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Polynomials and Walks

The Characteristic Polynomial

Definition
Let G be a graph with adjacency matrix A. The characteristic
polynomial ¢(G,t) of G is the characteristic polynomial of A:

#(G, 1) := det(t] — A).

Chris Godsil
Are Almost All Graphs Cospectral?



The characteristic polynomials of K7, Ko and Ps are respectively:
2
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3 — 2t.



If A is the adjacency matrix of G, then (A"); ; is the number of
walks in G from vertex i to vertex j with length r.
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A walk in GG is closed if its first and last vertices are equal. The
number of closed walks in G with length r is

i€V (G)
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D (AN = tr(A7).



If G has n vertices, e edges and contains exactly ¢ triangles, then

n
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= 2e
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If G has n vertices, e edges and contains exactly ¢ triangles, then

n
0

= 2e
6t.

(And then it gets messy!)
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A Generating Function

The generating function for the closed walks in GG, counted by

length, is
> (AN

r>0

It is a rational function:

mr _ (G
T_Z;otr(A W= G
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A Characterisation

Corollary

Two graphs G and H are cospectral if and only if their generating
functions for closed walks are equal.
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Polynomials and Walks

The Smallest Connected Cospectral Graphs

) )
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Cospectral, Cospectral Complements?

The graphs C4 U K7 and K7 4 have two and four triangles
respectively—they are not cospectral.
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Polynomials and Walks

Another Generating Function

The number of walks of length r in G is equal to
tr(A"J) =17A"1

and thus

> (AT

r>0

is the generating function for all walks in G.
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Polynomials and Walks

Complements and Walks

Theorem

Suppose G and H are cospectral graphs with respective adjacency
matrices A and B. Then G and H are cospectral if and only if the
generating functions for all walks in G and in H are equal.
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function is

n

1—kt

If G is a k-regular graph on n vertices then its walk generating
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Polynomials and Walks

Regular Graphs

If G is a k-regular graph on n vertices then its walk generating

function is
n
1—kt
Lemma
Cospectral regular graphs have cospectral complements. O
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Polynomials and Walks

Two Irregular Graphs
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G with a vertex in H:

The 0-sum of two graphs G and H is got by identifying a vertex in
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If we create the 0-sum F' by merging v in G with v in H, then

P(F) = ¢(G)p(H \v) + ¢(G\v)p(H) — td(G\v)p(H \v).
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If G = K9 and K = K> then their 0-sum I is P3, whence

d(Ps,t) = (12 = D)t +t(t* — 1) — t(t?) = > — 2t.
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Corollary

If we hold G and its vertex v fixed, then the characteristic
polynomial of the 0-sum of G and H is determined by the
characteristic polynomials of H and H \ v.

Chris Godsil
Are Almost All Graphs Cospectral?



Cospectral Graphs

1-Full Graphs
0000000000000 00 0000000
0000080000 000
0000000 0000000

Constructing Cospectral Graphs

Deleting Vertices

If H is the graph

then H\w and H \ v are isomorphic. ..
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Constructing Cospectral Graphs

A Cospectral Pair

...and thus we obtain a pair of cospectral graphs:

Q @, j O /:\O QO /\“ §
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Almost all trees are cospectral. ..
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Almost all trees are cospectral. .. with cospectral complements.
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1 1 1 1 11 1
111 -1 1 1 01 0
K'_§11—11’ M=14 0 1
1 1 1 -1 100

then K1 =1 and K2 = I, whence K is orthogonal, and

KM = =Js— M.

O~ Rk O
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Switching related graphs are cospectral, with cospectral
complements.
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Is it true that almost all graphs are determined by their spectrum?
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A Related Example
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A Cyclic Subspace

A Subspace

Let G be a graph on n vertices with adjacency matrix A. Define U
to be the subspace of R™ spanned by the vectors A1, for all
non-negative integers r.
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If the permutation matrix P is in Aut(G), then Pu = u for all w in
U.
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A Cyclic Subspace

Automorphisms

Theorem

If the permutation matrix P is in Aut(G), then Pu = u for all w in
U.

Proof.

If P is a permutation matrix, P1 = 1. If P € Aut(G), then
PA = AP and so, for all r

PA"1 = A"P1=A"1.

]
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The 1-rank of G is the dimension of U.
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A Cyclic Subspace

1-Rank

Definition
The 1-rank of G is the dimension of U.

Lemma

The 1-rank of G is less than or equal to the number of orbits of
Aut(G) on the vertices of G.
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A graph G on n vertices is 1-full if its 1-rank is n.
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A graph G on n vertices is 1-full if its 1-rank is n.
A 1-full graph is asymmetric.
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A 1-full graph is vertex reconstructible.
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Is it true that almost all graphs are 1-full?
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Generating All Matrices

A Basis of Matrices

Theorem

Let G be a graph on n vertices. If G is 1-full, the matrices
AL JAT 0<i,j<n

form a basis for Mat,, x,, (R).
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Generating All Matrices

The Proof
Proof.
Fori=0,...,n—1, set u; = A’1. Then A'"JA) = ulu;f The
vectors ug, . .., u,—1 are linearly independent, and so any non-zero

linear combination of the matrices can be written as

i i
vy + 0+ Up—1Y, 4

where none of the vectors vg,...,v,_1 are zero. Since the u;'s are
linearly independent, this sum cannot be zero. ]
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Two graphs G and H are walk equivalent if their generating
functions for walks are equal.

«0O)» «F»

it
a
i

DA



Cospectral Graphs 1-Full Graphs

0000000000000 00 0000000
0000000000 000
0000000 0@00000

Cospectral 1-Full Graphs

Walk Equivalent

Definition
Two graphs G and H are walk equivalent if their generating
functions for walks are equal.

(Thus any two k-regular graphs on the same number of vertices
are walk equivalent.)
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Cospectral 1-Full Graphs

Walk-Equivalent 1-Full Graphs

Theorem

If G and H are walk equivalent graphs and G is 1-full, then G and
H are cospectral with cospectral complements.
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Cospectral 1-Full Graphs

An Endomorphism

Assume A and B are the adjacency matrices of G and H
respectively. Since the matrices A*JA7 (where 0 < i,j < n) form
a basis for M = Mat,, x,(R), there is a unique linear map

¢ : M — M such that

D(A'JAY) = B'TB.
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Let w, denote the number of walks of length r in G. Then

ALJAT AR JAY = wj g ATT A"
and consequently

DA TAT AFTAY) = wjyp ®(ATTAY)

= wj . B'JB*

= B'JB’ B*JB*
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Isomorphisms

It follows that ® is a homomorphism (and not just a linear map).
Since M is a simple algebra, ® is an isomorphism. By the
Noether-Skolem theorem it follows that there is an invertible
matrix L such that

®(M)=L'ML

for all matrices M.
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So we have

L™'AL = B,
whence GG and H are cospectral.
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So we have

L™'AL = B,
whence GG and H are cospectral.

Since ®(J) = J, we have L~'JL = J, whence G and H are
cospectral.
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