QUANTUM PHYSICS AND Algebraic Graph Theory

Chris Godsil

Combinatorics & Optimization University of Waterloo

Binghampton, May 2009

OUTLINE

1 COLOURING

- Gleason's Theorem
- Frankl & Rödl

2 MUB's

- Bounds
- A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

HENRY HIEBERT

Hydrogen is an odourless, colourless gas which, given enough time, turns into people.

OUTLINE

COLOURING Gleason's Theorem Frankl & Bödl

2 MUB's

- Bounds
- A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

CLIQUES & COCLIQUES

DEFINITION

We define a graph $\Sigma(d)$ on the unit sphere in \mathbb{R}^d by defining two unit vectors to be adjacent if they are orthogonal.

Although this graph is infinite, its maximal cliques are finite: the cliques of maximal size are the orthonormal bases of \mathbb{R}^d , which have size *d*.

A COLOURING PROBLEM

PROBLEM

Can we colour the vertices of $\Sigma(d)$ with exactly *d* colours?

If we can, the vertices with a given colour form a coclique which contains a vertex from each clique of size d.

GLEASON'S THEOREM

THEOREM

Assume $d \ge 3$ and let f be a function on the unit sphere in \mathbb{R}^d . Suppose:

(A) f is non-negative.

(B) For each orthonormal basis x_1, \ldots, x_d , we have $f_1 + \cdots + f_d = 1$.

Then there is a positive definite $d \times d$ matrix A such that tr(A) = 1 and, for all unit vectors x

$$f(x) = x^T A x.$$

CONTINUITY

COROLLARY

Assume $d \ge 3$. If *f* is a non-negative function on the unit sphere in \mathbb{R}^d such that the sum of the values of *f* on any orthonormal basis is 1, then *f* is continuous.

NO *d*-COLOURING

COROLLARY

If $d \ge 3$, the graph $\Sigma(d)$ does not have a *d*-colouring.

NO *d*-COLOURING

COROLLARY

If $d \ge 3$, the graph $\Sigma(d)$ does not have a *d*-colouring.

PROOF.

Assume there is a *d*-colouring and let S be one of the colour classes. Define a real function f on unit vectors by

$$f(x) = \begin{cases} 1, & x \in S; \\ 0, & x \notin S. \end{cases}$$

Then f is non-negative and sums to 1 on each orthonormal basis, but is not continuous.

OUTLINE

COLOURING Gleason's Theorem Frankl & Rödl

2 MUB's

- Bounds
- A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

COLOURING MUB'S GRAPHS

GLEASON'S THEOREM FRANKL & RÖDL

ANOTHER ORTHOGONALITY GRAPH

DEFINITION

Define $\Omega(d)$ to be the graph with the ± 1 -vectors of length *d* as vertices, where two vectors are adjacent if they are orthogonal.

CHRIS GODSIL PHYSICS, GRAPH THEORY

COLOURING $\Omega(d)$

If d is odd, $\Omega(d)$ has no edges.

< 一型 →

Colouring $\Omega(d)$

- If d is odd, $\Omega(d)$ has no edges.
- If $d \equiv 2$ modulo 4, then $\Omega(d)$ is bipartite.

Colouring $\Omega(d)$

- If d is odd, $\Omega(d)$ has no edges.
- If $d \equiv 2$ modulo 4, then $\Omega(d)$ is bipartite.
- If 4|d, then the rows of any d × d Hadamard matrix form a d-clique in Ω(d).

Colouring $\Omega(d)$

- If d is odd, $\Omega(d)$ has no edges.
- If $d \equiv 2 \mod 4$, then $\Omega(d)$ is bipartite.
- If 4|d, then the rows of any d × d Hadamard matrix form a d-clique in Ω(d).
- If 4|d and d is not a power of 2, then $\chi(\Omega(d)) > d$.

A THEOREM OF FRANKL & RÖDL

THEOREM

There is a real constant ϵ such that if 4|d and d is large enough, then

 $\alpha(\Omega(d)) \le (2-\epsilon)^d.$

... but exactly when is $\chi(\Omega(2^d)) > 2^d$?

∢ 伺 ▶ ∢ ∃ ▶

2

... but exactly when is $\chi(\Omega(2^d)) > 2^d$?

• $\chi(\Omega(4)) = 4$ and $\chi(\Omega(8)) = 8$.

▲ 同 ▶ → 三 ▶

-

- ... but exactly when is $\chi(\Omega(2^d)) > 2^d$?
 - $\chi(\Omega(4)) = 4$ and $\chi(\Omega(8)) = 8$.
 - χ(Ω(16)) > 16.
 (Galliard, Tappe and Wolf: arXiv:quant-ph/0211011; De Klerck and Pasechnik: arXiv:math/0505038)

- ... but exactly when is $\chi(\Omega(2^d)) > 2^d$?
 - $\chi(\Omega(4)) = 4$ and $\chi(\Omega(8)) = 8$.
 - χ(Ω(16)) > 16.
 (Galliard, Tappe and Wolf: arXiv:quant-ph/0211011; De Klerck and Pasechnik: arXiv:math/0505038)
 - If $d \ge 4$, then $\chi(\Omega(2^d)) > 2^d$. (Godsil and Newman: arXiv:math/0509151)

WHY SHOULD WE CARE?

We play a game with Alice and Bob. We separately offer Alice and Bob ± 1 -vectors v_A and v_B of length 2^m . Without any further communication Alice and Bob must generate vectors x_A and x_B respectively, such that:

WHY SHOULD WE CARE?

We play a game with Alice and Bob. We separately offer Alice and Bob ± 1 -vectors v_A and v_B of length 2^m . Without any further communication Alice and Bob must generate vectors x_A and x_B respectively, such that:

• x_A and x_B have length m

If
$$v_A = v_B$$
, then $x_A = x_B$.

If v_A and v_B are orthogonal, then $x_A \neq x_B$.

A CLASSICAL SOLUTION?

GRAPH View the ± 1 vectors as vertices of $\Omega(2^m)$.

A CLASSICAL SOLUTION?

GRAPH View the ± 1 vectors as vertices of $\Omega(2^m)$.

COLORING Alice and Bob construct a proper coloring of $\Omega(2^m)$ with 2^m colors; in other words a map from its vertices to $\{1, \ldots, 2^m\}$ such that adjacent vertices are assigned different integers.

A CLASSICAL SOLUTION?

GRAPH View the ± 1 vectors as vertices of $\Omega(2^m)$.

- COLORING Alice and Bob construct a proper coloring of $\Omega(2^m)$ with 2^m colors; in other words a map from its vertices to $\{1, \ldots, 2^m\}$ such that adjacent vertices are assigned different integers.
- SOLUTION Alice and Bob determine the color of the vertex they are given, and return this.

A QUANTUM SOLUTION

Buhrmann, Cleve and Tapp described an algorithm that will solve the problem on $\Omega(2^m)$ for any *m*, provided that Alice and Bob share 2^m Bell pairs of qubits.

Brassard, Cleve and Widgerson showed that if no 2^m -coloring of $\Omega(2^m)$ exists, no classical algorithm will work without some communication between Alice and Bob.

A QUANTUM SOLUTION

Buhrmann, Cleve and Tapp described an algorithm that will solve the problem on $\Omega(2^m)$ for any *m*, provided that Alice and Bob share 2^m Bell pairs of qubits.

Brassard, Cleve and Widgerson showed that if no 2^m -coloring of $\Omega(2^m)$ exists, no classical algorithm will work without some communication between Alice and Bob.

In a sense, the quantum chromatic number of $\Omega(2^m)$ is 2^m , even though the chromatic number is actually much larger.

REFERENCES

 Peter Frankl and Vojtěch Rödl. Forbidden intersections. *Trans. Amer. Math. Soc.*, 300(1):259–286, 1987.
 Andrew M. Gleason. Measures on the closed subspaces of a Hilbert space. *J. Math. Mech.*, 6:885–893, 1957.

C. D. Godsil and M. W. Newman. Colouring an orthogonality graph, 2005. http://arxiv.org/abs/math/0509151

OUTLINE

COLOURING Gleason's Theorem Frankl & Rödl

2 MUB's Bounds A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

MUTUALLY UNBIASED BASES

DEFINITION

Two orthonormal bases x_1, \ldots, x_d and y_1, \ldots, y_d in \mathbb{C}^d are unbiased if the angles

 $|\langle x_i, y_j \rangle|$

are the same for all choices of *i* and *j*. A set of orthonormal bases is mutually unbiased if each pair of distinct bases is unbiased.

If two orthonormal bases are unbiased, the angle must be $\frac{1}{\sqrt{d}}$.

AN EXAMPLE

$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$

<ロ> <同> <同> <同> <同> <同>

We can represent orthonormal bases in \mathbb{C}^d by $d \times d$ matrices.

DEFINITION

A matrix over $\mathbb C$ is flat if all its entries have the same absolute value.

If U and V are unitary matrices, then the corresponding bases are unbiased if and only if U^*V is flat. (And if U^*V is flat, then the basis formed by its columns is unbiased relative to the standard basis.)

BOUNDS

THEOREM

A set of mutually unbiased bases in \mathbb{C}^d has size at most d + 1.

THE PROBLEM

For which values of d does there exist a mutually unbiased set of orthogonal bases of size d + 1?

LOWER BOUNDS

It follows from work of Klappenecker and Rötteler that if $d \ge 2$, then there is at least a triple of mutually unbiased bases.

OUTLINE

COLOURING Gleason's Theorem Frankl & Bödl

2 MUB's

- Bounds
- A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

ACKNOWLEDGEMENT

(What follows is joint work with Aidan Roy.)

Let \mathbb{F} be a finite field, e.g., \mathbb{Z}_p . The points of the affine plane are represented by ordered pairs (x, y) from $\mathbb{F} \times \mathbb{F}$. The lines of finite slope (not parallel to the *y*-axis) can be represented by ordered pairs [a, b] from $\mathbb{F} \times \mathbb{F}$.

The point (x, y) is on the line [a, b] if y = ax + b (just as in high school). The lines with the same slope form a parallel class.

Our graph has two abelian groups of automorphisms, each of order q^2 with q + 1 orbits.

$$T_{u,v}$$
: maps (x, y) to $(x + u, y + v)$ and $[a, b]$ to
 $[a, b + v - au].$

$$S_{w,z}$$
: maps (x, y) to $(x, y + z + wx)$ and $[a, b]$ to $[a + y, b + z]$.

AN ABELIAN GROUP

If we define

$$H_{x,y} := T_{x,y}S_{y,0}.$$

then the set

$$H:=\{H_{x,y}:x,y\in\mathbb{F}\}$$

is an abelian group of order q^2 that acts transitively on the points and on the lines.

Let \mathbb{F} be a finite field and let *H* be the group just defined. Let H_0 be the subset of *H* defined by

$$H_0=\{H_{u,0}:u\in\mathbb{F}\}.$$

Each character of *H* is a function on *H*, its restriction to H_0 is a vector in \mathbb{C}^q .

Let \mathbb{F} be a finite field and let *H* be the group just defined. Let H_0 be the subset of *H* defined by

$$H_0=\{H_{u,0}:u\in\mathbb{F}\}.$$

Each character of *H* is a function on *H*, its restriction to H_0 is a vector in \mathbb{C}^q .

THEOREM

These q^2 vectors, together with the standard basis vectors, form a set of q + 1 mutually unbiased bases in \mathbb{C}^q .

SEMIFIELDS

DEFINITION

A semifield is an algebraic structure that satisfies the axioms for a field, except that we do not require multiplication to be associative.

A finite semifield has order p^n , where p is a prime.

SEMIFIELDS AND MUB'S

In the construction just presented, everything still works if we use a commutative semifield in place of field.

SEMIFIELDS AND MUB'S

- In the construction just presented, everything still works if we use a commutative semifield in place of field.
- All known MUB's can be obtained from this construction using suitable commutative semifields.

SEMIFIELDS AND MUB'S

- In the construction just presented, everything still works if we use a commutative semifield in place of field.
- All known MUB's can be obtained from this construction using suitable commutative semifields.
- An equivalent construction was found by Calderbank, Cameron, Kantor and Seidel.

BOUNDS A CONSTRUCTION

SEMIFIELDS AND MUB'S

- In the construction just presented, everything still works if we use a commutative semifield in place of field.
- All known MUB's can be obtained from this construction using suitable commutative semifields.
- An equivalent construction was found by Calderbank, Cameron, Kantor and Seidel.
- Each commutative semifield gives rise to an affine plane. If the semifield is not a field, the plane is not Desarguesian.

PROBLEM

What is the maximum size of a set of mutually unbiased bases in $\mathbb{C}^6 ?$

REFERENCES

A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel.

 Z_4 -Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets.

Proc. London Math. Soc. (3), 75(2):436-480, 1997.

Chris Godsil and Aidan Roy.

Equiangular lines, mutually unbiased bases, and spin models.

arXiv:quant-ph/0511004, page 23 pp., 2005.

William K. Wootters and Brian D. Fields. Optimal state-determination by mutually unbiased measurements. Ann. Physics, 191(2):363–381, 1989.

OUTLINE

1 COLOURING

- Gleason's Theorem
 Erapki & Pädi
- Frankl & Rödl

2 MUB's

- Bounds
- A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

A HAMILTONIAN

DEFINITION

Let *X* be a graph with adjacency matrix *A*. We define the Hamiltonian $H_X(t)$ by

 $H_X(t) = \exp(iAt).$

CHRIS GODSIL PHYSICS, GRAPH THEORY

PROPERTIES

• $H_X(t)$ is a unitary matrix, and symmetric.

< 17 ▶

PROPERTIES

- $H_X(t)$ is a unitary matrix, and symmetric.
- It determines a continuous time quantum walk on *X*. (This a sequence of probability distributions, where the distributions at time *t* are the rows of *H*(*t*) ∘ *H*(*t*).)

PERFECT STATE TRANSFER

DEFINITION

Suppose *u* and *v* are distinct vertices of *X*. We say perfect state transfer from *u* to *v* occurs at time τ if

 $|H(\tau)_{u,v}|=1.$

AN EXAMPLE

Suppose
$$X = K_2$$
. Then $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $A^2 = I_2$. So
 $\exp(iAt) = \cos(t)I + i\sin(t)A$

and hence $H(\pi/2) = iA$. Thus we have perfect state transfer at time $\pi/2$.

/∰ ► < Ξ ►

AN EXAMPLE

Suppose
$$X = K_2$$
. Then $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $A^2 = I_2$. So

$$\exp(iAt) = \cos(t)I + i\sin(t)A$$

and hence $H(\pi/2) = iA$. Thus we have perfect state transfer at time $\pi/2$.

As homework, you should verify that perfect state transfer can occur between the end vertices of a path on three vertices.

THE PROBLEM

In which cases is perfect state transfer possible?

THE PROBLEM

In which cases is perfect state transfer possible?

Christandl, Datta, Dorlas, Ekert, Kay, and Landahl showed that it does occur on P₂ and P₃, and on the Cartesian powers of these graphs.

THE PROBLEM

In which cases is perfect state transfer possible?

- Christandl, Datta, Dorlas, Ekert, Kay, and Landahl showed that it does occur on P₂ and P₃, and on the Cartesian powers of these graphs.
- Saxena, Shparlinski and Severini have investigated circulants.

PERIODICITY

DEFINITION

Suppose $u \in V(X)$. If there is a time τ such that

 $|H(\tau)_{u,u}|=1,$

we say that *X* is periodic relative to *u*, with period τ . If *X* is periodic with period τ relative to each vertex, we say that *X* is periodic.

If *X* has no isolated vertices and is periodic with period τ , then $H(\tau)$ is a scalar matrix.

STATE TRANSFER AND PERIODICITY

LEMMA

If perfect state transfer from u to v occurs at time τ , then X is periodic relative to both u and v with period 2τ .

PROOF.

- If *H*(*τ*)_{*u,v*} has norm 1, then the *uv*-entry of *H*(*τ*) is the only entry in its row or column that is not zero.
- $H(\tau)$ is symmetric.

VERTEX-TRANSITIVE GRAPHS

Lemma

If *X* is vertex transitive and *X* is periodic relative to *u* at time τ , then $H(\tau)$ is a scalar matrix.

VERTEX-TRANSITIVE GRAPHS

Lemma

If *X* is vertex transitive and *X* is periodic relative to *u* at time τ , then $H(\tau)$ is a scalar matrix.

PROOF.

• H(t) is a polynomial in A.

CHRIS GODSIL PHYSICS, GRAPH THEORY

VERTEX-TRANSITIVE GRAPHS

LEMMA

If *X* is vertex transitive and *X* is periodic relative to *u* at time τ , then $H(\tau)$ is a scalar matrix.

PROOF.

- H(t) is a polynomial in A.
- All polynomials in *A* have constant diagonal.

OUTLINE

1 COLOURING

- Gleason's Theorem
- Frankl & Rödl

2 MUB's

- Bounds
- A Construction

3 GRAPHS

- State Transfer
- Eigenvalues and Periodicity

SPECTRAL DECOMPOSITION

DEFINITION

For each eigenvalue θ of A, there a corresponding projection E_{θ} such that $E_{\theta}E_{\sigma} = 0$ if $\theta \neq \sigma$ and, for any complex-valued function f defined on the eigenvalues of A,

$$f(A) = \sum_{\theta} f(\theta) E_{\theta}.$$

Hence

$$H_X(t) = \sum_{\theta} \exp(i\theta t) E_{\theta}$$

and the eigenvalues of *A* are the complex numbers $\exp(i\theta t)$, where θ runs over the eigenvalues of *A*.

INTEGER EIGENVALUES

If each eigenvalue of A is an integer, then

$$H(2\pi) = \sum_{\theta} E_{\theta} = I$$

and so *X* is certainly periodic. For a large class of graphs, the converse is true.

THEOREM

If *X* is a regular graph with at least four distinct eigenvalues and *X* is periodic with respect to some vertex, then its eigenvalues are all integers.

PERFECT STATE TRANSFER

THEOREM

If X is vertex transitive and perfect state transfer takes place at time τ , then $H(\tau)$ is a scalar multiple of a permutation matrix of order two with no fixed points.

PROBLEMS

Is there a graph with no rational eigenvalues on which perfect state transfer occurs?

PROBLEMS

- Is there a graph with no rational eigenvalues on which perfect state transfer occurs?
- If perfect state transfer takes place from u to v, what properties must u and v share?

REFERENCES

Matthias Christandl, Nilanjana Datta, Tony C. Dorlas, Artur Ekert, Alastair Kay, and Andrew J. Landahl. Perfect transfer of arbitrary states in quantum spin networks.

Physical Review A, 71:032312, 2005.

Chris Godsil.

Periodic graphs, 2008.

arxiv

Nitin Saxena, Simone Severini, and Igor Shparlinski. Parameters of integral circulant graphs and periodic quantum dynamics.

Int. J. Quant. Inf., 5:417-430, 2007.