Average Mixing Matrices

Chris Godsil, University of Waterloo

Edmonton, June 3, 2011

Outline

1 A Quantum Walk

• The Transition Matrix

2 Mixing

- Instantaneous Mixing
- Average Mixing

Outline

A Quantum Walk The Transition Matrix

Mixing

- Instantaneous Mixing
- Average Mixing

An Operator

Definition

Let X be a graph with adjacency matrix A. We define the transition matrix ${\cal H}_{\!A}(t)$ by

$$H_A(t) := \exp(itA)$$

Example

Suppose $X = K_2$. Then $A^2 = I$ and so

$$H_A(t) = I + itA - \frac{1}{2}t^2I - \frac{1}{6}t^3A + \frac{1}{24}t^4I + \cdots$$

= $\cos(t)I + i\sin(t)A$
= $\begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}$

A Quantum Walk Mixing

The Transition Matrix

Properties of the Transition Operator

• $H_A(t)$ is symmetric (because A is).

Properties of the Transition Operator

• $H_A(t)$ is symmetric (because A is).

•
$$H_A(-t) = H_A(t)^{-1}$$

Properties of the Transition Operator

• $H_A(t)$ is symmetric (because A is).

•
$$H_A(-t) = H_A(t)^{-1}$$

•
$$\overline{H_A(t)} = H_A(-t).$$

Properties of the Transition Operator

- $H_A(t)$ is symmetric (because A is).
- $H_A(-t) = H_A(t)^{-1}$.
- $\overline{H_A(t)} = H_A(-t).$
- $H_A(t)$ is unitary.

Mixing

Definition

We define the mixing matrix $M_A(t)$ by

$$M_A(t) := H(t) \circ H(-t).$$

Example

If $X = K_2$ then

$$M_A(t) = \begin{pmatrix} \cos^2(t) & \sin^2(t) \\ \sin^2(t) & \cos^2(t) \end{pmatrix}.$$

A Quantum Walk Mixing

The Transition Matrix

Properties of the Mixing Matrix

• $M_A(t)$ is symmetric.

Properties of the Mixing Matrix

- $M_A(t)$ is symmetric.
- $M_A(t)$ is doubly stochastic.

Properties of the Mixing Matrix

- $M_A(t)$ is symmetric.
- $M_A(t)$ is doubly stochastic.
- It's all that we can actually observe of a continuous quantum walk.

Outline

1 A Quantum Walk

• The Transition Matrix

2 Mixing

• Instantaneous Mixing

Average Mixing

Instantaneous Uniform Mixing

Definition

We have instantaneous uniform mixing at time t if

$$M(t) = \frac{1}{|V(X)|}J.$$

Example

We have instantaneous uniform mixing on K_2 at time $\pi/4$.

Hadamard Matrices

If we have instantaneous uniform mixing at t, then H(t) is a flat unitary matrix, i.e., all its entries have the same absolute value. Physicists refer to such matrices a generalized Hadamard matrices.

The Cartesian Product

Definition

The Cartesian product $X \square Y$ of graphs X and Y is the graph with adjacency matrix

$A(X) \otimes I + I \otimes A(Y).$

The Cartesian Product

Definition

The Cartesian product $X \square Y$ of graphs X and Y is the graph with adjacency matrix

 $A(X) \otimes I + I \otimes A(Y).$

Lemma

$$H_{A(X\Box Y)}(t) = H_{A(X)}(t) \otimes H_{A(Y)}(t)$$

The Cartesian Product

Definition

The Cartesian product $X \square Y$ of graphs X and Y is the graph with adjacency matrix

 $A(X) \otimes I + I \otimes A(Y).$

Lemma

$$H_{A(X\Box Y)}(t) = H_{A(X)}(t) \otimes H_{A(Y)}(t)$$

Corollary

There is instantaneous uniform mixing on the *d*-cube at time $\pi/4$.

A Quantum Walk Mixing

Instantaneous Mixing is Rare?

Theorem (Chan, Roy)

Instantaneous mixing cannot occur on a strongly regular graph.

Outline

1 A Quantum Walk

• The Transition Matrix

2 Mixing

- Instantaneous Mixing
- Average Mixing

The Average Mixing Matrix

Definition The average mixing matrix \widehat{M}_X of X is given by $\widehat{M}_X = \frac{1}{T} \int_0^T M(t) dt.$

A Quantum Walk Mixing

Instantaneous Mixing Average Mixing

Some Properties of the Average Mixing Matrix

• \widehat{M}_X is symmetric and doubly stochastic.

A Quantum Walk Mixing

Some Properties of the Average Mixing Matrix

- \widehat{M}_X is symmetric and doubly stochastic.
- If X is connected, $\widehat{M}_X > 0$.

Some Properties of the Average Mixing Matrix

- \widehat{M}_X is symmetric and doubly stochastic.
- If X is connected, $\widehat{M}_X > 0$.
- If $X \neq K_2$, the average mixing matrix is not equal to $\frac{1}{n}J$.

Spectral Decomposition

If A has the spectral decomposition

$$A = \sum_{r} \theta_r E_r$$

then

$$H_A(t) = \sum_r e^{it\theta_r} E_r.$$

Lemma

$$M_X(t) = \sum_r E_r^{\circ 2} + 2 \sum_{r < s} \cos(\theta_r - \theta_s) t \ E_r \circ E_s.$$

A Formula for the Average Mixing Matrix

Theorem $\widehat{M}_X = \sum_r E_r^{\circ 2}.$

A Formula for the Average Mixing Matrix

Average Mixing on Paths

Let $T = T_n$ be the permutation matrix that swaps i and n + 1 - i for i = 1, ..., n.

Lemma

If P is the path on n vertices, then its average mixing matrix is

$$\frac{1}{2n+2}(2J+I+T).$$

Average Mixing on Cycles

Lemma

If n is odd, the average mixing matrix for C_n is

$$\frac{n-1}{n^2}J + \frac{1}{n}I.$$

The Complement of a Graph...

A Quantum Walk Mixing

Instantaneous Mixing Average Mixing

... and its Average Mixing Matrix

0.4442	0.0808	0.0664	0.0854	0.1362	0.0849	0.1019
0.0808	0.2474	0.1025	0.0964	0.1582	0.1540	0.1607
0.0664	0.1025	0.2273	0.2233	0.1438	0.1221	0.1146
0.0854	0.0964	0.2233	0.2346	0.1231	0.1149	0.1222
0.1362	0.1582	0.1438	0.1231	0.2015	0.1532	0.0840
0.0849	0.1540	0.1221	0.1149	0.1532	0.2029	0.1680
0.1019	0.1607	0.1146	0.1222	0.0840	0.1680	0.2487

Rationality

Theorem

The average mixing matrix of a graph is rational.

Discriminants

Lemma

If D is the discriminant of the minimal polynomial of A(X) and \widehat{M}_X is its average mixing matrix, then $D^2 \widehat{M}_X$ is an integer matrix. If the eigenvalues of X are simple, $D\widehat{M}_X$ is simple.

Discriminants

Lemma

If D is the discriminant of the minimal polynomial of A(X) and \widehat{M}_X is its average mixing matrix, then $D^2 \widehat{M}_X$ is an integer matrix. If the eigenvalues of X are simple, $D\widehat{M}_X$ is simple.

For our 7-vertex example, the eigenvalues are simple and

$$D = 2^6 \times 8438040749$$

and 2×8438040749 times \widehat{M}_X is rational???

The End(s)

