Quantum Coloring Problems

Chris Godsil University of Waterloo

Fort Collins, November, 2011: In memory of Bob Liebler

Outline

1 Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

Cosmology

Quote

Hydrogen is a colorless, odorless gas which given sufficient time, turns into people. (Henry Hiebert)

Axioms

Quote

"The axioms of quantum physics are not as strict as those of mathematics"

Outline

Physics 101

2 The Unit Sphere

Coloring the Sphere

- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

An orthogonality graph, and a problem

Definition

We define $\Omega(d)$ to be the graph with the unit vectors in \mathbb{R}^d as its vertices, where two vertices are adjacent if and only if they are orthogonal.

Problem What is $\chi(\Omega(d))$?

Cliques in $\Omega(d)$

Since each orthonormal basis for \mathbb{R}^d forms a clique in $\Omega(d),$ we have

 $\chi(\Omega(d)) \ge d.$

Definition

Definition

Let $\Phi(d)$ denote the graphs with the ± 1 -vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.

 $\ \, {\rm If} \ d \ {\rm is \ odd,} \ \Phi(d) \ {\rm has \ no \ edges.}$

Definition

- $\ \, {\rm If} \ d \ {\rm is \ odd}, \ \Phi(d) \ {\rm has \ no \ edges}.$
- 2 If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.

Definition

- $\ \, {\rm If} \ d \ {\rm is \ odd}, \ \Phi(d) \ {\rm has \ no \ edges}.$
- 2 If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.
- $\begin{tabular}{ll} \hline {\bf O} & \alpha(\Phi(d)) \leq \frac{2^d}{d} \mbox{ and thus } \chi(\Phi(d)) \geq d \mbox{; hence if } \chi(\Phi(d)) = d, \\ \mbox{ then } d \mbox{ is a power of two.} \end{tabular}$

Definition

- $\ \, {\rm If} \ d \ {\rm is \ odd,} \ \Phi(d) \ {\rm has \ no \ edges.}$
- 2 If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.
- $\begin{tabular}{ll} \hline {\bf O} & \alpha(\Phi(d)) \leq \frac{2^d}{d} \mbox{ and thus } \chi(\Phi(d)) \geq d \mbox{; hence if } \chi(\Phi(d)) = d \mbox{, then } d \mbox{ is a power of two.} \end{tabular}$

Definition

- $\ \, {\rm If} \ d \ {\rm is \ odd,} \ \Phi(d) \ {\rm has \ no \ edges.}$
- 2 If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.
- ⓐ $\alpha(\Phi(d)) \leq \frac{2^d}{d}$ and thus $\chi(\Phi(d)) \geq d$; hence if $\chi(\Phi(d)) = d$, then *d* is a power of two.
- If $\chi(\Phi(d)) = d$ and there is a $d \times d$ Hadamard matrix, then d is a power of two.

The chromatic number of $\Phi(d)$ increases exponentially

Theorem (Frankl and Rödl)

There is a constant c such that 0 < c < 2 and if 4|d and d is large enough, then $\alpha(\Phi(d)) < c^d$.

Outline

Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

Coloring planes

Definition

Let $\mathcal{P}(\mathbb{F})$ denote the projective plane over the \mathbb{F} . A proper coloring of \mathcal{P} is a coloring of its points, such that each line gets exactly two colors.

Coloring planes

Definition

Let $\mathcal{P}(\mathbb{F})$ denote the projective plane over the \mathbb{F} . A proper coloring of \mathcal{P} is a coloring of its points, such that each line gets exactly two colors.

Theorem (Carter and Vogt, Hales and Straus)

The proper colorings of $\mathcal{P}(\mathbb{F})$ correspond to the non-trivial non-Archimedean valuations of \mathbb{F} .

Planes and spheres

Every coloring of $\Omega(3)$ gives a coloring of the projective plane, but the converse does not hold. But no coloring of the plane lists to a sphere coloring:

Corollary $\chi(\Omega(3)) > 3.$

Outline

Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes

Gleason

Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

Gleason's theorem

Definition

Let $\Omega(d)$ denote the graph whose vertices are the unit vectors in \mathbb{R}^d , where two unit vectors are adjacent if they are orthogonal. A frame function is a non-negative function on unit vectors that sums to 1 on each orthonormal basis.

Theorem (Gleason, 1957)

If $d \ge 3$ and f is a frame function, then there is a positive semidefinite matrix M such that tr(M) = 1 and $f(x) = x^T M x$ for all x.

No *d*-colorings

Corollary If $d \ge 3$ then $\chi(\Omega(d)) > d$.

No *d*-colorings

Corollary

If $d \geq 3$ then $\chi(\Omega(d)) > d$.

Proof.

Suppose $\Omega(d)$ is *d*-colorable and let *S* be a color class in a *d*-coloring. Then each orthonormal basis must contain a vertex in *S*, and therefore the characteristic vector of *S* is a frame function.

No *d*-colorings

Corollary

If $d \geq 3$ then $\chi(\Omega(d)) > d$.

Proof.

Suppose $\Omega(d)$ is *d*-colorable and let *S* be a color class in a *d*-coloring. Then each orthonormal basis must contain a vertex in *S*, and therefore the characteristic vector of *S* is a frame function. But this characteristic function is not continuous.

Applying compactness

Theorem (Kochen and Specker)

Assume $d \ge 3$. There is a finite subgraph of $\Omega(d)$ whose vertex set is a union of orthonormal bases, such that no coclique contains a vertex in each orthonormal basis.

Outline

Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

Complex lines

A line in \mathbb{C}^d can be represented by a unit vector that spans it. If x spans a line then

$$P = (x^*x)^{-1}xx^*$$

represents orthogonal projection onto the line spanned by x.

Angles between complex lines

The angle between the lines spanned by unit vectors x and y is determined by

$$|\langle x, y \rangle| = |x^*y|.$$

If P and Q are the projections xx^{\ast} and $yy^{\ast},$ then

$$\operatorname{tr}(PQ) = \operatorname{tr}(xx^*yy^*) = \operatorname{tr}(y^*xx^*y) = |\langle x, y \rangle|^2.$$

Linear combinations of projections

Suppose we have m lines in \mathbb{C}^d such that the angle between any pair of lines is the same. Let P_1, \ldots, P_m be the corresponding projections. If

$$0 = \sum_{r} c_r P_r$$

then, if ${\rm tr}(P_rP_s)=a^2$ when $r\neq s$,

$$0 = \sum_{r} c_r \operatorname{tr}(P_k P_r) = c_k (1 - a^2) + a^2 \sum c_r.$$

Hence the coefficients c_r are all equal and it follows they are all zero.

A bound on the size of a set of equiangular lines

Lemma

If P_1, \ldots, P_m are the orthogonal projections onto a set of equiangular lines in \mathbb{C}^d , then they form a linearly independent subset of the vector space of $d \times d$ Hermitian matrices. Hence $m \leq d^2$.

If equality holds, the angle is determined

Theorem

If we have a set of
$$d^2$$
 equiangular lines in \mathbb{C}^d , then $a^2 = (d+1)^{-1}$.

Proof.

Suppose \mathcal{L} is an equiangular set of m lines in \mathbb{C}^d , with associated projections P_1, \ldots, P_m . If $m = d^2$ then there are scalars c_i such that $I = \sum_r c_r P_r$ and therefore

$$1 = \operatorname{tr}(P_k) = (1 - a^2)c_k + a^2 \sum_r c_r.$$

So the scalars c_r are all equal and, since tr(I) = d, we have $c_r = d/m$. Substituting this into the above equation yields the value stated for a^2 .

An question about chromatic number

Let X(d) be the graph on lines in \mathbb{C}^d , where lines given by projections P and Q are adjacent if $\operatorname{tr}(PQ) = (d+1)^{-1}$. Then $\omega(X(d)) \leq d^2$.

Problem

What is the chromatic number of X(d)?

What can we construct?

• Sets of d^2 lines that are equiangular to machine precision have been constructed up to d = 67 (Scott and Grassl 2009).

What can we construct?

- Sets of d^2 lines that are equiangular to machine precision have been constructed up to d = 67 (Scott and Grassl 2009).
- Equiangular sets with size d^2 exist when $d \in \{2, \ldots, 15, 19, 24, 35, 48\}$ (Scott and Grassl 2009).

What can we construct?

- Sets of d^2 lines that are equiangular to machine precision have been constructed up to d = 67 (Scott and Grassl 2009).
- Equiangular sets with size d^2 exist when $d \in \{2, \ldots, 15, 19, 24, 35, 48\}$ (Scott and Grassl 2009).
- In \mathbb{R}^d we can get sets of size at most $\binom{d+1}{2}$ and, if d > 3, then d is odd and d+2 is a perfect square. Examples are known only for d = 2, 3, 7, 23.

Outline

Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

A unitary Cayley graph

Definition

Let cD denote the set of $d \times d$ unitary matrices for which all diagonal entries are zero. A graph Y as a quantum *d*-coloring if there is a graph homomorphism from Y into the Cayley graph $X(U(d), \mathcal{D})$.

A unitary Cayley graph

Definition

Let cD denote the set of $d \times d$ unitary matrices for which all diagonal entries are zero. A graph Y as a quantum d-coloring if there is a graph homomorphism from Y into the Cayley graph $X(U(d), \mathcal{D})$.

 $\Phi(d)$ has a quantum *d*-coloring if *d* is a power of two.

Embedding the symmetric group

View the symmetric group $\mathrm{Sym}(d)$ as a group of $d\times d$ permutation matrices.

• $\operatorname{Sym}(d) \leq U(d, \mathbb{C})$ and two elements σ and τ of $\operatorname{Sym}(d)$ are adjacent in $X(U(d), \mathcal{D})$ if and only if $\tau \sigma^{-1}$ is a derangement.

Embedding the symmetric group

View the symmetric group $\mathrm{Sym}(d)$ as a group of $d\times d$ permutation matrices.

- $\operatorname{Sym}(d) \leq U(d, \mathbb{C})$ and two elements σ and τ of $\operatorname{Sym}(d)$ are adjacent in $X(U(d), \mathcal{D})$ if and only if $\tau \sigma^{-1}$ is a derangement.
- A regular subgroup of Sym(d) forms a clique of size d.

Embedding the symmetric group

View the symmetric group $\mathrm{Sym}(d)$ as a group of $d\times d$ permutation matrices.

- $\operatorname{Sym}(d) \leq U(d, \mathbb{C})$ and two elements σ and τ of $\operatorname{Sym}(d)$ are adjacent in $X(U(d), \mathcal{D})$ if and only if $\tau \sigma^{-1}$ is a derangement.
- A regular subgroup of Sym(d) forms a clique of size d.
- The map that sends a permutation σ to 1σ is a proper *d*-coloring of the image of Sym(d).

Outline

Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

Unbiased bases

Definition

Two orthonormal bases x_1, \ldots, x_d and y_1, \ldots, y_d of \mathbb{C}^d are unbiased if

 $|\langle x_r, y_s \rangle|$

is independent of r and s. (If it is, then it must be equal to $1/\sqrt{d}$.)

Unbiased bases

Definition

Two orthonormal bases x_1, \ldots, x_d and y_1, \ldots, y_d of \mathbb{C}^d are unbiased if

 $|\langle x_r, y_s \rangle|$

is independent of r and s. (If it is, then it must be equal to $1/\sqrt{d}$.)

If U_1 and U_2 are unitary matrices, their columns are unbiased if and only if all entries of $U_1^* U_2$ have the same absolute value, that is, if the matrix $U_1^* U_2$ is flat.

A Cayley graph for the unitary group

Let \mathcal{F} denote the set of flat matrices in $U(d, \mathbb{C})$. Then a set of mutually unbiased bases for \mathbb{C}^d is a clique in the Cayley graph $X(U(d), \mathcal{F})$.

How large can a set of mutually unbiased bases be?

If U is a flat unitary matrix and $D,\ E$ are diagonal matrices of order $d\times d,$ then

$$\operatorname{tr}(DU^{-1}EU) = \operatorname{tr}(D)\operatorname{tr}(E)$$

If $\ensuremath{\mathcal{D}}$ denotes the algebra of all diagonal matrices, it follows that

 $\mathcal{D} \cap U^{-1}\mathcal{D}U = \{cI : c \in \mathbb{C}\}.$

How large can a set of mutually unbiased bases be?

If U is a flat unitary matrix and $D,\,E$ are diagonal matrices of order $d\times d,$ then

$$\operatorname{tr}(DU^{-1}EU) = \operatorname{tr}(D)\operatorname{tr}(E)$$

If $\ensuremath{\mathcal{D}}$ denotes the algebra of all diagonal matrices, it follows that

$$\mathcal{D} \cap U^{-1}\mathcal{D}U = \{cI : c \in \mathbb{C}\}.$$

Corollary

The columns of the unitary matrices U_1, \ldots, U_m are mutually unbiased if and only if for all r and s (with $r \neq s$)

$$U_r^{-1}\mathcal{D} U_r \cap U_s^{-1}\mathcal{D} U_s = \{cI : c \in \mathbb{C}\}.$$

Hence we can have at most d + 1 mutually unbiased matrices in \mathbb{C}^d .

The basic question?

Question

For which values of d can we construct a mutually unbiased set of d+1 orthonormal bases of \mathbb{C}^d ?

Some partial answers

• There are mutually unbiased bases of size d + 1 if d is a prime power.

Some partial answers

- There are mutually unbiased bases of size d + 1 if d is a prime power.
- There is always a set of size three.

Some partial answers

- There are mutually unbiased bases of size d + 1 if d is a prime power.
- There is always a set of size three.
- If $d = 2d_0$ where d_0 is odd, we do not know how to do better than three.

Constructions from projective planes

All known examples of sets of d+1 mutually unbiased bases in \mathbb{C}^d can be constructed from either:

• A (d, d, d, 1)-relative difference set in an abelian group of order d².

Constructions from projective planes

All known examples of sets of d+1 mutually unbiased bases in \mathbb{C}^d can be constructed from either:

- A (d, d, d, 1)-relative difference set in an abelian group of order d².
- A symplectic spread in a vector space of even dimension: a set of q^d symmetric $d \times d$ matrices such that the difference of any two distinct matrices is invertible.

Outline

Physics 101

2 The Unit Sphere

- Coloring the Sphere
- Projective Planes
- Gleason
- Equiangular Lines

3 The Unitary Group

- Quantum Colorings
- Mutually Unbiased Bases
- Partitions

A graph on set partitions

Definition

Let V be a set of size d^2 . Define $\mathcal{P}(d)$ to be the graph whose vertices are the partitions of V into d cells of size d, where two such partitions are adjacent if each cell of the first partition contains a point from each of the d cells of the second partition.

A graph on set partitions

Definition

Let V be a set of size d^2 . Define $\mathcal{P}(d)$ to be the graph whose vertices are the partitions of V into d cells of size d, where two such partitions are adjacent if each cell of the first partition contains a point from each of the d cells of the second partition.

We can represent each partition π by a $d^2 \times d$ matrix $M(\pi)$ whose columns are the characteristic vectors of its cells. Then $\pi \sim \rho$ in $\mathcal{P}(d)$ if and only if

$$M(\pi)^T M(\rho) = J_d.$$

 $\mathcal{P}(3)$

Example

Assume d = 3. Then $\mathcal{P}(3)$ has 280 vertices and is regular with valency 36. There are 70 partitions which have 1 and 2 in the same cell, these form a coclique of maximal size (and all cocliques of size 70 are equivalent to this).

Coloring partitions

Meagher and Stevens:

$$\chi(\mathcal{P}(d)) \le \binom{d+1}{2}.$$

Coloring partitions

Meagher and Stevens:

$$\chi(\mathcal{P}(d)) \le \binom{d+1}{2}.$$

(The upper bound is tight if d = 3. Nothing more is known.)

Cliques in $\mathcal{P}(k)$

Lemma

The cliques of size k in $\mathcal{P}(d)$ correspond to orthogonal arrays with k rows and entries from $\{1, \ldots, d\}$.

Cliques in $\mathcal{P}(k)$

Lemma

The cliques of size k in $\mathcal{P}(d)$ correspond to orthogonal arrays with k rows and entries from $\{1, \ldots, d\}$.

Corollary

 $\omega(\mathcal{P}(d)) = d + 1$ if and only if there is an affine plane of order d.

The End(s)

