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ABSTRACT

This is an introduction to the Mobius function of a poset. The chief novelty is in the
exposition. We show how order-preserving maps from one poset to another can be used to
relate their Mobius functions. We derive the basic results on the Mo6bius function, applying

them in particular to geometric lattices.
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1. Posets and Matrices

Our first four sections provide a fairly standard approach to the Mobius function of a
poset. It is based in part on the treatment in Chapter 2 of Lovasz [12].

Let P be a poset with elements p,,...,p,. (Unless we explicitly say otherwise, all
posets we consider are finite. So n is an honest-to-God Kroneckerian integer.) An n x n
matrix B is compatible with P if (B),;

all n X n matrices compatible with P is closed under addition, and it is not hard to show

is zero unless p; < p,. It is immediate that set of

that it is also closed under multiplication. Thus it is an algebra over C, often called the
incidence algebra of P. We note that it contains the identity matrix, as well as the Zeta
matrix Zp, which has ij-entry equal to one if and only if p; < p;. Any matrix compatible
with P can be regarded as a function on P x P. This function is non-zero only on ordered
pairs (z,y) where z < y, and so we may even view our function as a function on the
intervals of P.

A simple induction argument shows that, by relabelling he elements of P if needed,
we may assume that ¢ < j whenever p; < p;. Then the matrices compatible with B are all
upper triangular, and so such a matrix is invertible if and only if its diagonal entries are

all non-zero. We have the following interesting result.

1.1 Lemma. Let P be a poset. If B is compatible with P and invertible then B~ is
compatible with P.

Proof. Let ¢(z) be the characteristic polynomial of B. If B is invertible then ¢(0) # 0

and so
o(e) = o9(z) + ¢

for some polynomial ¥ and non-zero constant c. By the Cayley-Hamilton theorem
0 =¢(B) = By(B) + cI,
whence ¢~ 14(B) = B~1. O

Since the zeta matrix Zp has all its diagonal entries equal to one, it is invertible. By
the lemma, (Zp)~! is compatible with P. The corresponding function on P x P is the
Mboébius function of P, and is denoted by pp.

We can determine pp by inverting the triangular matrix Zp; this represents no intel-
lectual challenge and can be carried out in polynomial time. However, for many interesting
posets, properties of the Mobius function can be read from properties of the poset. The

values taken by the Mobius function may have combinatorial significance.
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The Mobius Function

2. Mobius Inversion

Our first result is known as the principle of Mobius inversion.

2.1 Theorem. Let P be a poset and let f and g be functions on P. Then
a) g(z) = Eyzz f(y) if and only if f(z) = Ey w(z,9)9(y).
b) g(z) = Eygz f(y) if and only if f(z) = Ey w(y, 2)g(y).

Proof. We may abuse notation and view f and g as column vectors, with entries indexed

by P. Then (a) says that
g=2Zpf < Mpg=7f

and (b) that
9g=Zpf< MEg=f.

Since Mp = Z5', no more need be said. O

Since all diagonal entries of Zp are equal to one, it follows that the same is true
for Mp. (One way to convince yourself of this is to recall that the diagonal entries of a
triangular matrix are its eigenvalues, and that the eigenvalues of Z, ! are the reciprocals
of the eigenvalues of Zp.) Thus pp(z,z) = 1, for any element = of P. There is a recursive
expression for the remaining values of pp, equivalent to the back-substitution phase in

Gaussian elimination.

2.2 Lemma. Let a and b be two elements of the poset P. Then

0, if a £ b;
pp(a,b) =< 1, if a = b;

- Zz:z<b #p(a, w), otherwise.

Proof. If a £ b then (Mp),, = 0, since Mp is compatible with P. If a = b then
pp(a,a) =1, as noted above. Finally, if a < b then (ZpMp),, = 0 and therefore

0= Z:U“P(aaw)‘

z<b

Hence p(a,b) = — >, pp(a,z), as required. O
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The argument used in the previous proof yields another useful identity. Suppose a

and b are elements of the poset P and a < b. Then

pp(a,b) = — Z pp(z,d).

zia<z

The chain C(n) is the poset with elements 0,...,n, where ¢ > j if ¢ — j is non-negative.
Suppose a and b are elements of C(n) and p = pe(y,)- If a < b then p(a,b) = —1if b covers
a, and is zero otherwise. We will use this in the next section to compute the Mobius

function for the poset of divisors of a given integer.

3. Products
The product of posets P and @) is the poset with elements P x @}, where

(z,y) <Px0Q (cc',y')

if and only if

z<pz'andy <o y'.

We consider two examples. Let B(n) be the lattice of subsets of an n-element set. It is
routine to verify that B(n) is isomorphic to the product of n copies of B(1), which in turn
is isomorphic to C(1). The lattice of divisors of an integer n is also isomorphic to a product
of chains. More precisely, if p is prime and n = p” then the lattice of divisors of n is the
chain of length r. If n = p"m where m and p are coprime then the divisor lattice of n
is the product of the divisor lattice of m with the chain of length r. Note that B(n) can
be regarded as the divisor lattice of a square-free integer having exactly n distinct prime

divisors.

Turning from examples to M6bius functions, we have
Zpwg=2Zp®Zg,

whence
MPXQ — MP ® MQ .
As an immediate consequence we have the next result.
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The Mobius Function
3.1 Lemma. If P and Q are posets and (z,y) and (z',y') are elements of P x Q) then

:U“P><Q((w7y)7 (w,7y,)) = :U’P(wa w,):u’Q(yay,)'

Suppose that § and T are subsets of some n-element set. Then, taken with our

remarks above, the previous lemma implies that
0, SZT,;
wS,T) = { (—1)IT\S| ot}irwise.

We now present a classical combinatorial application of the Mdbius function. A de-
rangement is a permutation with no fixed points. We wish to compute D, , the number of
derangements of n points.

To this end, if S C {1,...,n} let D,(S) denote the number of permutations of
{1,...,n} which fix each point in S and no points not in S. (So D,(0) = D,..) Let
F,(S) denote the number of permutations which fix each point in S. Both F, (5) and

n

D, (S5) are functions on B(n). We have
F.(S) = (n—|S])

n

and we will use this to compute D,,.

The key observation is that

whence

S) = Zﬂs(n)(S, T)F,(T)
_ Z DS g (1)

TOS

Assuming that |S| = k, we may write the last sum as

zn:(n —z)!G::)(—w—k.

and therefore
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4. Posets and Chains

A chain in a poset is a set of elements, any two of which are comparable. Any finite chain
has unique minimal and maximal elements. The set of all non-empty chains of the poset
P will be denoted by Ch(P). This set is partially ordered by inclusion, hence is itself a
poset. Our first task in this section is to describe the relation between chains and the
Mébius function. We denote the length of the chain C' by ¢(C). (This is one less than the
number of elements of C.)

For this we need another definition. If P is a poset with elements p;,...,p,, let Yp
be the n x n matrix with ij-entry equal to one if and only if p, < p;. Thus, if we have

arranged things so that Zp is triangular then Y, = Zp — I.

4.1 Lemma. Let P be a poset with elements p,,...,p,,. Then

(a) the ij-entry of YJ" is the number of chains of length m in P with least element p,
and maximal element p;,

(b) the ij-entry of Z} is a polynomial in m, and

(c) the ij-entry of Mp is ECeCh(P)(_l)Z(P)'

Proof. Given that Y;'™!' = Y'Y, it is easy to prove (a) by induction on m. If m > |P|
then Y, = 0. Assuming that Zp = I + Yp, we then have

m ¢ m
Zp =Y (k>Y1§.
k=0

Since Y} = 0 for sufficiently large k and since (7;:) is a polynomial in m (of degree k), it
follows that the entries of ZF' are polynomials in m.

To prove (c) we observe that

Mp = 25" = (I +Yp)™ = Y (~1)*Y4. 0
k>0

Lemma 4.1(¢c) is quite important, and it is worth recording it in a slightly different

form.

4.2 Lemma (P. Hall). If a and b are elements of the poset P then

:U“P(aﬂ b) = Z(_l)l(o)7

where the sum is over all chains C in P with minimal element a and maximal element b. O
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We can always create a new poset from P by reversing the order. The result is a

poset, P°P say, with the same elements as P such that
agpb@bgpop a.

One immediate consequence of Hall’s theorem is that

tp(a,b) = ppor (b, a).

This can often be used to derive alternate forms of various identities, e.g., the expression
for pp we gave directly following Lemma 2.2 can be derived from Lemma 2.2 in this way.

Making use of terminology to be explained later, the ab-entry of (Zp)™ can be shown
to be equal to the number of order preserving mappings from a chain of length m into P.

(The corresponding entry of (Yp)™ counts order preserving injections.)

5. Simplicial Complexes

A simplicial complex § on a set {2 is a set of non-empty subsets of {2 such that if 4 € §
and B C A then B € §. (Oh well, there are two schools of thought. Some authors choose
to make the empty set an element of any simplicial complex.) The elements of S are
called faces and the dimension of a face A is |A| — 1. (Yes, the empty set would have
dimension —1.) The maximal elements of S are called simplices. We denote the number of
k-dimensional faces of S by f,(S), and call it the k-th level number of the complex. The
Euler characteristic of § is defined to be

DD

k>0

We consider two examples. Let M be a triangulation of a surface and let S be the
simplicial complex whose elements are the sets of vertices contained in some face of M.
(To be more prosaic, the elements of S are the vertices, edges and triangles of AM.) In this
case the Fuler characteristic of § is determined by the surface on which M lies.

Our second example is Ch(P). The simplices are the maximal chains in P. If P is
obtained from P by adjoining a new 0- and 1l-element then the Euler characteristic of
Ch(P) is equal to

1+ /ng(O, 1).
To make matters more confusing, we note that every simplicial complex is a poset. We

will see later that & and Ch(S) have the same Euler characteristic.
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6. Determinants

The theory we describe in this section is one of the prettiest parts of the theory of the
Mo6bius function, and was developed independently by Lindstrém [11] and Wilf [18].

6.1 Lemma. Let f be a function defined on the poset P and set

g(z,y) = Y f(2).

22T,y

If G is the matrix with rows and columns indexed by P and zy-entry equal to g(z,y) then
det G = [[,cp f(z).

Proof. Let F' be the diagonal matrix with rows and columns indexed by P, where (F),, =
f(z). Then G = ZpFZ¥ and so

det G = det(ZpFZ}) = (det Zp)? det F' = det F. O

Exercise: give an expression for f in terms of g.

If P is a lattice then g(z,y) =),
defined on P, with f given by

>ovy f(2). Thus we may allow g to be any function

Fly) = pp(y,2)g(2).
Then Lemma 6.1 implies that

det G =[] D #p(z,9)9(y). (6.1)

zeP yeP

We will make significant use of this result later. Further applications appear in the
papers of Lindstrém and Wilf [11,18] and in [12: Chapter 2].
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7. Order-Preserving Mappings

Let P and @ be posets. A function f from P to @ is order preserving if, whenever = and
y belong to P and z < y, we have f(z) < f(y). To consider one example, if P is B(n)
and @ if the chain of length n then the mapping from P to ) which sends each set to its
cardinality is order preserving. In this section we will see how an order preserving mapping
can be used to establish a relation between pp and pg. ~

To begin, we introduce the Mo6bius number of a poset. If P is a poset, let P be the
poset obtained from P by adjoining a new zero-element 0 and a new one-element 1. Hence
if x € P then

0<pgz<pl.

We define the Mébius number u(P) of P by

)

w(P) 1= up(®,7).
It is equal to the number of chains of even length in P, less the number of chains of odd
length. Note that the Mébius number of the empty poset is —1. (Why?)

The following simple result will be one of our main tools. It implies that if a poset P

has a 1-element then y(P) = 0.

7.1 Lemma. If the poset P has an element which is comparable with all elements of P
then u(P) = 0.

Proof. Suppose that a is comnparable with all elements of P. Then there is bijection

between the chains in P which contain a and those which do not. O

If a € P and a is conparable with every element of P, we will say that P is a cone
over a.

More definitions. Suppose that P is a poset and ¢ € P. By P, we denote the set of
elements z of P such that ¢ < z, while P, consists of the elements = such that z > a.
Similarly we define P, and P_,. Now we can state the main result of this section. It is

more or less equivalent to Theorem 5.5 in Baklawski [2].

7.2 Theorem (Baklawski). Let P and Q be posets and let f be an order-preserving
mapping from P to (). Then

w(@) = p(P) + > (@, )u(f 1 (Qcy))-

yeQ
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A poset of the form f_l(QSy) will be called a fibre of f. Note that is a subset of P.
The poset ., has a 1-element and so its Mobius number is zero (by Lemma 7.1). If all
fibres of f have 1-elements then it follows from Theorem 7.2 that u(P) = u(Q). A subset
P of a poset S is an ideal if, whenever a € S and ¢ < a, we have z € P. Any fibre of an
order-preserving mapping is an ideal. It is worth noting that if f is an order-preserving
mapping from S to the chain Ch(1) then f~!(0) is an ideal and, conversely, each ideal of S
determines an order-preserving mapping into Ch(1). A subset F of S is a filter if whenever
z > aand a € F, we have z € F.

The following result is a consequence of Theorem 7.2, but we give a direct proof of it.

7.3 Lemma. If P is an ideal of the poset S then

w(8) = u(P)+ 3 (S, u(Pey). (1)

yES\P
Proof. We use Lemma 4.2. Suppose that C is a chain in S. If C' C P then, in the right
side of mapa, it is counted by the term p(P). If C € P, let y be the least element of
C\ P. Then C\y is the disjoint union of a chain from P., and a chain from §,_. It

is easy to check that in this case C is counted, with the correct sign, by the expression
p(Sy<)u(Pey). O

Now we show how to derive Theorem 7.2 from Lemma 7.3. Assume that f is an
order-preserving map from P to (). Construct a new poset S with element set P U Q by
declaring that a < b if either

(a) a,b€ P and a <pb,or
(b) a,b€ @ and a <g b, or
(¢) a€ P,bec @ and f(a) <gb.

(This construction is due to Baklawski [2].) It is easy to see that S is a poset and P is an

ideal in it. Hence we have

u(S) = w(P)+ Y n(S,<)u(Pey). (7.2)
yES\P

Ifye S\P=Q then S, =Q,. and P, = f_l(QSy), whence we deduce that

w(S) = p(P) + > m(Qy (£ 1 (Q<y))- D

yeQ

(This is just a dual version of Lemma 7.3.)
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Since P is an ideal in § it follows that Q°P is an ideal in S°P. Therefore

p(S) = p(SP) = p(@P)+ Y w(SP,)mQ",)

z€S5oP\QoP

= (@) + > 1(S,)mQ, <)

zeP
As Q,< = Qf(s)< has a O-element for all z in P, this implies that u(S) = u(Q). Hence
Theorem 7.2 follows.

Exercise: Derive Lemma 7.3 from Theorem 7.2.

In [16] Walker proves a more general result than Theorem 7.2: he allows the order-
preserving mapping f to be an ideal relation between P and @, i.e., an ideal in P x Q.

This has the advantages of being more general, and more symmetric in the roles P and @

play.

8. Retracts

A mapping f : P — P is decreasing if f(z) < z for all z in P. A subposet @ of S is a
retract if there is an order-preserving and decreasing mapping f from S to @ such that
f1@Q is the identity, and then we call f a retraction. If is order-preserving and increasing
then we also define the fixed points of f to be a retract of S. Note that if S is constructed
from P and @ as in the proof of Theorem 7.2 then the mapping which sends a in @ to itself
and a in P to f(a) is a retraction. We saw in the proof of Theorem 7.2 that u(S) = p(Q).

More generally we have the following result.

8.1 Lemma. If Q is a retract of S then p(Q) = p(5).

Proof. Let f be a retraction from S onto Q. If z € f_l(QSy) then f(z) <y. As f(y) <y
(indeed f(y) = y) it follows that y is a l-element in f_l(QSy), hence each fibre of f

has a 1-element and therefore has M6bius number zero. By Theorem 7.2 we deduce that

m(Q) = p(S). =
8.2 Corollary. If P is a poset then u(P) = pu(Ch(P)).

Proof. Each element of P is a chain, therefore P is a subposet of Ch(P). Consider the map
f from Ch(P) to P defined by setting f(C) equal to max(C'). Then f is order-preserving,

decreasing and its restriction to P is the identity. O

A point in a lattice is an element which covers 0.

10
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8.3 Corollary. Let L be a lattice. If 1 is not a join of points then p;(0,1) = 0.

Proof. If ¢ € L\ 0, define f(z) to be join of the points in L below z. Then f is order-
preserving and decreasing and f(f(z)) = f(z) for all z in L\ 0. If f(1) #1 then f(1) <1
and F' is retract of L'. Hence p(F) = p(L') and, since f(1) is a 1-element in F', it follows
that pu(L') = 0. O

If @ and b are elements of a poset P and the least upper bound of a and b is defined,
we denote it by a V b.

8.4 Lemma. Let P be a poset. If a € P and a V z exists for all ¢ in P then u(P) = 0.

Proof. There are two steps. First, a is a 0-element in P, and so u(P,.) = 0. Second,
the map z — z V a is order preserving and increasing, with P, as its set of fixed points.

Hence P, is a retract of P and therefore u(P) = 0. 0

8.5 Lemma (Weisner). If L is a lattice and a € L\ 0 then
pr(0,1) = — Z 1 (0,).
zVa=1, z<1
Proof. Suppose
G:={zclL :zVa<1}.

Then a € G and a V z exists for all z in G, so u(G) = 0 by the previous lemma. Since G

is an ideal in L, using Lemma 2.2 we find that
@) = 3 ug(0,0).
zEGUO

We now have

pr(0,1) = — ZML(()?:B) = Z pr(0,z) — Z pr(0, )

z<1 zVa=1,z<1 zcGUO
= - Z :U“L(Oaw) - M(G)
zVa=1,z<1
This yields the lemma. O

In delete, we will need the next result. The proof is left as an easy exercise.

8.6 Lemma. Let f be an order preserving and decreasing mapping of P into itself and
let F' be the set of fixed points of f. Then F' is a retract of P. O

11
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9. Cutsets

A cutset in a lattice L is a set C which contains at least one element from each maximal
chain. Call a non-empty subset S of C' a simplex it it has a bound (i.e., a meet or a join)
in L\{0,1}. The set of all simplices in C' forms a simplicial complex, which we denote by
7(L,C). By way of example, if L is the lattice of subspaces of a finite-dimensional vector
space V then the set of all 1-dimensional vector spaces is a cutset, C say. A subset of ('
lies in ?(L,C) if and only if its join is not the entire space, i.e., if and only if it is not a
spanning set in V. For any lattice L, let L' denote the poset obtained from L by deleting
its 0- and 1-element. Thus

u(L') = pr(0,1),

which provides one reason why we need L'.

9.1 Theorem. If L is a lattice and C is a cutset then p(L') = p(?(L,C)).
Proof. Let 7(L,C) be abbreviated to 7. If B is a chain in L', define f(B) by
f(B):={z e C:2zUB e Ch(L")}.

(In other words, f(B) is the set of all elements of C' which are comparable with each
element of B.) Since C is a cutset, f(B) # () and it follows that f is an order-preserving
mapping from Ch(L'") to 7°P. Hence we may prove the theorem by showing that all fibres
of f have Mobius number zero.

Let S be an element of 7°P, and let F' denote the fibre f~1(?%). If a chain D of L
lies in this fibre then S C f(D). If ¢ € D then z is comparable with every element of 5.

Hence

AS <z <VS.

Since S € 7(L,C), either AS or VS lies in L'. Assume VS € L', and denote it by z. Then
for any element # of D we have z < z, whence D U z € Ch(L'). Further every element of
S is comparable with all elements of D U z, thus D U z belongs to F.

Now z is a chain in L' and S C f(z). Hence z € F and zU D lies in F for all elements
of F. By Lemma 8.4 it follows that F' has M6bius number zero. A similar argument yields

the same conclusion when if AS € L'. Hence the theorem holds. O

We can manipulate this theorem to obtain a more explicit formula for p(L').

12
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9.2 Corollary. Let C be a cutset in the lattice L, and let a;, be the number of k-subsets
of C with join 1 and meet 0. Then u;(0,1) = Li'o(—l)kak.

Proof. If S € 7 then the interval {’\<S is a Boolean lattice and so

pp(0,8) = (-1),

from we find, using Lemma 2.2, that

b(?) = pp(0,1) = — 3 pa(0,8) =1+ S (-1l (9.1)
sef\1 Ser
Define a; to be the number of k-subsets S of C' such that AS = 0 and VS = 1. Then,
when 1 < k < |C|, the number of k-subsets of 7 is equal to

(%)
k)T
Now, assuming |C| > 0 (which is the only interesting case)

0= Y  (Df¥+ > (-nkl

sco, Ser scc, s¢r,

From (9.1) we see that the first sum here is equal to p(? ) — 1, while the second sum equals

1+ Ek>0(—1)kak. The result follows. O

We consider applications of Corollary 9.2. Suppose that L is the lattice of subspaces
of a finite-dimensional vector space over some finite field, and let C' be the set of all 1-
dimensional subspaces. Then C' is a cutset and a,, is the number of spanning subsets of C
with cardinality k.

For another example, let G be a graph with vertex set V and let L be the set of all
partitions of V such that each cell induces a connected subgraph of G. Then the join of
any two elements of L lies in L and hence L is a lattice, but not in general a sub-lattice
of the lattice of all partitions of V. Let C be the set of all partitions in L with one cell of
size two and all others singletons. (So the cell of size two is an edge of G.) Then C is a
cutset in L and a,, is the number of subgraphs of G with k edges and the same number of
connected components as G.

Rota [14] proved Theorem 9.1 under the assumption that C was a cutset and an
antichain. Walker proves an even more general result than Theorem 9.2 in [16], our proof
is based on his. (Our task is slightly more complicated, in that Walker can use ideal

relations where we must use order-preserving functions.)

13
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10. Complements

The main result in this section is a slight weakening of Theorem 8.1 from Walker [16]. To

begin, we derive a technical lemma.

10.1 Lemma. Let L be a lattice and suppose s € L'. Let G be the set of all elements z
of L' such that z Vs < 1. If u(G,) # 0 then y is a complement to s.

Proof. Note that s € G. We show that if y is not a complement to s in L then #(Ggy) =0.
Ify € G then G, has a 1-element and so its Mobius number is zero. If y ¢ GandyAs =0
then y is a complement to 5. Suppose y ¢ G and y A s # 0. If z € G, the

zV(yAs)Vs=2zVs<l.

Hence z V (y A s) € G and therefore z € G_,. Thus G_, is a cone over y A s and so has

Mobius number zero. The lemma follows. O

10.2 Theorem (Walker [16]). Let L be a lattice, let a be an element of L' and let a™
be the set of all complements of a. Then p(L'\a™) = 0.

Proof. Let M denote L'\a™ and let G be the subposet of L' consisting of all elements # of
M such that zVa < 1. Then G is an ideal of L' and contains a. The fibres of the inclusion
mapping of G in M are the sets G, where y in M. By the previous lemma these fibres
all have Mobius number zero, whence p(M) = p(G). Since a € G and a V z exists for all
z in G, we see by Lemma 8.4 that p(G) = 0. It follows that (M) = 0, as required. O

Exercise: Let s be an element of the lattices L. Let S be a subset of L' containing a~
such that if z € S then z V a = 1. Show that y(L'\ §) = 0.

10.3 Corollary. If L is a lattice and pup(0,1) # 0 then L is complemented.

Proof. If some element of L has no complement then the theorem applies, with S = 0. O

14
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11. Topology

There is more going on than we have yet admitted. An order-preserving map f from a
poset P to a poset () induces an order-preserving map from Ch(P) to Ch(Q). But Ch(P)
and Ch(Q) are simplicial complexes and thus may be viewed as topological spaces. The
map induced by f is then a continuous map.

Let X and Y be topological spaces. Two continuous functions f and g from X to Y

are homotopic if there is a continuous function
o: X x[0,1] =Y

such that ®(z,0) = f(z) and ®(z,1) for all z in X. We say two topological spaces X and
Y are homotopic if there are continuous functions f : X — Y and ¢ : Y — X such that
go f and fog are homotopic to the respective identity maps on X and Y. It can be shown
that homotopy is an equivalance relation on topological spaces. Any convex subset of R™
is homotopic to a point, while two homotopic surfaces in R® are homeomorphic. We say
posets P and @ are homotopic if Ch(P) and Ch(Q) are.

For our purposes, the following is important.

11.1 Lemma. If P and Q are posets such that Ch(P) is homotopic to Ch(Q) then
p(P) = p(Q).

Proof. The Mébius number of P is determined by the Euler characteristic of Ch(P).

Homotopic simplicial complexes have the same Euler characteristic. O

A topological space is contractible if it is homotopic to a point. One class of con-
tractible simplicial complexes are cones. A simplicial complex § is a cone if it contains an
element v such that v V z is defined for all elements = of §. It is not hard to see that if
the poset P is a cone then Ch(P) is a cone as a simplicial complex (and as a poset). We

will say a poset P is contractible if Ch(P) is. We have the following important result.

11.2 Theorem (Quillen [13]). Let P and Q be posets and let f be an order-preserving
map from P to Q. If f71(q) is contractible for any element q of Q then P and Q are

homotopic. O

Note that in all cases where we have proved that the fibres of some order-preserving
map have Mobius number zero, we have actually shown that the fibres are cones and hence
contractible. Thus if L is a lattice, p € L and S is the set of complements of s in L then
L'\ S is contractible.
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If P and @ are posets, it makes sense to talk about two order-preserving maps f and
g from P to @ as being homotopic. No combinatorial characterisation of what this means
is known. However if f(z) < g(z) for all z in P then it is easy to show that f is homotopic
to g.

We may view QF as a poset, where f < g for two elements f and g of Q¥ if f(z) < g(z)
for all z in P. The poset QF is the disjoint union of a number of connected components; two
maps in the same component will be homotopic. The constant map taking each element
of P to a fixed element of Q is always order-preserving, so |Q¥| > |Q|.

It turns out that lying in the same component of Q¥ is not a good approximation to
the topological notion of homotopy, for reasons we now discuss.

Suppose that a is an element of P which covers a unique element b of P. Define a
map

p,: P — P\a

by setting ¢, (z) equal to z if z # a and ¢, (a) = b. Call ¢, a deletion. Each fibre of the
inclusion mapping of P\ a into P has a l-element. (It is not hard to see that P\a is a
retract of P.)

Now suppose that f is an order-preserving map of P into itself and f(z) < z for all
elements ¢ of P. Let a be an element of P that is minimal, subject to the condition that
f(a) < a. If b < a then, by our choice of a, we have f(b) = b. On the other hand, f is
order-preserving and so f(b) < f(a). Hence if b < a then f(b) < f(a) and we have shown
that f(a) is the unique element of P covered by a.

Exercise: Show that any order-preserving and decreasing map from P into itself is a

composition of deletions.

It is possible that, by applying a sequence of deletions, we might able to map P onto
the poset with exactly one element. In this case we say that P is dismantlable, and P is

homotopic to a 1-element poset, i.e., it is contractible.

Exercise: Let P be a poset. The following are equivalent:
(a) P is dismantlable,
(b) PX has exactly one component for any poset X and

(c) PT has exactly one component.
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12. Geometric Lattices

The Mobius function is particularly useful when applied to geometric lattices. This section
introduces these lattices briefly. There are two parts to their definition.

A lattice is a point-lattice if every non-zero element can be expressed as the join of
points.

A lattice is semimodular if, whenever a and b are elements such that if a covers a A b
then b is covered by a V b. There are a number of equivalent definitions, which we will
discuss shortly. What we have just called a semimodular lattice is more strictly an upper
semimodular lattice. A lattice which is dual to a semimodular lattice is lower semimodular.

A lattice is geometric if it is a semimodular point lattice. One class of examples arises
as follows. Let X be a set of points in a finite-dimensional projective space. A flat in X is
any subset of X of the form H N X, where H is a projective subspace. The lattice of flats

of X is geometric.
Exercise: Show that P(n), the lattice of all partitions of an n-set, is geometric.

The points of a geometric lattice may also be referred to as atoms. A maximal flat is

called a hyperplane.

Exercise: Show that each element in a geometric lattice is the meet of a set of hyperplanes.
We will use the result of the next exercise several times.

Exercise: Show that any interval in a geometric lattice is geometric.

For the remainder of this section, we discuss some of the properties of semimodular

lattices.

12.1 Lemma. A lattice L is semimodular if a VV b covers both a and b whenever a and

b cover a N b. O

A poset P is ranked if any two maximal chains joining the same pair of elements
have the same length. (Equivalently, we may say that P satisifies the Jordan-Dedekind
condition.) If P is ranked and @ € P then the maximum length of a chain ending on «

is the rank of a, which we denote by r(a). If P is a ranked poset and b covers a then

r(b) = r(a) + 1.
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12.2 Lemma. Let L be a lattice with rank function r. Then L is semimodular if and
only if
r(a Ab) +7r(aVb) <r(a)+r(d) (12.1)

for all elements a and b of L. O

We call (12.1) the semimodular identity. A ranked lattice is modular if equality holds
in the semimodular identity for all pairs of elements a and b. The lattice of subspaces of
a vector space is modular, as are the Boolean lattices.

We will need the next result in geo-moeb.

12.3 Lemma. Any point in a geometric lattice has a complement.

Proof. Let L be geometric and let p be a point in L. Let a be an element of L which is
maximal, subject to the condition that a Ap =0. If a Vp = 1 then a is a complement of p
and we are finished.

Otherwise ¢ V p < 1 and, since 1 is join of points, it follows that there is point g of L
such that ¢ £ a V p. Now there are two possibilities. If p < a V g then

pVa<gqgVa.

But p and ¢ cover 0, hence both aVp and aV ¢ cover a. This implies that r(aVp) = r(aVq)
and therefore ¢ < a V p, which contradicts our choice of gq.
If pLaVgqgthen pA(aVgq)=0. Since ¢ £ aV p, it follows that ¢ < a V ¢, and thus

we have a contradiction to our choice of a. O

For further background on geometric lattices, see [1, 5].

13. Modular Elements

An element a in a geometric lattice L is modular if the semimodular identity holds for all
pairs (a,b), i.e.,

r(a Ab)+7r(aVb)=r(a)+r(d)

for all elements b of L. Equivalently a is modular if the set of all complements of L form

an antichain.

Exercise: Prove that an element a in a geometric lattice is modular if and only if its

complements form an antichain.
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Any point in a geometric lattice L is modular. If a is a point of L and b € L then,

since a covers 0, either a A b =10 or a A b = a. In the first case

In both cases we have equality in the semimodular inequality. The fact that points are
modular is not always useful; it may be better to have modular elements of higher rank.
We note two examples.

Let Bq(n) denote the lattice of subspaces of an n-dimensional vector space over a field
with ¢ elements. This is a modular lattice, and thus all its elements are modular. If P(n)
is the lattice of all partitions of {1,...,n} then the partition with cells {1,...,n — 1} and
{n} is a modular hyperplane.

13.1 Lemma. Let a and b be elements in the geometric lattice L. If a is modular then

the map * — z V a is an isomorphism from [a A b,a] to [b,a V b].

Proof. If z € [a A b,a] then the mapping  — b A z is order-preserving, as is the mapping
y+— aVy when y € [a,a V b]. Hence the composite map 1 defined by

P(z) =a A (zVb)

is an order-preserving map from [a A b, a] into itself. Since a A (z V b) > =z, it is also
increasing.

Suppose ¢ € [a A b,a]. Since a A b = ¢ A b, the semimodular identity implies that
r(c V b) —r(b) = r(c) —r(a A b).

Applying the semimodular identity to the pair (a,Vb) and noting that (e Ve)Vb=5Va,
we get

r(aVb)—r(cVbd) <r(a)—r(a(cVbd)).
Summing the last two inequalities yields that
r(a Vb) —r(b) <r(a) —r(a Ab)—(r(a A(cVb))—r(c)).
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As a is modular

r(aV b) —r(b) = r(a) —r(a A D)
and, given the previous inequality, we deduce that
r(a A (cV b)) < r(e).

However ¢ < aA(cVb) and therefore we have proved that ¢ = a A (¢Vb). Soif a is modular
then v is the identity mapping and the intervals [a A b,a] and [b,a V b] are isomorphic. O

14. Mobius Functions and Geometric Lattices

Our first result will enable us to compute the M6bius function on intervals in Bq(n) and

P(n). We need one preliminary result.

14.1 Lemma. If C is an antichain in the poset P then

p(P) = w(P\C) + Y (P )n(Pey)-

Proof. Apply Theorem 7.2 with f the inclusion mapping of P\ C into P. The details are

left as an exercise. O

This lemma is useful even when C is a single element of P.

14.2 Theorem. Suppose a is a modular element of the geometric lattice L, not 0 or 1,

and let a= be the set of all complements of a in L. Then

:U’L(071) = :u“L(07a) Z :u“L(Oaw)'

z€al
Proof. Let P be L' and let a— be the set of all complements to a in L. Then ¢~ is an

antichain and so, using Lemma 14.1, we get

p(L') = p(L'\a") + Y p(Le)n(Ll,)-

z€al

By Theorem 10.2 we have that u(L'\a™) = 0. By Lemma 13.1,if € a~ then the intervals

[z A a,a] =[0,a] and [z,z V a] = [z,1] are isomorphic, hence

:U’(L{'c<) = :u’L(w71) = //“L(Oaa)‘

As p(L ) = p1,(0,z), the theorem follows. O
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14.3 Corollary. If L is a geometric lattice and a and b are elements of L such that a < b
then (—1)"® (@), (a,b) > 0.

Proof. Since any interval of a geometric lattice is geometric, it suffices to assume that
a =0and b =1. Let p be a point in L. Then p is modular and all its complements are

hyperplanes. (It has complements by Lemma 12.3.) By the theorem

pr(0,1) = — Z (0, ).

zept

We may assume inductively that (0, ) is non-zero and has the same sign for all z in p~,

whence the result follows. O

Next we compute the Mébius function on B (n) using Theorem 14.2. Let h be a
hyperplane in B (n). Then h is modular and so, if L = B,(n),

:U’L(071) = :U“L(07h) Z //“L(Oap)‘

Since h is modular, all its complements are points. Consequently p;(0,p) = —1. The

n—1

number of points in A~ is ¢ and therefore

pz(0,1) = —¢"1ur(0,h).

As pp(0,h) = MBq(n_l)(O, 1), a trivial induction argument yields that

s,y (0,1) = (~1)q(3).

We can also compute the Mobius function for P(n). Here h = {{1},{2,...,n}} is a
modular hyperplane whose complements are the partitions with one non-trivial cell, of the
form {1,:}. Hence

:U”P(n)(07 1) = _(n - 1):“’73(n—1)(07 1)'

Once again a simple induction argument yields that

:U’P(n)(ml) = (_1)n_1(n -1l
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15. Broken Circuits

The main result of this section shows that if L is a geometric lattice then (—1)"p;(0,1) is
not only non-negative, it counts something.

Let L be a geometric lattice and let S be the set of all points in it. Since L is a
point-lattice, we can identify each element of L with the set of points below it in L. We
can extend the rank function of L to a function on subsets of S by defining »(T) to be
r(VT), for any subset T' of S. We have

(1) r(0) =

(2) 1fp€Sthenr( ) =1,

(3) if T and U are subsets of S and T'C U then »(T') < »(U) and
(4) for any pair of subsets T" and U of 5,

r(T)+r(U)>r(TUU)+r(TNU).

We define a subset T of S to be independent if r(T') = |T|, all other subsets are dependent.
The set 5, together with its collection of independent subsets, is a matroid. A circuit is a
minimal dependent subset of S. A flat is a subset, F' say, of S such that if p € S\ F then
r(p U F) > r(F). Thus the flats correspond precisely to the elements of L. We will not be
doing any matroid theory, but we will need to refer to the circuits and independent sets of
a geometric lattice.

The independent sets of a geometric lattice form a simplicial complex—every subset of
an independent set is independent. We are now going to define the broken circuit complex,
which is a subcomplex of the independent set complex. Assume L is a geometric lattice
and let < be a total order on its points. A set of points is a broken circuit if it can be
obtained from some circuit by deleting its least element, relative to <. The broken circuit
complex Br(L) has as its elements all independent sets which do not contain a broken
circuit. Since a set of points which contains no broken circuit cannot contain a circuit, the
elements of Br(L) are all independent sets. If 7' € Br(L) then VT contains no point less
than the least element of T'. (If p is a point in VT and p ¢ T then there is a circuit pU S,
for some subset S of T'.)

15.1 Theorem (Whitney [17]). Let L be a geometric lattice and let < be a total order

on its points. Then the number of independent sets of k points which contain no broken

circuit is Za:r(a):k(_]‘)klu'L(O’ a).

22



C. D. Godsil

Proof. Any independent set of size k lies in a unique element of L with height k. Hence it
suffices to prove that (—1)"x(0,1) is the number of independent sets of r atoms containing

no broken circuits, where r is the height of L. We prove this by induction on 7.

Let p; be the least point of L and let b be a complement of p in L. Then b has height
r—1. Let M the geometric lattice formed by the interval [0,b] and let Br(M) be the broken
circuit complex of M, relative to the ordering of the points of M obtained by restriction
of 4. We claim that T is an independent set of » — 1 points of M then T'U p, € Br(L) if
and only if T' € Br(M).

Suppose first that 7' € Br(M). If T U p, contains a broken circuit C from L then

either ¢ C T and so C is a broken circuit in M, or C' U p, is a circuit in L and therefore
p; € VO < b.

Conversely, let S be an r-subset in Br(L). Then all points of L lie in V.5, and therefore
p; U S is dependent. Since S is independent any circuit in p; U S must contain p,, whence

S contains a broken circuit.

By induction, the number of (r — 1)-subsets of Br(M) is equal to

(=1)" g (0,1) = (=1)" " 1, (0,0)

and therefore the number of r-sets in Br(L) is equal to

(=177 Y 1g(0,).

bEp;

Since p;(0,p;) = —1, by Theorem 13.2 this last sum is equal to (—1)"u.(0,1), as re-
quired. 0O

Exercise: A simplicial complex is pure if all its maximal elements have the same height.

Show that any broken circuit complex is pure.
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16. The Partition Lattice

In this section we apply Theorem 15.1 to the partition lattice P(n). We identify the points
of P(n) with the edge set of K, and we let <I denote the lexicographic order on the points.
An independent set is then a forest, i.e., an acyclic subgraph of K. If i1 < 7 < k then
the edges ¢k and jk form a broken circuit. It follows that a forest F' in E(K,,) contains
no broken circuit if and only if each component of F' has the property that the vertices in
any path going away from the least vertex form an increasing sequence. (This condition
is equivalent to containing no “broken triangle”, the details are up to you.) Consequently
the forests in K,, containing no broken circuits can be viewed as non-increasing functions
on the set {1,...,n}, the number of components in the forest is equal to the number of
fixed points of the function.

Since 1 is a fixed point of any non-increasing function, the number of such functions

with exactly one fixed point is (n — 1)!. This shows that

pp(ny(0,1) = (=1)" "} (n — 1)L

Fortunately this is consistent with our earlier result. The problem which remains is to
determine the number of non-increasing functions with exactly k fixed points when k& > 1.
I claim that this is equal to the number of permutations of {1,...,n} with exactly k cycles.

The proof of this is indirect. The first step is an encoding of a permutation in cyclic
form as a sequence. Start with a permutation in cyclic form, with any 1-element cycles
written out explicitly. (To give an extreme case, the identity permutation in cyclic form is
usually written as (1), but we must write it as (1)(2)---(n).) Now write each cycle so that
the largest element is first (so if n = 4 then (123) is now (312)(4)). Next, order the cycles
so that the first elements form an increasing sequence. Finally remove the parentheses.
You are invited to prove that we have now defined a bijection from Sym(n) onto itself.
Denote the image of a permutation 8 under this bijection by B

What is the relation between the cycles of 8 and B? If & € Sym(n), define j to be
a record if o(t) < o(j) whenever ¢ < j. Our claim (well it is my claim, but you have to
prove it) is that the number of cycles in 3 is equal to the number of records of B

But this only completes the first step; we need to convert B into a non-decreasing

function. This is easy. If o € Sym(n), let f, be defined by

fo(3) = iz <o7(j), o) < 5}
Again, you must convince yourself that ¢ can be reconstructed from f, . Note however

that the fixed points of f, are precisely the records of . Hence the number of fixed points
of fﬁ is equal to the number of cycles of 3.

24



C. D. Godsil

A forest in K, with exactly n — d edges has exactly d components. So we have
shown that the number of forests with k& edges which contain no broken circuit is equal
to the number of permutations of {1,...,n} with exactly n — k cycles. This number has
no nice explicit form, but it is known to be equal to (—1)* times the coefficient of z* in
z(z —1)---(z —n + 1). The coefficient itself is a Stirling number of the first kind. (For
background see, e.g., [15: Chapter 1].)

17. Contractions and Colourings

We consider a family of geometric lattices including P(n) as a special case. Let G be
a graph with vertex set V and edge set E. A contraction of G will be defined to be a
partition of V such that the subgraph induced by any cell is connected. Equivalently we
may view them as subsets S of E with the property that, for any edge f € E\ S, the
number of components of § U f is less than the number of components of 5. We will be
a question and denote the set of all contractions of G by L. Every contraction of G is a
partition of V and so, if n = |V, it can viewed as an element of P(n). Further the join of
any two contractions is a contraction, and so the contractions of G form a sub-semilattice
of P(n). As we remark in the Appendix, any join-semilattice with zero can be turned into

a lattice—in this case we define the meet of contractions ¢ and 7 by
oANT:=V{y€Lg:v<o,7}

Exercise: Show that L, as defined above is a geometric lattice, and that if S is a set of

points of L then n — r(S) is the number of components of S.

The points of L are precisely the edges of G. The independent sets of points are
precisely the (edge-sets of the) forests in G, and the circuit are the circuits. The main
result of this section will be an expression for the number of proper k-colourings of G in
terms of the Mobius function of L.

A proper k-colouring of G is a mapping f : V. — {1,...,k} such that f(u) # f(v)
whenver uv is an edge. If f is a mapping from V to {1,...,k}, define the set K(f) by

K(f) ={w € E: f(uv) = f(v)}.

Note that the components of K(f) form a contraction and that f is a proper colouring
of G if and only if K(f) = 0. Let F_(A,%k) denote the number of mappings f from V
to {1,...,k} such that K(f) = A and let F_(A,k) be the number of mappings from V
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to {1,...,k} such that K(f) > A. Since B C K(f) if and only if f is constant on the
components of B, we have

F_(B,k) = k"B,

As we also have

Fg(B,k) = Z F_(A,k),

ADB

by Mobius inversion we find that

F_(Ak)= ) ppy(4, Bk 5,
B:BDA

Thus we have proved the following.

17.1 Theorem. The number of proper k-colourings of the graph G is equal to

Z Z.#Lg(o,A) k™R O

In other words

is the chromatic polynomial of G. We have shown that the coefficients of the chromatic
polynomial are the level numbers of the broken circuit complex of G. (Perhaps we should

say of L.)

Let © be a set of points in the projective space PG(d,q). Then, as we noted earlier,
the intersections of S with the hyperplanes of PG(d, q) are the elements of a geometric
lattice. The rank of a subset of {2 is equal to the dimension of the space spanned by it. We
are interested in counting the number of hyperplanes of PG(n, ¢) that contain no point of
Q. (Well, I am interested. You may have to fake it.)

The points of Q can be represented by vectors z,...,z, in V(d+ 1,q9). If a €
V(d + 1,q) then the vectors z; such that aTz, = 0 are a hyperplane in the geometric
lattice L determined by Q. Denote the hyperplane corresponding to the vector a by h(a).
If § CQ, define f(.5) to be the number of vectors a such that h(a) = S and let g(5) be
the number of vectors a such that h(a) O S. Then g¢(§) = ¢¢~"%) and consequently

F(8) =) (S, T)g~ ™.
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Therefore
f(0) = Z#L(O,T)qd_r(T) = Z Z pr(0,T) k.

T k>0 \ r(T)=k
This is a polynomial in ¢, which we will denote by Fy(q). It is called the characteristic
polynomial of L.

Exercise: Show that the number of ¢-tuples of vectors aq,...,a, such that N h(a;) =0 is
equal to Fy(q%).

There is coding theory view of all this, which is both interesting and useful. Suppose
that we arrange the vectors #,,...,z,, given above into a (d 4+ 1) x n matrix, G say. The
row space of G is a linear code over the field GF(q). If a € V then a” G is a code word and
the weight of this word is the number of elements of Q2 not in h(a). Thus the hyperplanes
of the lattice of flats of Q correspond to the code words with minimal non-zero weight.
Further, there is a vector a such that h(a) is disjoint from Q if and only if there is a code

word with weight n, and the number of such codewords is equal to f(0).

18. Points and Hyperplanes

The main result in this section is that a geometric lattice always has at least as many
hyperplanes as points. The lattice of subspaces of a finite vector space shows that equality

can occur. The proof makes use of another interesting result.

18.1 Theorem (Dowling and Wilson [7]). Let L be a finite lattice. If p;(p,1) # 0
for all elements p of L then there is a permutation o of the elements of L such that

qVo(q)=1forall gin L.

Proof. We use Lemma 6.1. Let g be the real-valued function on L defined by

{1 ifp=1;

9(p) = 0, otherwise.

Let G be the matrix with rows and columns indexed by the elements of L and with
(G)pq = 9(pV q). We can complete the proof by showing that det G # 0. By Equation (1)

from dets we have

det G =[] pr(zv)9() = [[ #e(z:1)
z oy z
and, by our hypothesis on L, it follows that det H = 0. O
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Any permutation o satisfying the condition of Theorem 18.1 must map 0 to 1. Hence
if L is geometric and p is a point of L then o(p) must be a hyperplane. Therefore o
determines an injection of the points of L into its hyperplanes, and so the number of
hyperplanes in a geometric lattice is at least as large as the number of points. Actually a
somewhat stronger statement can be made.

If L is a lattice let W, denote the number of elements in L with height k. If L
is geometric with height n then W, = W, = 1, while W, is the number of points and
w,

n

W, <W

n—1-

first kind.)

_; is the number of hyperplanes. We have just seen that Theorem 18.1 implies that

(The numbers W, are sometimes referred to as the Whitney numbers of the

18.2 Corollary. If L is a geometric lattice with rank d then
Wyttt W, < Wy 4+ W,
Proof. Assume L is geometric and p V o(p) = 1 for all elements p of L. Since

r(pV o(p)) +r(p Ao(p)) < r(p) +r(a(p))
we see that if r(p) + r(o(p)) > d for all p. So if r(p) < k then r(o(p)) > d — k. O

A well known conjecture asserts that for a geometric lattice the numbers W, form a
unimodal sequence. The previous corollary is probably the best evidence for this conjec-
ture. As stated, Corollary 18.2 is due to Dowling and Wilson [7], but the most interesting
case is when k = 1, where the result was first established by Basterfield and Kelly [3],
and independently by C. Greene [8]. If equality holds in Corollary 18.2 then Dowling and
Wilson [7] prove that L must be modular; in the case k£ = 1 this was also observed in [3,
8]. We take this further in pt-hyps.

If pis a point in L then o(P) must be a complement to p. (This can be viewed as
a consequence of the fact that points are modular elements.) Thus it is natural to ask if
there could be a permutation o such that o(p) is a complement of p, for all elements p in

the lattice. This can be achieved under suitable conditions.

18.3 Theorem (Dowling [6]). Let L be a lattice such that pu;(0,p)u.(p,1) # 0, for
any element p. Then there is a permutation o of L such that o(p) is a complement of p,

for all p in L.

Proof. Let G(p) denote the set of all elements z of L' such that z Vp < 1. Let M be the

matrix with rows and columns indexed by L, such that
(M)pq = #(G(P)gq)
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By Lemma 10.1, the pg-entry of M is zero if p and ¢ are not complements, so we can prove
the theorem by showing that det M # 0. (Perhaps it is worth noting that M is probably
not symmetric.)

Ifz € L' thenp#0andso > . pr(0,2)=0. Hence

0= > u(0,2)+ D, p(0,2)

z<gq, zVp<1 z<gq, zVp=1

=uwGP)<g)+ DY, nr(0,2).

z<gq, zVp=1

Therefore
MG <)) =~ Y, p(0,2).

z<gq,zVp=1
If H denotes the matrix we used in the proof of Theorem 18.1 and D is the diagonal matrix
with (D),, = pr(0,p) then
M=-ZTDH,

from which the theorem follows immediately. O

Unfortunately Theorem 18.3 does not seem to lead to any strengthening of Corol-
lary 18.2.

19. Modular Lattices

We have seen that if L is geometric with height n then W; < W, _,. It is reasonable to ask
what can be said if equality holds. As we will see in the next section, the answer is that L
must be modular. For this to make sense we must first define modular lattices themselves.
We start with an identity due to Dedekind, which holds in any lattice L. Suppose
that a, b and ¢ are elements of L. Then a V (b A ¢) lies below both a Vb and a V ¢. Hence
aV(bAc)<(aVb)A(aVc)and so we see we have proved that, if a < ¢ then

aV(bAe)<(aVbd)Ae. (19.1)

This is Dedekind’s identity. A lattice is modular if equality holds in Dedekind’s identity
for all a, b and cin L with a < b. It is not hard to verify that any sublattice of a modular
lattice is modular, and that products of modular lattices are modular. The dual of a
modular lattice is modular. All modular lattices are ranked, but the proof of this is left to

you as well.
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Exercise: Show that a lattice is modular if and only if it is both upper and lower semi-

modular.

A word of warning here. We defined modular elements of geometric lattices. Note
though that even if a is a modular element of L, neither [0, a] nor [a,1] need be modular.
Our next lemma shows that we can test if a lattice is modular without looking at all

triples a, b and ¢ where a < c.

19.1 Lemma. A lattice L is modular if and only if aV (bAc) = ¢ whenever ¢ € [a,aV b].

Proof. Maybe this will be left for you too. O

We now turn to characterisations of modular geometric lattices.

19.2 Lemma. Let L be a geometric lattice. An element b of L is modular if and only if
aV (bAc)=(aVb)Ac whenever a < c.

Proof. Suppose that a < ¢ and let w and w' respectively denote (a V b) A cand a V (b Ac).
Note that w' > w, by Dedekind’s identity. We have

bAec>bA(aV(bAc)) >bA(BAc)=bAC

and
bVa<bV((avb)Ae)<bV(bVa),

therefore b A w' =bAcand bV w = bV a. It is even easier to verify that b A w = b A ¢ and
bV w' =bVa. Soif bis modular we have both

r(w) +7(b) =r(bVw)+r(bAw)=rbVa)+rbAc)

and

r(w) +7b) =r(bVw')+r(bAw')=r(bVa)+rdAec),

whence r(w) = r(w'). As w < w', this implies that w = w'.
Now suppose that a V (b A¢) = (aV b) A ¢ whenever a < ¢. We show that no two

complements of b are comparable. But if ¢ and ¢ are complements to b and a < b then
a=aV0=aV(bAc)=(aVbd)Ac=1ANc=c.
Hence the complements of b form an antichain, and so b is a modular element. 0O
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19.3 Corollary. A geometric lattice is modular if and only if each element is modular. D

19.4 Lemma. A geometric lattice is modular if and only if each hyperplane is a modular

element of L.

Proof. Suppose ¢ € L and ¢ £ h. Then h V¢ =1 and h A ¢ is a hyperplane in the interval
[0,c]. We first show that if A is modular in L then h A ¢ is modular in [0,¢]. If A is a
hyperplane and a £ h then

r(h) +r(a) >r(hVa)+r(hAa)=r(l)+r(hAa).

Hence h is modular if and only if r(a) —r(hAa) = r(1)—r(h) =1,i.e.,if and only if aAh
is covered by a, for any a in L such that ¢ £ h. If 6 < a then (hAa)ANb=hAb. If his
modular then b must cover h A b, whence (h A a) A b is covered by b. It follows that A A a
is a modular hyperplane in [0, a].

Now suppose that L is a geometric lattice in which every hyperplane is modular. We
prove L is modular by induction on its height. If a < 1 then all hyperplanes in [a, 1] are
modular. If @ > 0 then, by the previous paragraph, all hyperplanes in [0, a] are modular.
(You should show that if a covers b then there is a hyperplane h such that A A a = b.) By
induction it follows that all proper intervals of L are modular.

Now let @ and b be any two elements of L. We want to verify that
r(a) + 7(b) =r(a V b) + r(a Ab). (19.2)

If either a Vb < 1 or a Ab > 0 then this already holds, by our induction hypothesis. We
therefore assume that a and b are complements. Since every element of L is the intersection
of the hyperplanes containing it, there is a hyperplane h containing a but not b. If AAb =0
then, since h is modular b must be a point. As all points are modular, equality then holds
in (19.2).

Hence we may assume that 2 A b > 0. Since [0, k] is modular
r(a) +r(bAh)=r(aV(bAR))+r(aNbAR)=r(aV (bAh))
and, since [b A h,1] is modular
r(b) +r(aV(bAR))=7r(1)+7(bA(aV(bAR))).
Combining these two inequalities we deduce that
r(d) +r(a) = r(1) +r(b A (aV (bAR))) —r(bAh).
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Let w denote b A (aV (b A h)). Clearly w > b A h, if we can show that w = b A h then
r(a) + r(b) = 1, as required.

Since a A b =0, it is trivial to verify that b A h is a complement to a in [0,a V (b A h)].
Further

ahNw=aAN(bA(aV(bAR))<aAb=0

while

aV(bAh)y=aV(aV(bAR)>aV(bA(aV(bAR)) >aV(bAh)

and so w is a second complement to a in [0,a V (b A h)]. Since this interval is contained in

[0, k] it is modular and, as b A h < w it follows that w = b A h. O

A Iine in a geometric lattice is an element of height two, i.e., the join of two points.

19.5 Lemma. A hyperplane h in a geometric lattice is modular if and only if h A £ > 0,

for every line £.

Proof. Let h be a hyperplane. To show h is modular we need only verify that if 6 £ h then
b covers b A h. Assume by way of contradiction that b6 £ h and b does not cover h. We will
use this to find a line meeting A in 0.

Let ¢ be a complement to bAh in [0,5]. Since r(bAc) = 0 we have r(c) > r(b)—r(bAh),
consequently 7(c) > 2 and so there is a line £ lying below ¢. But then

hAL=hA(bANL) =(RAB)AL=0.

It follows that A is modular. O

20. Points and Hyperplanes (again)

We will prove now that if the number of points in a geometric lattice L is equal to the
number of hyperplanes then L is modular. Both proofs proceed by showing that if L
has rank d and W;(L) = W,_;(L) then any hyperplane meets any line non-trivially. (So
there was some point to the trials of the previous section.) One reason this result is so
interesting is that the structure of complemented modular lattices is very restricted: every

complemented modular lattice is a direct sum of subspace lattices Bq(n) and copies of

B(1).
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20.1 Theorem (Basterfield and Kelly [3]). Let L be a geometric lattice of rank d.
Then W,(L) = W,_,(L) if and only if L is modular.

Proof. The proof that W;(L) = W,_;(L) when L is modular is left as an exercise; we will
only consider the sufficiency of the stated condition.
Let G be the 01-matrix with rows and columns indexed by L and with (G),, = 1 if

and only if @V b = 1. As we saw in dets, we have
G=ZFzT

where Z = Z; and F is the diagonal matrix with with (F),, = p(a,1). Since L is
geometric, F' is invertible and therefore G is invertible. We claim that if a A b = 0 then
(G715 # 0. In fact we have G™! = (ZT)_IF_IZ_:l and therefore

ZM wb)‘

z<aAb
When a A b = 0 this implies that
_ 0,a)u(0,b)
a1y k00
( )ab /1'(07 1) 7£
We may write G in partitioned form as
0 M
G =
(v %)

where the rows of M are indexed by the points of L and its columns by the hyperplanes.
Since G is invertible the rows of M are linearly independent; this proves again that W (L) <
W, (D).

Now assume that W, (L) = W;_;(L). Then M and N are square invertible matrices

and accordingly
1 ~N"'XM! N1
G~ = .
M1 0

What matters here is the zero submatrix of G~!—its presence shows that if a is not a
point and h is a hyperplane of L then (G™'),, = 0. This implies that A A @ > 0 and
consequently for all hyperplanes A and all lines £ of I we have A A £ > 0. Therefore L is
modular by Lemma 19.5. O

The proof of Theorem 20.1 can be extended to show that if equality holds in Corol-
lary 18.2 then L is modular. (This is not an unreasonable exercise.) If L is a modular
geometric lattice then it can be shown that the Whitney numbers W;(L) form a symmet-
ric unimodal sequence. As we noted earlier, it has been conjectured that this sequence is

unimodal for any geometric lattice. There is one more thing that can be proved.

33



The Mobius Function

20.2 Corollary (Greene [8]). Let L be a geometric lattice of rank d. Then W,(L) <
W,(L), and if equality holds then ¢ =d — 1.

Proof. Let L be a geometric lattice and let f be the map from L to L defined by

oy = {2 ) <k

1, otherwise.

Then f is order-preserving and its image is a geometric lattice (albeit, not a sublattice of
L). The image of L under f is an upper truncation of L. Suppose that W;(L) = W,(L)
and let L' be the geometric lattice obtained by truncating L at height 7 + 1. Then L' is
geometric and we have

Wi(L) = Wy(L') < Wi(L') = W,(L).

(2

Further, if the first and last terms here are equal then L' is modular, by the previous
theorem.

Assume ¢ < d and choose an element a of L with rank ¢ — 2. Then the interval [a, 1]
in L has height four and therefore it contains a set of four independent points. These
four points generate a sublattice isomorphic to B(4), and the elements of rank two in it
have rank ¢ in L. Hence the interval [a,1];, has height three and contains four points and
six lines. This implies that it is not modular, but every interval in a modular lattice is

modular and therefore L' cannot be modular. O

Our proof of Theorem 20.1 was based on the approach of Dowling and Wilson. We
now present a version of the original proof of Basterfield and Kelly. (It is simple and
elegant—our only criticism is that it does not use the Mébius function.)

Assume that L is a geometric lattice with rank d. We aim to prove by induction on d
that W, (L) < W,;_,(L), with equality implying that L is modular. Let p be a point and
h a hyperplane of L such that p £ h. We make two claims:

(a) Wy_,[p,1] = W;[0,h] and
(b) Wilp,1] = W,[0, h].

To prove (a), suppose that a and b are covered by h. If pV a = pV b then

pVa=pVaVb=pVh,

but since p is modular 7(p V @) < r(p V h) and therefore the map  — = V p is in injection

from the hyperplanes of [0, ] into the hyperplanes of L on p. Thus W,;_,[0,h] < W,_,[0, p].
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Since [0, k] is geometric, W;[0,h] < W,_,[0,h] by induction and thus (a) is proved. For
(b), the map z — = V p is a bijection from the points of [0, k] to the lines of L on p which
intersect h nontrivially.

Now we prove that Wi(L) < W,_,(L) and that, if equality holds, W,_,[p,1] =
W,[0,R] for any point p and hyperplane h such that p A h = 0. Let p and h denote
W,_,[p,1] and W, [0, h] respectively. By (a) above, p > h. Let n be the number of points
and m be the number of hyperplanes in L. Then

B m-—p 1 I n—h
D R T A Ve S P S

p pyh:pAR=0 pyh:pAR=0

If m < n then
n—nh - n
m—h m

whence the last term in (20.1) is strictly great than n. Hence we conclude that m > n
and, if equality holds, # = A for any point p and hyperplane h with p A h = 0.
Assume that m = n and that p is a point and & is a hyperplane not on p. Since [p,1]

is geometric, we may use (b) above to deduce that
h = W,[0,h] < W;[p,1] < W,_,[1,p] = p.

This implies that W,[0, k] = W, [p, 1], and our proof of (b) then implies that every line on
p meets h non-trivially. Thus we have shown that if h is a hyperplane and / is a line in L
then A A £ > 0 and therefore L is modular, by Lemma 19.5.

21. Kung Fu?

We will describe some important work of J. Kung [10], in a formulation communicated
privately to the author by C. Greene. This provides yet another approach to some of the
work in I;ypers and pt-hyps.

If f is a function on a lattice L, let f be defined by

fla)=)_ f(x).
z<a
Our main theorem can be viewed as providing one answer to the following problem. Sup-
pose that A and B are subsets of a lattice L. What conditions on A and B guarantee that
any function f on L with support in A is determined by the restriction f[B of f to B?
(Admittedly this appears to be a convoluted problem, with little hope of a useful answer

arising.)
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21.1 Theorem (Kung [10]). Let A and B be subsets of the lattice L such that,if z € L
then either

(a) =z € B, or

(b) there exists «* in L such that y(z,z2*) # 0 and aV & # «* if a € A.

Then f[B determines f, and there is an injection ¢ : A — B such that ¢(a) > a for all a
in A.

Before embarking on the proof of this result, we present one application. Let L be a
geometric lattice with rank d, let A be the set of elements of L with rank at most k& and
let B be the set of elements with rank at least d — k. If € L, let z* = 1.

If # ¢ B then puy(z,1) # 0. If, further, a € A then

r(eVa)<r(z)+r(a) <d—k—-1+k<d=r(1).

Hence the conditions of Theorem 20.1 are (and can be!) satisfied. What may we conclude?

Let f, be the function on L defined by

1, ifz=a

o) = |

0, otherwise.

Then fa(b) =11if b > a, and is zero otherwise. The theorem implies that, for functions f
supported on A, the linear mapping

f—fIB

is injective. This implies that dim R® > dim R#, from which it follows that |A| < |B|.
This provides another proof of Corollary 18.2. In fact a stronger statement can be made.
The function fa can be identifed with the row of Z; indexed by @ and therefore Kung’s
theorem implies that the submatrix of Z; with rows indexed by elements of A and columns

by elements of B has linearly independent rows. Hence there is an injection ¢ : A — B
such that p(a) > a, for all ain A.

We start the proof of Theorem 20.1 now. If z and y are elements of L such that z < y

and f is a function on L, we have

o outfE) = D0 ) urty)f(s) =) Ffs) Y prlty)

t€[z,y] t€[z,y] s<t te[zVs,y]

= Z f(s).

s:sVe=y
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Now suppose z ¢ B and let y be z*. Then, if the support of f is contained in A4, the last

term above is zero and so

pL(w,w*)f(w) == Z //“L(taw*)f(t)' (21'1)
z<t<le*
Condition (b) of the theorem implies that 1 must lie in B. By (21.1), if z ¢ B then f(w)
is determined by the value of f on elements ¢ in L such that ¢ > z. It follows by induction
that fis determined by f[B This completes the proof.

We describe a second application of Theorem 21.1, to modular lattices. An element
a in a lattice L is join-irreducible if, whenever  V y = a, either = @ or y = a. In other
words, a is not the join of two smaller elements. The set of all join-irreducible elements of
L will be denoted by J(L). Similarly we may define meet-irreducible elements; the set of
meet-irreducible elements of L will be denoted by M(L). Note 0 € J(L) and 1 € M(L),
hence these subsets are not empty. In a geometric lattice, J(L) consists of 0 and all the
points, while M(L) consists of the hyperplanes and 1.

Assume L is modular with A = J(L) and B = M(L). If = ¢ B, define z* to be the
join of the elements which cover z. Then [z,z*]| is a modular point-lattice, therefore it
is geometric and py(z,z*) # 0. Suppose a is join-irreducible. Since L is modular, the
intervals [a A z,a] and [z,z V a] are isomorphic (by Lemma 13.1). But this implies that
z V a is join-irreducible in [z,z V a], which is a geometric lattice. Therefore z V a must
z, and hence cannot be equal to #*. Thus the conditions of Kung’s theorem are satisfied,
whence we conclude that in a modular lattice |J(L)| < |M(L)|. As L°P is modular if L is
and

J(L?P) = M(L), M(L°®) =J(L)

it follows that |J(L)| = |M(L)| for modular lattices. (This is a famous result of Dilworth’s.)

22. Contraction and Deletion

Let L be a point lattice with point set {2 and suppose p € . We define a function f from

L into itself as follows:
fla) =V{g:qeQ\p, ¢ <a,},

with the understanding that f(0) = 0. It is easy to check that f is order preserving and
that f(z) is either z itself or the unique element covered by z and not in [p,1]. Hence f is
a decreasing map. Note that f is an order preserving and decreasing map from L'\ p into
itself.
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Let M be the poset of fixed points of f. This is a join semi-lattice with a 0- and
l-element. (The latter is usually the 1-element of L.) If M' := M\ {0,1.} then, by
Lemma 8.4, M' is a retract of L'\ p and therefore u(M') = p(L'\ p). On the other hand
by Lemma 14.1 we have

p(L') = w(L"\p) + p(Lcp (L5 )-

Since p is a point, u(L. ) = —1 and therefore

pr(0,1) = p(M') — pr(p,1).

There are two cases to be considered. If the join of the points of L distinct from p is equal
to 1; then pu(M') = pp(0,1). If the join of the points of L distinct from p is not equal
to 1; then, because of the careful way we defined it, M' has a 1-element and pu(M') = 0.
We will call a point p a co-loop if the join h of the points distinct from p is not equal to 1.
(If L is geometric and h # 1 then h is a modular hyperplane.) Since M is a semi-lattice it
gives rise naturally to a lattice that we will denote by L\p. (This is not a particularly good

choice of notation, but will do for now.) We can summarise our conclusions as follows.

22.1 Lemma. Let L be a point lattice and let p be a point of L. Then

—pr(p, 1), if p is a co-loop;
top(0,1) — pr(p,1), otherwise.

:U’L(071) = {

If L is the lattice of contractions of a graph G and e is an edge in G then e is a point
in L and L\ e is the lattice of contractions of the graph G\ e, obtained by deleting e from
(. The interval [e,1] in L is the lattice of contractions of G/e, which is the graph obtained
from G be contracting the edge e. It can be shown that if L is geometric then sois L\ p.

Exercise: Use Lemma 22.1 to prove the broken circuit theorem (Theorem 15.1).

The only significant application of Lemma 22.1 T know of is to geometric lattices. There
are many other classes of point lattices though—the face lattices of convex polytopes, for

example.
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23. Null Designs

Let P be a poset. A function of strength at least £ on P is an function f with values in

> f)=0

z>a

some ring such that such that

for any element a of P with height at most ¢. (In practice we assume that the ring is the
ring of integers.) The most important case is when P is the lattice of all subsets of a set
V, when a function of strength at least ¢ is sometimes called a null ¢-design. Our basic
problem is to find good lower bounds on the support of a function of strength ¢.

If f is any function on P and f is as in the previous section then f has strength at
least ¢ if and only if the support of f contains no elements of height ¢ or less. Let P be a
poset with zero. If b € P let f, be the function obtained by Mébius inversion on [0, 5] to
f. Then fp is a function on [0, 5], which we extend to a function on P by setting f,(z) =0
if # £ b. It is immediate that f, is a function of strength at least ¢ with support contained

in [0,b]. We have two formulas for computing the values of f;.

23.1 Lemma. Let P be a meet semi-lattice. If b € P then
fi(e) = Z f(=).
zAb=c

Proof. We have
fol0) =) e, n)fy) =D wley) Y f(=)

y<b y<b z>y

= Y. uley)f(e)

z,yie<y<z

=> 1 Y. ulew) | f(2)

z \gie<y<e

z/Ab=c

The next result is trivial to verify.

23.2 Lemma. Let f be a function on the poset P with strength at least t and let b be
an element of P in the support of f with minimal height. If ¢ < b then

fole) = (e, b)f (b)- =
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As an immediate corollary of Lemma 23.2, we see that the support of f is bounded

below by
{e < b p(e,8) # 0}

This bound can be improved in two cases. The previous two lemmas combine to yield that

we,D)f(8) = D f(a). (23.1)

z/Ab=c

23.3 Lemma. Let P be a meet semi-lattice and let f be a (0,41)-valued function of
strength t on P. If b is an element of height t in P such that f(b) # 0 then the support

of f has size at least
> lu(e,b)l.
c<b

Proof. If f is (0,41)-valued then |f(b)| > 1 and (23.1) implies that there at least |u(c,b)|
elements z in P such that z A b = ¢ and f(z) # 0. 0

Both the previous lemma and the following theorem seem to have appeared first in

unpublished work of Cho.

23.4 Theorem. Let P be a semi-lattice, let f be a function on P with strength t which
is supported by elements of height t + 1. If b is an element of P with height ¢t + 1 such
that f # 0 then the support of f has size at least

> lule,b)l.

c<b

If equality holds then f is (0,+1)-valued.

Proof. Assume that, amongst all elements of height ¢ + 1 in the support of f, we have
chosen b so that |f(b)| is maximal. Our constraint on the support of f implies that if b

has height t + 1 then f(b) = f£(b). By (23.1),

e = Y E < S

z/Ab=c

z:zAb=c

f(=)#0

The theorem follows at once. O
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It is reasonable to ask which meet semi-lattices we would like to apply the results of
this section to. The first two cases of interest are B(n) and B (n), which are lattices. We
also have the subspace lattice of a polar space. Finally suppose that V is a d-dimensional
vector space over a finite field and U is a subspace of V. Then the set of subspaces of V'
which intersect U in the zero subspace is a meet semi-lattice. Both these last examples
have the property that any interval is the subspace lattice of a projective space, and thus
its Mobius function is known.

For B(n), it is not too hard to prove that a function of strength at least ¢ has support
of size at least 271, This is stronger that we have just proved. But for B,(n) the results of

this section are the strongest known. It is sometimes possible to give a simpler expression

> lule;b)l-

c<b

If P = B(n) and b is a set of size (¢ + 1), this sum equals 2!T1. If P is B,(n) and b has

dimension ¢ 4+ 1 then it equals

for

1

[T +4).

=0
If P = P(n) and b is a partition with exactly n — k cells then our sum equals (n — k)!.
(These claims all follow from [1: Proposition 4.20].)
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Appendix: Posets and Lattices

The material in Aigner [1: Chapter II] provides more than enough background for our
purposes. Crawley and Dilworth’s book [5] is a masterpiece.

Let (P, <) be a poset. We usually use the same symbol to denote both the poset and
its underlying set, i.e, we will usually be lazy and write P rather than (P,<). If a,b € P
and a < b but a # b, we write a < b. If @ < b and there is no element of P strictly between
a and b, we say that a covers b. We define (P°P, <) to be the poset with on the same set of
elements as P, with a < b if and only if 6 < a. We say P°P is obtained from P be reversal.
The interval [a,b] in P consists of all elements = such that a <z <b.

Suppose z, y and a belong to P. We call a the least upper bound of z and y in P if,
whenever z € P and z,y < z, we have a < 2. We denote it by = V y. Similarly we define
the greatest lower bound, and denote it by = A y. For a general poset neither = V y nor
z A y need exist; if they are defined for all pairs # and y then P is a lattice. Note that
every lattice has an underlying partial order, and that this partial order determines the

lattice completely. If A y is defined for all pairs z and y then we may define z V y to be
V{a € P:a>z,y}.

This definition may not work if P is infinite, but such concerns are above us.
A point in a lattice is an element which covers 0. (The term atom may also be met.)

A complement of a in a lattice is an element = such that
aVe=0, ahz=1.

A lattice is complemented if every element has a complement, and is relatively comple-
mented when all intervals in it are complemented. The Boolean lattice B(n) is relatively

complemented, as is the lattice of subspaces of a finite-dimensional vector space.
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