Uniform Mixing and Continuous Quantum Walks

Chris Godsil University of Waterloo

Kyoto, May 2016

Chris Godsil University of Waterloo Uniform Mixing and Continuous Quantum Walks

Outline

1 Preliminaries

- Physics
- Quantum Walks

2 Uniform Mixing

- Complete Graphs
- Bipartite Graphs

3 Type-II Matrices

- Matrix Inverses Made Easy
- Strongly Regular Graphs
- Prime Cycles
- Questions

Outline

1 Preliminaries

- Physics
- Quantum Walks
- 2 Uniform Mixing
 - Complete Graphs
 - Bipartite Graphs
- 3 Type-II Matrices
 - Matrix Inverses Made Easy
 - Strongly Regular Graphs
 - Prime Cycles
 - Questions

It is just a bunch of axioms and

It is just a bunch of axioms and

Quote

"The axioms of quantum physics are not as strict as those of mathematics".

It is just a bunch of axioms and

Quote

"The axioms of quantum physics are not as strict as those of mathematics".

Well, there's some linear algebra too, but you just need to remember that

It is just a bunch of axioms and

Quote

"The axioms of quantum physics are not as strict as those of mathematics".

Well, there's some linear algebra too, but you just need to remember that

Quote

"a vector in \mathbb{R}^3 is not the same thing as the list of its components. The vector has a \ldots meaning."

Outline

1 Preliminaries

- Physics
- Quantum Walks
- 2 Uniform Mixing
 - Complete Graphs
 - Bipartite Graphs
- 3 Type-II Matrices
 - Matrix Inverses Made Easy
 - Strongly Regular Graphs
 - Prime Cycles
 - Questions

Transition Operators

Definition

If X is a graph with adjacency matrix A, we define the transition operator U(t) by

 $U(t) = \exp(itA).$

It is a unitary matrix.

Physics Quantum Walks

An Example: P_2

For $A = A(P_2)$ we have

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and $A^2 = I$. So:

Physics Quantum Walks

An Example: P_2

For $A = A(P_2)$ we have

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and $A^2 = I$. So:

$$U(t) = \cos(t)I + i\sin(t)A = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$

Composite Systems

• If X and Y are graphs and we run walks on them independently, the composite quantum system is controlled by

 $U_X(t) \otimes U_Y(t).$

Composite Systems

• If X and Y are graphs and we run walks on them independently, the composite quantum system is controlled by

 $U_X(t) \otimes U_Y(t).$

• The Cartesian product of X and Y has adjacency matrix $A_X \otimes I + I \otimes A_Y$. Since $A_X \otimes I$ and $I \otimes A_Y$ commute,

 $U_{X\square Y}(t) = U_X(t) \otimes U_Y(t).$

An Example: Cartesian Product

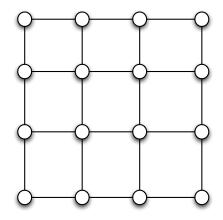


Figure: $P_4 \square P_4$

The Mixing Matrix

We use $M \circ N$ to denote the Schur product of two matrices M and N. So $(M \circ N)_{a,b} = M_{a,b}N_{a,b}$.

The Mixing Matrix

We use $M \circ N$ to denote the Schur product of two matrices M and N. So $(M \circ N)_{a,b} = M_{a,b}N_{a,b}$.

Definition

The mixing matrix $M_X(t)$ for a walk is $U(t) \circ \overline{U(t)}$.

We note that $\overline{U(t)} = U(-t)$.

Preliminaries Uniform Mixing Type-II Matrices

Physics Quantum Walks

The Mixing Matrix: K_2

$$M_{K_2}(t) = \begin{pmatrix} \cos^2(t) & \sin^2(t) \\ \sin^2(t) & \cos^2(t) \end{pmatrix}.$$

What We Observe

If the initial state of our system is given by the standard basis vector e_a , then the row $e_a^T M(t)$ describes a probability density. If we measure the system at time t using the standard basis, then $M(t)_{a,b}$ is the probability that, on measurement, the state of the system is e_b .

If the initial state of our system is given by the standard basis vector e_a , then the row $e_a^T M(t)$ describes a probability density. If we measure the system at time t using the standard basis, then $M(t)_{a,b}$ is the probability that, on measurement, the state of the system is e_b .

So at each time t a continuous quantum walk gives rise to probability densities. The interesting densities are the extreme cases: concentrated at a vertex, or uniform.

Uniform Mixing

Definition

A matrix is flat if all its entries have the same absolute value.

A flat unitary matrix may be better known as a complex Hadamard matrix.

Uniform Mixing

Definition

A matrix is flat if all its entries have the same absolute value.

A flat unitary matrix may be better known as a complex Hadamard matrix.

Definition

We say that uniform mixing occurs at time t on the graph X if $U_X(t)$ is flat or, equivalently if $M_X(t) = |V(X)|^{-1}J$.

d-Cubes: Mixing

As

$$M_{K_2}(t) = \begin{pmatrix} \cos^2(t) & \sin^2(t) \\ \sin^2(t) & \cos^2(t) \end{pmatrix},$$

we have uniform mixing on K_2 at time $\pi/4$.

d-Cubes: Mixing

As

$$M_{K_2}(t) = \begin{pmatrix} \cos^2(t) & \sin^2(t) \\ \sin^2(t) & \cos^2(t) \end{pmatrix},$$

we have uniform mixing on K_2 at time $\pi/4$.

The *d*-cube Q_d is the Cartesian product of *d* copies of P_2 and therefore we have uniform mixing on Q_d (at time $\pi/4$).

The Question

Which graphs admit uniform mixing?

Outline

Preliminaries

- Physics
- Quantum Walks

2 Uniform Mixing

- Complete Graphs
- Bipartite Graphs

3 Type-II Matrices

- Matrix Inverses Made Easy
- Strongly Regular Graphs
- Prime Cycles
- Questions

Spectral Decomposition

Let A be the adjacency matrix of X, let $\theta_1, \ldots, \theta_m$ be the distinct eigenvalues of A, and let E_r be the matrix that represents orthogonal projection onto the eigenspace associated with θ_r .

Then

$$A = \sum_{r} \theta_r E_r$$

and, more generally, if f is a function defined on the eigenvalues of $\boldsymbol{A},$ then

$$f(A) = \sum_{r} f(\theta_r) E_r.$$

Complete Graphs

If $X = K_n$, then we have the spectral decomposition

$$A = (n-1)\left(\frac{1}{n}J\right) + (-1)\left(I - \frac{1}{n}J\right)$$

and therefore

$$U(t) = e^{i(n-1)t} \left(\frac{1}{n}J\right) + e^{-it} \left(I - \frac{1}{n}J\right)$$
$$= e^{-it} \left(I - \frac{1 - e^{int}}{n}J\right)$$

• We have uniform mixing on K_2 and K_4 at time $\pi/4$.

- We have uniform mixing on K_2 and K_4 at time $\pi/4$.
- The Cartesian product of Cartesian powers of K_2 with Cartesian powers of K_4 admits uniform mixing at time $\pi/4$.

- We have uniform mixing on K_2 and K_4 at time $\pi/4$.
- The Cartesian product of Cartesian powers of K₂ with Cartesian powers of K₄ admits uniform mixing at time π/4.
- We have uniform mixing on K_3 at time $2\pi/9$ (and hence on Cartesian powers of K_3).

- We have uniform mixing on K_2 and K_4 at time $\pi/4$.
- The Cartesian product of Cartesian powers of K₂ with Cartesian powers of K₄ admits uniform mixing at time π/4.
- We have uniform mixing on K_3 at time $2\pi/9$ (and hence on Cartesian powers of K_3).
- If $n \ge 5$, uniform mixing does not take place on K_n .

Outline

Preliminaries

- Physics
- Quantum Walks
- Uniform Mixing
 Complete Graphs
 Binartite Country
 - Bipartite Graphs
- 3 Type-II Matrices
 - Matrix Inverses Made Easy
 - Strongly Regular Graphs
 - Prime Cycles
 - Questions

Transition Matrices of Bipartite Graphs

If X is bipartite, then we can write A in the form

$$A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$$

and it follows that there are real matrices C_1 , C_2 , K (functions of t) such that

$$U(t) = \begin{pmatrix} C_1 & iK \\ iK^T & C_2 \end{pmatrix} = \begin{pmatrix} -iI & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} C_1 & -K \\ K^T & C_2 \end{pmatrix} \begin{pmatrix} iI & 0 \\ 0 & I \end{pmatrix}$$

Uniform Mixing on Bipartite Graphs

Suppose we have uniform mixing on a bipartite graph at time t. Then U(t) is flat and consequently the matrix

$$\begin{pmatrix} C_1 & -K \\ K^T & C_2 \end{pmatrix}$$

is a flat real orthogonal matrix—it's a Hadamard matrix!

Lemma

If we have uniform mixing a bipartite graph X on n vertices then n = 2 or 4|n. If X is also regular, then n is the sum of two integer squares.

Gelfond-Schneider

Theorem (Gelfond-Schneider)

If α and β are algebraic numbers and $\alpha \neq 0, 1$ and α^{β} is algebraic, then β is rational.

Eigenvalues of U(t)

If $\theta_1, \ldots, \theta_m$ are the distinct eigenvalues of A, then the eigenvalues of U(t) are

$$e^{it\theta_r}, \qquad (r=1,\ldots,m)$$

where

$$e^{it\theta_s} = \left(e^{it\theta_r}\right)^{\theta_s/\theta_r}$$

Theorem (N. Mullin)

If the entries of U(t) are all algebraic numbers, then the ratios of the eigenvalues of A are rational.

Not Much Mixing

• The two largest eigenvalues of C_8 are 2 and $\sqrt{2}$.

Not Much Mixing

● The two largest eigenvalues of C₈ are 2 and √2.
❷ If U_{C₈}(t) is flat, its entries are algebraic numbers.

Not Much Mixing

- The two largest eigenvalues of C_8 are 2 and $\sqrt{2}$.
- **②** If $U_{C_8}(t)$ is flat, its entries are algebraic numbers.
- 3 $2/\sqrt{2}$ is not rational.

The Conclusion

No even cycle of length greater than four admits uniform mixing.

Outline

Preliminaries

- Physics
- Quantum Walks
- 2 Uniform Mixing
 - Complete Graphs
 - Bipartite Graphs
- 3 Type-II Matrices
 - Matrix Inverses Made Easy
 - Strongly Regular Graphs
 - Prime Cycles
 - Questions

Defining Type-II Matrices

Definition

If W is a complex matrix with no entry equal to zero, then $W^{(-)}$ denotes its Schur inverse.

So $W \circ W^{(-)} = J$.

Defining Type-II Matrices

Definition

If W is a complex matrix with no entry equal to zero, then $W^{(-)}$ denotes its Schur inverse.

So $W \circ W^{(-)} = J$.

Definition

An $n \times n$ Schur-invertible matrix W is a type-II matrix if

 $WW^{(-)T} = nI.$

Examples of Type-II Matrices

- Hadamard matrices.
- Flat unitary matrices.
- Kronecker products of type-II matrices.
- If $t \neq 0$: $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & t & -t \\ 1 & -1 & -t & t \end{pmatrix}.$
- tI + J for two choices of t (Potts model).
- http://arxiv.org/pdf/0707.1836.pdf (Chan and Godsil).

Outline

Preliminaries

- Physics
- Quantum Walks
- 2 Uniform Mixing
 - Complete Graphs
 - Bipartite Graphs
- 3 Type-II Matrices
 - Matrix Inverses Made Easy
 - Strongly Regular Graphs
 - Prime Cycles
 - Questions

Type-II Matrices from SRGs

Suppose X is strongly regular with adjacency matrix A and let $\overline{A} = J - I - A$. Then we know that U(t) is a linear combination of I, A and \overline{A} .

Type-II Matrices from SRGs

Suppose X is strongly regular with adjacency matrix A and let $\overline{A} = J - I - A$. Then we know that U(t) is a linear combination of I, A and \overline{A} .

Ada Chan and I determined which type-II matrices can be expressed as such linear combinations. We needed to find x and y such that

$$nI = (I + xA + y\overline{A})(I + x^{-1}A + y^{-1}\overline{A})$$

= $I + (x + x^{-1})A + (y + y^{-1})\overline{A} + (xy^{-1} + x^{-1}y)A\overline{A}.$

We can express the RHS as a linear combination of I, A, \overline{A} , where the coefficients are polynomials in x, x^{-1} , y, and y^{-1} .

Flat Unitary Matrices

But not all of these type-II matrices are flat. So Ada Chan determined which of **these** type-II matrices were unitary.

Flat Unitary Matrices

But not all of these type-II matrices are flat. So Ada Chan determined which of **these** type-II matrices were unitary.

Note: a flat unitary of the form $I+xA+y\overline{A}$ need not be a transition matrix.

A Theorem

Theorem (Godsil, Mullin, Roy)

If X is strongly regular, it has uniform mixing if and only if either

- (a) X is the Paley graph on nine vertices.
- (b) X comes from a regular symmetric Hadamard matrix with constant diagonal.

For (b), we could start with Kronecker powers of

Outline

Preliminaries

- Physics
- Quantum Walks
- 2 Uniform Mixing
 - Complete Graphs
 - Bipartite Graphs

3 Type-II Matrices

- Matrix Inverses Made Easy
- Strongly Regular Graphs
- Prime Cycles
- Questions

Cyclic *n*-Roots

Definition

A circulant type-II matrix of order $n \times n$ is known as a cyclic *n*-root.

Cyclic *n*-Roots

Definition

A circulant type-II matrix of order $n \times n$ is known as a cyclic *n*-root.

Theorem (Haagerup)

If p is a prime, there are only finitely many cyclic p-roots.

• Any cyclic p-root lies in the Bose-Mesner algebra of the cyclic group of order p.

- Any cyclic *p*-root lies in the Bose-Mesner algebra of the cyclic group of order *p*.
- The set of type-II matrices in the Bose-Mesner algebra of an association scheme is an algebraic variety defined by polynomials with integer coefficients.

- Any cyclic *p*-root lies in the Bose-Mesner algebra of the cyclic group of order *p*.
- The set of type-II matrices in the Bose-Mesner algebra of an association scheme is an algebraic variety defined by polynomials with integer coefficients.
- If such a variety is finite, the coordinates of any point in it are algebraic numbers.

- Any cyclic *p*-root lies in the Bose-Mesner algebra of the cyclic group of order *p*.
- The set of type-II matrices in the Bose-Mesner algebra of an association scheme is an algebraic variety defined by polynomials with integer coefficients.
- If such a variety is finite, the coordinates of any point in it are algebraic numbers.
- If C_p admits uniform mixing, the ratio of its eigenvalues must be rational.

- Any cyclic *p*-root lies in the Bose-Mesner algebra of the cyclic group of order *p*.
- The set of type-II matrices in the Bose-Mesner algebra of an association scheme is an algebraic variety defined by polynomials with integer coefficients.
- If such a variety is finite, the coordinates of any point in it are algebraic numbers.
- If C_p admits uniform mixing, the ratio of its eigenvalues must be rational.
- C_3 is the only prime cycle that admits uniform mixing.

Outline

Preliminaries

- Physics
- Quantum Walks
- 2 Uniform Mixing
 - Complete Graphs
 - Bipartite Graphs

3 Type-II Matrices

- Matrix Inverses Made Easy
- Strongly Regular Graphs
- Prime Cycles

Questions

I know how you feel right now...

... but there are a number of problems:

- Which odd cycles admit uniform mixing?
- If uniform mixing occurs on a graph, does it follow that the ratios of its eigenvalues are rational?
- If uniform mixing occurs on X, does it follows that X is regular?
- Mullin conjectures that if $n \ge 5$, a Cayley graph for \mathbb{Z}_n^d cannot admit uniform mixing.
- For Cartesian powers of K_{1,3}, although uniform mixing does not occur, we can choose t so one column of U(t) is flat (H. Zhan). Find other examples of this behaviour.
- ϵ -uniform mixing: it does occur on prime cycles (N. Mullin), where else?

The End(s)

