and colum of Q + tK by (1 − t)/t, we get the
matrix

Q′ =

 ε(1− t)2/t2 t− 1 (1− t)cT

t− 1 a bT − tcT

(1− t)c b− tc Q1


This operation does not change the rank, and it is not hard to see that
SAH holds for ker(Q′) and that λ1(Q

′) is simple.
Let Q′′ be the matrix we get from Q′ by subtracting its first row from

its second, and the first column from the second. We observe that Q′′ is
a generalized Laplacian for X (at last), and that its rank is equal to the
rank of Q′. We have to show that the SAH holds.

Let U be the n × m matrix whose columns form a basis for ker(Q′),
and let M be the elementary matrix we get by adding the first row of I to
its second row. Thus Q′′ = MQ′MT and the columns of M−1U are a basis
for ker(Q′′). Since the SAH holds for Q′, the space of all m×m symmetric
matrices is spanned by the matrices

uiu
T
i , (ui − uj)(ui − uj)

T , i ∈ V (X), ij ∈ E(X)

where ui is the i-th row of U . Let vi denote the i-th row of M−1U .
We have v1 = u1, v2 = u1−u2 and v1−v2 = u2. Hence the SAH holds.

As Q′′ and Q′ are congruent, it follows from Sylvester’s law of inertia that
λ1(Q

′′) is simple.

The previous two results combine to give the most important property
of the Colin de Verdière number:
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4.3 Corollary. If Y is a minor of X then µ(Y ) ≤ µ(X).

5. Properties

We derive some further relations between the Colin de Verdière number of
a graph and its subgraphs. We begin with a technical result.

5.1 Lemma. If an eigenspace of X contains two eigenvectors with dis-
joint supports, then the SAH hypothesis fails.

Proof. Suppose x and y are vectors and U is the matrix

U =
(

x 0
0 y

)
.

As the Schur product of the columns of U is zero, it follows that qrk(U) = 2.
By ‘sahsub’, we deduce that the SAH fails for any subspace that contains
x and y.

We now determine µ(Kn) and µ(Kn). It is easy to see that µ(K1) = 0.
Suppose n ≥ 2. Then −J is a generalized Laplacian for Kn with λ2(Q) = 0
having multiplicity n− 1. Here N⊥

Q is the space of all symmetric matrices,
and so the SAH holds by Lemma 2.1. (Conversely, it is not too hard to
show that µ(X) = |V (X)| − 1 if and only if X = Kn.)

Next we consider X = Kn. Here N⊥
Q is the space of diagonal matrices.

Suppose Q is a generalized Laplacian for X such that λ2 is simple. We may
assume without loss that the associated eigenvector is e1, the first standard
basis vector. Then

K⊥Q = {H : eT
1 He1 = 0} = {H : H1,1 = 0}.

Thus K⊥Q has codimension 1 in the space of symmetric matrices, and so
Lemma 2.1 again yields that the SAH holds. Hence µ(X) ≥ 1.

Suppose now that λ2 has multiplicity at least two. We may assume
that the eigenspace contains e1 and e2, whence ‘dis-sup’ yields that the
SAH fails.

5.2 Lemma. If X has at least one edge, then µ(X) equals the maximum
value of µ(Y ), where Y ranges over the components of X.

Proof. By ‘edge-del’, µ(X) ≥ µ(C), where C runs over the components
of X.
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Let Q be a generalized Laplacian for X that realises µ(X), with
λ2(Q) = 0. Exactly one component Y of X has least eigenvalue equal
to λ1; all other components must have least eigenvalue no less than zero.
If two distinct components of X have eigenvalue zero then the kernel of Q
contains two vectors with disjoint support, and the SAH fails.

If some component of X has least eigenvalue zero, then since a com-
ponent is connected, its least eigenvalue is simple and µ(X) = 1. As X
contains an edge, some component C has µ(C) ≥ 1, and the lemma follows.

Otherwise 0 must be an eigenvalue of Y and µ(X) = µ(Y ).

Suppose Q is a generalized Laplacian for X and ρ is the representation
on some eigenspace of Q with eigenvalue θ and dimension m. Let u be a
vertex of X and let W be the subspace of the eigenspace spanned by the
eigenvectors that vanish on u. The restriction to V (X)\u of any of these
eigenvectors is an eigenvector for Q(X \u), with eigenvalue θ. This shows
that the multiplicity of θ as an eigenvalue of Q(X \ u) is at least m − 1.
It follows from spectral decomposition that the dimension is m − 1 if and
only if ρ(u) 6= 0. (See Lemma 8.13.1 in Godsil & Royle.)

5.3 Lemma. Let Q be a generalized Laplacian for X, and let ρ be the
representation on the λ2-eigenspace of Q. Assume λ2(Q) has multiplicity
m and let u be a vertex in X such that

a) ρ(u) 6= 0.
b) The images of u and its neighbours span Rm.

Then if the SAH holds for Q(X \u), it holds for Q.

Proof. By hypothesis, the vectors in ker(Q − λ2I) that do not have u in
their support span a space W of dimension m−1, with quadratic rank

(
m
2

)
.

Let x1, . . . , xm−1 be a basis for W and let z be an eigenvector for Q with
eigenvalue λ2 such that zu = 1.

Suppose the SAH fails for Q. Then there is a non-zero symmetric
m×m matrix B such that

ρ(v)T Bρ(w) = 0

if v = w or v ∼ w. As ρ(u) is the first standard basis vector in Rm and as
the images of u and its neighbours span Rm, it follows that ρ(u)T B = 0.
Thus the first row and column of B are zero. If B is not zero the the SAH
fails for Q(X \u).
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5.4 Lemma. If u ∈ V (X) then µ(X \u) ≥ µ(X) − 1. If u is adjacent
to each vertex in V (X)\u and |V (X)| ≥ 2, then µ(X \u) = µ(X)− 1.

Proof. Suppose that Q is a generalized Laplacian for X that realizes the
Colin de Verdière number of X. Let u be a vertex of X, let Qu be the
matrix we get by deleting the u-row and u-column from Q and let W be
the space consisting of the λ2-eigenvectors x of Y such that xu = 0. It
is easy to verify that deleting the u-coordinate from a vector in W gives
an eigenvector for Qu with eigenvalue λ2(Q). As the SAH holds for Q, it
holds for W .

To complete the proof of the first claim, we show that if Q is a gen-
eralized Laplacian for X and W is a k-dimensional subspace of the λ2-
eigenspace which satisfies the SAH, then µ(X) ≥ k.

Suppose λ2(Q) has multiplicity m and let F be the projection onto the
complement of W in the λ2-eigenspace. Let U1 be an n× k matrix whose
columns are a basis for W . As the SAH holds for W , we have F = N + K,
where N ∈ N⊥

Q and UT
1 KU = 0. Let U be a n× n matrix with a basis of

the λ2-eigenspace as columns. Then UT NU = UT (F −K)U has eigenvalue
0 with multiplicity k and 1 with multiplicity m− k. So, for small non-zero
values of t, we find that λ2(Q + tN) has multiplicity k and satisfies the
SAH.

Finally, suppose u is adjacent to all vertices in X \u. By the previous
result, we may assume that X\u is connected. Let Q′ be a matrix realizing
µ(X\u) with λ2(Q

′) = 0, and let z be an eigenvector of Q′ with eigenvalue
λ1 = λ1(Q). We may choose z so that z < 0 and ‖z‖ = 1. Let Q be the
generalized Laplacian given by

Q =
(

λ−1
1 zT

z Q′

)
.

Then kerQ contains (λ1, z)T and all vectors of the form (0, x)T , where
x ∈ ker(Q′). The SAH holds by the previous lemma.

The least eigenvalue of Q is simple, because X is connected. By inter-
lacing, λ2(Q) = λ2(Q

′). We conclude that µ(X) = µ(X \u) + 1.

5.5 Corollary. Suppose C is a vertex cutset in X and let Y1, . . . , Yr be
the components of X \C. Then µ(X) ≤ |C|+ maxi µ(Yi).
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