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HENRY HIEBERT

Hydrogen is an odourless, colourless gas which,
given enough time, turns into people.
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CLIQUES & COCLIQUES

DEFINITION

We define a graph Σ(d) on the unit sphere in Rd by defining two
unit vectors to be adjacent if they are orthogonal.

Although this graph is infinite, its maximal cliques are finite: the
cliques of maximal size are the orthonormal bases of Rd, which
have size d.
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A COLOURING PROBLEM

PROBLEM

Can we colour the vertices of Σ(d) with exactly d colours?

If we can, the vertices with a given colour form a coclique which
contains a vertex from each clique of size d.
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GLEASON’S THEOREM

THEOREM

Assume d ≥ 3 and let f be a function on the unit sphere in Rd.
Suppose:
(A) f is non-negative.
(B) For each orthonormal basis x1, . . . , xd, we have

f1 + · · ·+ fd = 1.
Then there is a positive definite d × d matrix A such that
tr(A) = 1 and, for all unit vectors x

f (x) = xTAx.
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CONTINUITY

COROLLARY

Assume d ≥ 3. If f is a non-negative function on the unit sphere
in Rd such that the sum of the values of f on any orthonormal
basis is 1, then f is continuous.
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NO d-COLOURING

COROLLARY

If d ≥ 3, the graph Σ(d) does not have a d-colouring.

PROOF.
Assume there is a d-colouring and let S be one of the colour
classes. Define a real function f on unit vectors by

f (x) =

{
1, x ∈ S;
0, x /∈ S.

Then f is non-negative and sums to 1 on each orthonormal
basis, but is not continuous.
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ANOTHER ORTHOGONALITY GRAPH

DEFINITION

Define Ω(d) to be the graph with the ±1-vectors of length d as
vertices, where two vectors are adjacent if they are orthogonal.
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COLOURING Ω(d)

If d is odd, Ω(d) has no edges.

If d ≡ 2 modulo 4, then Ω(d) is bipartite.
If 4|d, then the rows of any d × d Hadamard matrix form a
d-clique in Ω(d).
If 4|d and d is not a power of 2, then χ(Ω(d)) > d.
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A THEOREM OF FRANKL & RÖDL

THEOREM

There is a real constant ε such that if 4|d and d is large enough,
then

α(Ω(d)) ≤ (2− ε)d.
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A QUESTION

. . . but exactly when is χ(Ω(2d)) > 2d?

χ(Ω(4)) = 4 and χ(Ω(8)) = 8.
χ(Ω(16)) > 16.
(Galliard, Tappe and Wolf: arXiv:quant-ph/0211011;
De Klerck and Pasechnik: arXiv:math/0505038)
If d ≥ 4, then χ(Ω(2d)) > 2d.
(Godsil and Newman: arXiv:math/0509151)
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WHY SHOULD WE CARE?

We play a game with Alice and Bob. We separately offer Alice
and Bob ±1-vectors vA and vB of length 2m. Without any further
communication Alice and Bob must generate vectors xA and xB

respectively, such that:

xA and xB have length m

If vA = vB, then xA = xB.
If vA and vB are orthogonal, then xA 6= xB.
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A CLASSICAL SOLUTION?

GRAPH View the ±1 vectors as vertices of Ω(2m).

COLORING Alice and Bob construct a proper coloring of Ω(2m)
with 2m colors; in other words a map from its
vertices to {1, . . . , 2m} such that adjacent vertices
are assigned different integers.

SOLUTION Alice and Bob determine the color of the vertex
they are given, and return this.
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A QUANTUM SOLUTION

Buhrmann, Cleve and Tapp described an algorithm that will
solve the problem on Ω(2m) for any m, provided that Alice and
Bob share 2m Bell pairs of qubits.

Brassard, Cleve and Widgerson showed that if no 2m-coloring
of Ω(2m) exists, no classical algorithm will work without some
communication between Alice and Bob.

In a sense, the quantum chromatic number of Ω(2m) is 2m, even
though the chromatic number is actually much larger.
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MUTUALLY UNBIASED BASES

DEFINITION

Two orthonormal bases x1, . . . , xd and y1, . . . , yd in Cd are
unbiased if the angles

|〈xi, yj〉|

are the same for all choices of i and j. A set of orthonormal
bases is mutually unbiased if each pair of distinct bases is
unbiased.

If two orthonormal bases are unbiased, the angle must be 1√
d
.
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AN EXAMPLE

(
1 0
0 1

)
,

1√
2

(
1 1
1 −1

)
,

1√
2

(
1 1
i −i

)
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MATRICES

We can represent orthonormal bases in Cd by d × d matrices.

DEFINITION

A matrix over C is flat if all its entries have the same absolute
value.

If U and V are unitary matrices, then the corresponding bases
are unbiased if and only if U∗V is flat. (And if U∗V is flat, then
the basis formed by its columns is unbiased relative to the
standard basis.)
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BOUNDS

THEOREM

A set of mutually unbiased bases in Cd has size at most d + 1.
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THE PROBLEM

For which values of d does there exist a mutually unbiased set
of orthogonal bases of size d + 1?

CHRIS GODSIL PHYSICS, GRAPH THEORY



COLOURING MUB’S GRAPHS BOUNDS A CONSTRUCTION

LOWER BOUNDS

It follows from work of Klappenecker and Rötteler that if d ≥ 2,
then there is at least a triple of mutually unbiased bases.
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AFFINE PLANES

Let F be a finite field, e.g., Zp. The points of the affine plane are
represented by ordered pairs (x, y) from F× F. The lines of
finite slope (not parallel to the y-axis) can be represented by
ordered pairs [a, b] from F× F.

The point (x, y) is on the line [a, b] if y = ax + b (just as in high
school). The lines with the same slope form a parallel class.
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SYMMETRIES

Our graph has two abelian groups of automorphisms, each of
order q2 with q + 1 orbits.

Tu,v: maps (x, y) to (x + u, y + v) and [a, b] to
[a, b + v− au].

Sw,z: maps (x, y) to (x, y + z + wx) and [a, b] to
[a + y, b + z].
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AN ABELIAN GROUP

If we define
Hx,y := Tx,ySy,0.

then the set
H := {Hx,y : x, y ∈ F}

is an abelian group of order q2 that acts transitively on the
points and on the lines.
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MUB’S

Let F be a finite field and let H be the group just defined. Let H0
be the subset of H defined by

H0 = {Hu,0 : u ∈ F}.

Each character of H is a function on H, its restriction to H0 is a
vector in Cq.

THEOREM

These q2 vectors, together with the standard basis vectors,
form a set of q + 1 mutually unbiased bases in Cq.
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SEMIFIELDS

DEFINITION

A semifield is an algebraic structure that satisfies the axioms for
a field, except that we do not require multiplication to be
associative.

A finite semifield has order pn, where p is a prime.
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SEMIFIELDS AND MUB’S

In the construction just presented, everything still works if
we use a commutative semifield in place of field.

All known MUB’s can be obtained from this construction
using suitable commutative semifields.
An equivalent construction was found by Calderbank,
Cameron, Kantor and Seidel.
Each commutative semifield gives rise to an affine plane. If
the semifield is not a field, the plane is not Desarguesian.
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PROBLEM

What is the maximum size of a set of mutually unbiased bases
in C6?
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A HAMILTONIAN

DEFINITION

Let X be a graph with adjacency matrix A. We define the
Hamiltonian HX(t) by

HX(t) = exp(iAt).
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PROPERTIES

HX(t) is a unitary matrix, and symmetric.

It determines a continuous time quantum walk on X. (This
a sequence of probability distributions, where the
distributions at time t are the rows of H(t) ◦ H(t).)
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PERFECT STATE TRANSFER

DEFINITION

Suppose u and v are distinct vertices of X. We say perfect state
transfer from u to v occurs at time τ if

|H(τ)u,v| = 1.
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AN EXAMPLE

Suppose X = K2. Then A =
(

0 1
1 0

)
and A2 = I2. So

exp(iAt) = cos(t)I + i sin(t)A

and hence H(π/2) = iA. Thus we have perfect state transfer at
time π/2.

As homework, you should verify that perfect state transfer can
occur between the end vertices of a path on three vertices.
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THE PROBLEM

In which cases is perfect state transfer possible?

Christandl, Datta, Dorlas, Ekert, Kay, and Landahl showed
that it does occur on P2 and P3, and on the Cartesian
powers of these graphs.
Saxena, Shparlinski and Severini have investigated
circulants.
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PERIODICITY

DEFINITION

Suppose u ∈ V(X). If there is a time τ such that

|H(τ)u,u| = 1,

we say that X is periodic relative to u, with period τ . If X is
periodic with period τ relative to each vertex, we say that X is
periodic.

If X has no isolated vertices and is periodic with period τ , then
H(τ) is a scalar matrix.
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STATE TRANSFER AND PERIODICITY

LEMMA

If perfect state transfer from u to v occurs at time τ , then X is
periodic relative to both u and v with period 2τ .

PROOF.

If H(τ)u,v has norm 1, then the uv-entry of H(τ) is the only
entry in its row or column that is not zero.
H(τ) is symmetric.
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VERTEX-TRANSITIVE GRAPHS

LEMMA

If X is vertex transitive and X is periodic relative to u at time τ ,
then H(τ) is a scalar matrix.

PROOF.

H(t) is a polynomial in A.
All polynomials in A have constant diagonal.
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OUTLINE

1 COLOURING
Gleason’s Theorem
Frankl & Rödl

2 MUB’S
Bounds
A Construction

3 GRAPHS
State Transfer
Eigenvalues and Periodicity
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SPECTRAL DECOMPOSITION

DEFINITION

For each eigenvalue θ of A, there a corresponding projection Eθ
such that EθEσ = 0 if θ 6= σ and, for any complex-valued
function f defined on the eigenvalues of A,

f (A) =
∑
θ

f (θ) Eθ.

Hence
HX(t) =

∑
θ

exp(iθt) Eθ

and the eigenvalues of A are the complex numbers exp(iθt),
where θ runs over the eigenvalues of A.
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INTEGER EIGENVALUES

If each eigenvalue of A is an integer, then

H(2π) =
∑
θ

Eθ = I

and so X is certainly periodic. For a large class of graphs, the
converse is true.

THEOREM

If X is a regular graph with at least four distinct eigenvalues and
X is periodic with respect to some vertex, then its eigenvalues
are all integers.
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PERFECT STATE TRANSFER

THEOREM

If X is vertex transitive and perfect state transfer takes place at
time τ , then H(τ) is a scalar multiple of a permutation matrix of
order two with no fixed points.
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PROBLEMS

Is there a graph with no rational eigenvalues on which
perfect state transfer occurs?

If perfect state transfer takes place from u to v, what
properties must u and v share?
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