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ABSTRACTThis is an introduction to the M�obius function of a poset. The chief novelty is in theexposition. We show how order-preserving maps from one poset to another can be used torelate their M�obius functions. We derive the basic results on the M�obius function, applyingthem in particular to geometric lattices.



C. D. Godsil1. Posets and MatricesOur �rst four sections provide a fairly standard approach to the M�obius function of aposet. It is based in part on the treatment in Chapter 2 of Lov�asz [12].Let P be a poset with elements p1; : : : ; pn. (Unless we explicitly say otherwise, allposets we consider are �nite. So n is an honest-to-God Kroneckerian integer.) An n � nmatrix B is compatible with P if (B)ij is zero unless pi � pj . It is immediate that set ofall n� n matrices compatible with P is closed under addition, and it is not hard to showthat it is also closed under multiplication. Thus it is an algebra over C, often called theincidence algebra of P . We note that it contains the identity matrix, as well as the Zetamatrix ZP , which has ij-entry equal to one if and only if pi � pj . Any matrix compatiblewith P can be regarded as a function on P �P . This function is non-zero only on orderedpairs (x; y) where x � y, and so we may even view our function as a function on theintervals of P .A simple induction argument shows that, by relabelling he elements of P if needed,we may assume that i � j whenever pi � pj . Then the matrices compatible with B are allupper triangular, and so such a matrix is invertible if and only if its diagonal entries areall non-zero. We have the following interesting result.1.1 Lemma. Let P be a poset. If B is compatible with P and invertible then B�1 iscompatible with P .Proof. Let '(x) be the characteristic polynomial of B. If B is invertible then '(0) 6= 0and so '(x) = x (x) + cfor some polynomial  and non-zero constant c. By the Cayley-Hamilton theorem0 = '(B) = B (B) + cI;whence c�1 (B) = B�1.Since the zeta matrix ZP has all its diagonal entries equal to one, it is invertible. Bythe lemma, (ZP )�1 is compatible with P . The corresponding function on P � P is theM�obius function of P , and is denoted by �P .We can determine �P by inverting the triangular matrix ZP ; this represents no intel-lectual challenge and can be carried out in polynomial time. However, for many interestingposets, properties of the M�obius function can be read from properties of the poset. Thevalues taken by the M�obius function may have combinatorial signi�cance.1



The M�obius Function2. M�obius InversionOur �rst result is known as the principle of M�obius inversion.2.1 Theorem. Let P be a poset and let f and g be functions on P . Thena) g(x) =Py�x f(y) if and only if f(z) =Py �(z; y)g(y).b) g(x) =Py�x f(y) if and only if f(z) =Py �(y; z)g(y).Proof. We may abuse notation and view f and g as column vectors, with entries indexedby P . Then (a) says that g = ZP f ,MP g = fand (b) that g = ZTP f ,MTP g = f:Since MP = Z�1P , no more need be said.Since all diagonal entries of ZP are equal to one, it follows that the same is truefor MP . (One way to convince yourself of this is to recall that the diagonal entries of atriangular matrix are its eigenvalues, and that the eigenvalues of Z�1P are the reciprocalsof the eigenvalues of ZP .) Thus �P (x; x) = 1, for any element x of P . There is a recursiveexpression for the remaining values of �P , equivalent to the back-substitution phase inGaussian elimination.2.2 Lemma. Let a and b be two elements of the poset P . Then�P (a; b) =8><>: 0; if a 6� b;1; if a = b;�Px:x�b �P (a; x); otherwise.Proof. If a 6� b then (MP )ab = 0, since MP is compatible with P . If a = b then�P (a; a) = 1, as noted above. Finally, if a < b then (ZPMP )ab = 0 and therefore0 =Xx�b�P (a; x):Hence �(a; b) = �Pz<b �P (a; x), as required.2



C. D. GodsilThe argument used in the previous proof yields another useful identity. Suppose aand b are elements of the poset P and a < b. Then�P (a; b) = � Xx:a<x�P (x; b):The chain C(n) is the poset with elements 0; : : : ; n, where i � j if i�j is non-negative.Suppose a and b are elements of C(n) and � = �C(n). If a < b then �(a; b) = �1 if b coversa, and is zero otherwise. We will use this in the next section to compute the M�obiusfunction for the poset of divisors of a given integer.3. ProductsThe product of posets P and Q is the poset with elements P �Q, where(x; y) �P�Q (x0; y0)if and only if x �P x0 and y �Q y0:We consider two examples. Let B(n) be the lattice of subsets of an n-element set. It isroutine to verify that B(n) is isomorphic to the product of n copies of B(1), which in turnis isomorphic to C(1). The lattice of divisors of an integer n is also isomorphic to a productof chains. More precisely, if p is prime and n = pr then the lattice of divisors of n is thechain of length r. If n = prm where m and p are coprime then the divisor lattice of nis the product of the divisor lattice of m with the chain of length r. Note that B(n) canbe regarded as the divisor lattice of a square-free integer having exactly n distinct primedivisors.Turning from examples to M�obius functions, we haveZP�Q = ZP 
 ZQ;whence MP�Q =MP 
MQ:As an immediate consequence we have the next result.3



The M�obius Function3.1 Lemma. If P and Q are posets and (x; y) and (x0; y0) are elements of P �Q then�P�Q((x; y); (x0 ; y0)) = �P (x; x0)�Q(y; y0):Suppose that S and T are subsets of some n-element set. Then, taken with ourremarks above, the previous lemma implies that�(S; T ) = � 0; S 6� T ;(�1)jTnSj; otherwise.We now present a classical combinatorial application of the M�obius function. A de-rangement is a permutation with no �xed points. We wish to compute Dn, the number ofderangements of n points.To this end, if S � f1; : : : ; ng let Dn(S) denote the number of permutations off1; : : : ; ng which �x each point in S and no points not in S. (So Dn(;) = Dn.) LetFn(S) denote the number of permutations which �x each point in S. Both Fn(S) andDn(S) are functions on B(n). We haveFn(S) = (n� jSj)!and we will use this to compute Dn.The key observation is that Fn(S) = XT�SDn(T )whence Dn(S) =XT �B(n)(S; T )Fn(T )= XT�S(�1)jTnSj Fn(T )Assuming that jSj = k, we may write the last sum asnX̀=k(n� `)!�n� k`� k�(�1)`�k:and therefore Dn = nX�0 (n� `)!�ǹ�(�1)`= n!�1� 11! + 12! � � � �+ (�1)n 1n!�= �n!e � 4



C. D. Godsil4. Posets and ChainsA chain in a poset is a set of elements, any two of which are comparable. Any �nite chainhas unique minimal and maximal elements. The set of all non-empty chains of the posetP will be denoted by Ch(P ). This set is partially ordered by inclusion, hence is itself aposet. Our �rst task in this section is to describe the relation between chains and theM�obius function. We denote the length of the chain C by `(C). (This is one less than thenumber of elements of C.)For this we need another de�nition. If P is a poset with elements p1; : : : ; pn, let YPbe the n � n matrix with ij-entry equal to one if and only if pi < pj . Thus, if we havearranged things so that ZP is triangular then YP = ZP � I.4.1 Lemma. Let P be a poset with elements p1; : : : ; pn. Then(a) the ij-entry of Y mP is the number of chains of length m in P with least element piand maximal element pj ,(b) the ij-entry of ZmP is a polynomial in m, and(c) the ij-entry of MP is PC2Ch(P )(�1)`(P ).Proof. Given that Y m+1P = Y mP Y , it is easy to prove (a) by induction on m. If m > jP jthen Y mp = 0. Assuming that ZP = I + YP , we then haveZmP = mXk=0�mk�Y kP :Since Y kP = 0 for su�ciently large k and since �mk � is a polynomial in m (of degree k), itfollows that the entries of ZmP are polynomials in m.To prove (c) we observe thatMP = Z�1P = (I + YP )�1 =Xk�0(�1)kY kP :Lemma 4.1(c) is quite important, and it is worth recording it in a slightly di�erentform.4.2 Lemma (P. Hall). If a and b are elements of the poset P then�P (a; b) =X(�1)`(C);where the sum is over all chains C in P with minimal element a and maximal element b.5



The M�obius FunctionWe can always create a new poset from P by reversing the order. The result is aposet, P op say, with the same elements as P such thata �P b, b �Pop a:One immediate consequence of Hall's theorem is that�P (a; b) = �Pop (b; a):This can often be used to derive alternate forms of various identities, e.g., the expressionfor �P we gave directly following Lemma 2.2 can be derived from Lemma 2.2 in this way.Making use of terminology to be explained later, the ab-entry of (ZP )m can be shownto be equal to the number of order preserving mappings from a chain of length m into P .(The corresponding entry of (YP )m counts order preserving injections.)5. Simplicial ComplexesA simplicial complex S on a set 
 is a set of non-empty subsets of 
 such that if A 2 Sand B � A then B 2 S. (Oh well, there are two schools of thought. Some authors chooseto make the empty set an element of any simplicial complex.) The elements of S arecalled faces and the dimension of a face A is jAj � 1. (Yes, the empty set would havedimension �1.) The maximal elements of S are called simplices. We denote the number ofk-dimensional faces of S by fk(S), and call it the k-th level number of the complex. TheEuler characteristic of S is de�ned to beXk�0(�1)kfk:We consider two examples. Let M be a triangulation of a surface and let S be thesimplicial complex whose elements are the sets of vertices contained in some face of M.(To be more prosaic, the elements of S are the vertices, edges and triangles ofM.) In thiscase the Euler characteristic of S is determined by the surface on which M lies.Our second example is Ch(P ). The simplices are the maximal chains in P . If bP isobtained from P by adjoining a new 0- and 1-element then the Euler characteristic ofCh(P ) is equal to 1 + �bP (0; 1):To make matters more confusing, we note that every simplicial complex is a poset. Wewill see later that S and Ch(S) have the same Euler characteristic.6



C. D. Godsil6. DeterminantsThe theory we describe in this section is one of the prettiest parts of the theory of theM�obius function, and was developed independently by Lindstr�om [11] and Wilf [18].6.1 Lemma. Let f be a function de�ned on the poset P and setg(x; y) = Xz�x;y f(z):If G is the matrix with rows and columns indexed by P and xy-entry equal to g(x; y) thendetG =Qx2P f(x).Proof. Let F be the diagonal matrix with rows and columns indexed by P , where (F )xx =f(x). Then G = ZPFZTP and sodetG = det(ZPFZTP ) = (detZP )2 detF = detF:Exercise: give an expression for f in terms of g.If P is a lattice then g(x; y) =Pz�x_y f(z). Thus we may allow g to be any functionde�ned on P , with f given by f(y) =Xz �P (y; z)g(z):Then Lemma 6.1 implies thatdetG = Yx2P Xy2P �P (x; y)g(y): (6:1)We will make signi�cant use of this result later. Further applications appear in thepapers of Lindstr�om and Wilf [11,18] and in [12: Chapter 2].7



The M�obius Function7. Order-Preserving MappingsLet P and Q be posets. A function f from P to Q is order preserving if, whenever x andy belong to P and x � y, we have f(x) � f(y). To consider one example, if P is B(n)and Q if the chain of length n then the mapping from P to Q which sends each set to itscardinality is order preserving. In this section we will see how an order preserving mappingcan be used to establish a relation between �P and �Q.To begin, we introduce the M�obius number of a poset. If P is a poset, let bP be theposet obtained from P by adjoining a new zero-element b0 and a new one-element b1. Henceif x 2 P then b0 <bP x <bP b1:We de�ne the M�obius number �(P ) of P by�(P ) := �bP (b0;b1):It is equal to the number of chains of even length in P , less the number of chains of oddlength. Note that the M�obius number of the empty poset is �1. (Why?)The following simple result will be one of our main tools. It implies that if a poset Phas a 1-element then �(P ) = 0.7.1 Lemma. If the poset P has an element which is comparable with all elements of Pthen �(P ) = 0.Proof. Suppose that a is comnparable with all elements of P . Then there is bijectionbetween the chains in P which contain a and those which do not.If a 2 P and a is conparable with every element of P , we will say that P is a coneover a.More de�nitions. Suppose that P is a poset and a 2 P . By Pa� we denote the set ofelements x of P such that a � x, while Pa< consists of the elements x such that x > a.Similarly we de�ne P�a and P<a. Now we can state the main result of this section. It ismore or less equivalent to Theorem 5.5 in Baklawski [2].7.2 Theorem (Baklawski). Let P and Q be posets and let f be an order-preservingmapping from P to Q. Then�(Q) = �(P ) +Xy2Q �(Qy<)�(f�1(Q�y)):8



C. D. GodsilA poset of the form f�1(Q�y) will be called a �bre of f . Note that is a subset of P .The poset Q�y has a 1-element and so its M�obius number is zero (by Lemma 7.1). If all�bres of f have 1-elements then it follows from Theorem 7.2 that �(P ) = �(Q). A subsetP of a poset S is an ideal if, whenever a 2 S and x � a, we have x 2 P . Any �bre of anorder-preserving mapping is an ideal. It is worth noting that if f is an order-preservingmapping from S to the chain Ch(1) then f�1(0) is an ideal and, conversely, each ideal of Sdetermines an order-preserving mapping into Ch(1). A subset F of S is a �lter if wheneverx � a and a 2 F , we have x 2 F .The following result is a consequence of Theorem 7.2, but we give a direct proof of it.7.3 Lemma. If P is an ideal of the poset S then�(S) = �(P ) + Xy2SnP �(Sy<)�(P�y): (7:1)Proof. We use Lemma 4.2. Suppose that C is a chain in S. If C � P then, in the rightside of �mapa, it is counted by the term �(P ). If C 6� P , let y be the least element ofC nP . Then C n y is the disjoint union of a chain from P�y and a chain from Sy<. Itis easy to check that in this case C is counted, with the correct sign, by the expression�(Sy<)�(P�y).Now we show how to derive Theorem 7.2 from Lemma 7.3. Assume that f is anorder-preserving map from P to Q. Construct a new poset S with element set P [ Q bydeclaring that a � b if either(a) a; b 2 P and a �P b, or(b) a; b 2 Q and a �Q b, or(c) a 2 P , b 2 Q and f(a) �Q b.(This construction is due to Baklawski [2].) It is easy to see that S is a poset and P is anideal in it. Hence we have �(S) = �(P ) + Xy2SnP �(Sy<)�(P�y): (7:2)If y 2 S nP = Q then Sy< = Qy� and Py� = f�1(Q�y), whence we deduce that�(S) = �(P ) +Xy2Q �(Qy<)�(f�1(Q�y)):(This is just a dual version of Lemma 7.3.) 9



The M�obius FunctionSince P is an ideal in S it follows that Qop is an ideal in Sop. Therefore�(S) = �(Sop) = �(Qop) + Xx2SopnQop �(Sopx<)�(Qop�x)= �(Q) +Xx2P �(S<x)�(Qx�):As Qx� = Qf(x)� has a 0-element for all x in P , this implies that �(S) = �(Q). HenceTheorem 7.2 follows.Exercise: Derive Lemma 7.3 from Theorem 7.2.In [16] Walker proves a more general result than Theorem 7.2: he allows the order-preserving mapping f to be an ideal relation between P and Q, i.e., an ideal in P � Q.This has the advantages of being more general, and more symmetric in the roles P and Qplay.8. RetractsA mapping f : P 7! P is decreasing if f(x) � x for all x in P . A subposet Q of S is aretract if there is an order-preserving and decreasing mapping f from S to Q such thatf �Q is the identity, and then we call f a retraction. If is order-preserving and increasingthen we also de�ne the �xed points of f to be a retract of S. Note that if S is constructedfrom P and Q as in the proof of Theorem 7.2 then the mapping which sends a in Q to itselfand a in P to f(a) is a retraction. We saw in the proof of Theorem 7.2 that �(S) = �(Q).More generally we have the following result.8.1 Lemma. If Q is a retract of S then �(Q) = �(S).Proof. Let f be a retraction from S onto Q. If x 2 f�1(Q�y) then f(x) � y. As f(y) � y(indeed f(y) = y) it follows that y is a 1-element in f�1(Q�y), hence each �bre of fhas a 1-element and therefore has M�obius number zero. By Theorem 7.2 we deduce that�(Q) = �(S).8.2 Corollary. If P is a poset then �(P ) = �(Ch(P )).Proof. Each element of P is a chain, therefore P is a subposet of Ch(P ). Consider the mapf from Ch(P ) to P de�ned by setting f(C) equal to max(C). Then f is order-preserving,decreasing and its restriction to P is the identity.A point in a lattice is an element which covers 0.10



C. D. Godsil8.3 Corollary. Let L be a lattice. If 1 is not a join of points then �L(0; 1) = 0.Proof. If x 2 L n 0, de�ne f(x) to be join of the points in L below x. Then f is order-preserving and decreasing and f(f(x)) = f(x) for all x in Ln0. If f(1) 6= 1 then f(1) < 1and F is retract of L0. Hence �(F ) = �(L0) and, since f(1) is a 1-element in F , it followsthat �(L0) = 0.If a and b are elements of a poset P and the least upper bound of a and b is de�ned,we denote it by a _ b.8.4 Lemma. Let P be a poset. If a 2 P and a _ x exists for all x in P then �(P ) = 0.Proof. There are two steps. First, a is a 0-element in Pa� and so �(Pa�) = 0. Second,the map x! x _ a is order preserving and increasing, with Pa� as its set of �xed points.Hence Pa� is a retract of P and therefore �(P ) = 0.8.5 Lemma (Weisner). If L is a lattice and a 2 Ln0 then�L(0; 1) = � Xx_a=1; x<1�L(0; x):Proof. Suppose G := fx 2 L0 : x _ a < 1g:Then a 2 G and a _ x exists for all x in G, so �(G) = 0 by the previous lemma. Since Gis an ideal in L, using Lemma 2.2 we �nd that�(G) = Xx2G[0�L(0; x):We now have�L(0; 1) = �Xx<1�L(0; x) = � Xx_a=1;x<1�L(0; x) � Xx2G[0�L(0; x)= � Xx_a=1;x<1�L(0; x) � �(G)This yields the lemma.In �delete, we will need the next result. The proof is left as an easy exercise.8.6 Lemma. Let f be an order preserving and decreasing mapping of P into itself andlet F be the set of �xed points of f . Then F is a retract of P .11



The M�obius Function9. CutsetsA cutset in a lattice L is a set C which contains at least one element from each maximalchain. Call a non-empty subset S of C a simplex it it has a bound (i.e., a meet or a join)in Lnf0; 1g. The set of all simplices in C forms a simplicial complex, which we denote by�(L;C). By way of example, if L is the lattice of subspaces of a �nite-dimensional vectorspace V then the set of all 1-dimensional vector spaces is a cutset, C say. A subset of Clies in �(L;C) if and only if its join is not the entire space, i.e., if and only if it is not aspanning set in V . For any lattice L, let L0 denote the poset obtained from L by deletingits 0- and 1-element. Thus �(L0) = �L(0; 1);which provides one reason why we need L0.9.1 Theorem. If L is a lattice and C is a cutset then �(L0) = �(�(L;C)).Proof. Let �(L;C) be abbreviated to �. If B is a chain in L0, de�ne f(B) byf(B) := fx 2 C : x [B 2 Ch(L0)g:(In other words, f(B) is the set of all elements of C which are comparable with eachelement of B.) Since C is a cutset, f(B) 6= ; and it follows that f is an order-preservingmapping from Ch(L0) to �op. Hence we may prove the theorem by showing that all �bresof f have M�obius number zero.Let S be an element of �op, and let F denote the �bre f�1(�op�S ). If a chain D of Llies in this �bre then S � f(D). If x 2 D then x is comparable with every element of S.Hence ^S � x � _S:Since S 2 �(L;C), either ^S or _S lies in L0. Assume _S 2 L0, and denote it by z. Thenfor any element x of D we have x � z, whence D [ z 2 Ch(L0). Further every element ofS is comparable with all elements of D [ z, thus D [ z belongs to F .Now z is a chain in L0 and S � f(z). Hence z 2 F and z [D lies in F for all elementsof F . By Lemma 8.4 it follows that F has M�obius number zero. A similar argument yieldsthe same conclusion when if ^S 2 L0. Hence the theorem holds.We can manipulate this theorem to obtain a more explicit formula for �(L0).12



C. D. Godsil9.2 Corollary. Let C be a cutset in the lattice L, and let ak be the number of k-subsetsof C with join 1 and meet 0. Then �L(0; 1) =PjCjk=0(�1)kak.Proof. If S 2 � then the interval b��S is a Boolean lattice and so�b�(0; S) = (�1)jSj;from we �nd, using Lemma 2.2, that�(�) = �b�(0; 1) = � XS2b�n1�b�(0; S) = 1 +XS2�(�1)jSj: (9:1)De�ne ak to be the number of k-subsets S of C such that ^S = 0 and _S = 1. Then,when 1 � k � jCj, the number of k-subsets of � is equal to�jCjk �� akNow, assuming jCj > 0 (which is the only interesting case)0 = XS�C; S2�(�1)jSj + XS�C; S =2�;(�1)jSj:From (9.1) we see that the �rst sum here is equal to �(�)�1, while the second sum equals1 +Pk�0(�1)kak. The result follows.We consider applications of Corollary 9.2. Suppose that L is the lattice of subspacesof a �nite-dimensional vector space over some �nite �eld, and let C be the set of all 1-dimensional subspaces. Then C is a cutset and ak is the number of spanning subsets of Cwith cardinality k.For another example, let G be a graph with vertex set V and let L be the set of allpartitions of V such that each cell induces a connected subgraph of G. Then the join ofany two elements of L lies in L and hence L is a lattice, but not in general a sub-latticeof the lattice of all partitions of V . Let C be the set of all partitions in L with one cell ofsize two and all others singletons. (So the cell of size two is an edge of G.) Then C is acutset in L and ak is the number of subgraphs of G with k edges and the same number ofconnected components as G.Rota [14] proved Theorem 9.1 under the assumption that C was a cutset and anantichain. Walker proves an even more general result than Theorem 9.2 in [16], our proofis based on his. (Our task is slightly more complicated, in that Walker can use idealrelations where we must use order-preserving functions.)13



The M�obius Function10. ComplementsThe main result in this section is a slight weakening of Theorem 8.1 from Walker [16]. Tobegin, we derive a technical lemma.10.1 Lemma. Let L be a lattice and suppose s 2 L0. Let G be the set of all elements xof L0 such that x _ s < 1. If �(G�y) 6= 0 then y is a complement to s.Proof. Note that s 2 G. We show that if y is not a complement to s in L then �(G�y) = 0.If y 2 G then G�y has a 1-element and so its M�obius number is zero. If y =2 G and y^s = 0then y is a complement to S. Suppose y =2 G and y ^ s 6= 0. If z 2 G�y thez _ (y ^ s) _ s = z _ s < 1:Hence z _ (y ^ s) 2 G and therefore z 2 G�y . Thus G�y is a cone over y ^ s and so hasM�obius number zero. The lemma follows.10.2 Theorem (Walker [16]). Let L be a lattice, let a be an element of L0 and let a?be the set of all complements of a. Then �(L0 na?) = 0.Proof. Let M denote L0na? and let G be the subposet of L0 consisting of all elements x ofM such that x_a < 1. Then G is an ideal of L0 and contains a. The �bres of the inclusionmapping of G in M are the sets G�y, where y in M . By the previous lemma these �bresall have M�obius number zero, whence �(M) = �(G). Since a 2 G and a _ x exists for allx in G, we see by Lemma 8.4 that �(G) = 0. It follows that �(M) = 0, as required.Exercise: Let s be an element of the lattices L. Let S be a subset of L0 containing a?such that if x 2 S then x _ a = 1. Show that �(L0 nS) = 0.10.3 Corollary. If L is a lattice and �L(0; 1) 6= 0 then L is complemented.Proof. If some element of L has no complement then the theorem applies, with S = ;.14



C. D. Godsil11. TopologyThere is more going on than we have yet admitted. An order-preserving map f from aposet P to a poset Q induces an order-preserving map from Ch(P ) to Ch(Q). But Ch(P )and Ch(Q) are simplicial complexes and thus may be viewed as topological spaces. Themap induced by f is then a continuous map.Let X and Y be topological spaces. Two continuous functions f and g from X to Yare homotopic if there is a continuous function� : X � [0; 1]! Ysuch that �(x; 0) = f(x) and �(x; 1) for all x in X. We say two topological spaces X andY are homotopic if there are continuous functions f : X ! Y and g : Y ! X such thatg �f and f �g are homotopic to the respective identity maps on X and Y . It can be shownthat homotopy is an equivalance relation on topological spaces. Any convex subset of Rnis homotopic to a point, while two homotopic surfaces in R3 are homeomorphic. We sayposets P and Q are homotopic if Ch(P ) and Ch(Q) are.For our purposes, the following is important.11.1 Lemma. If P and Q are posets such that Ch(P ) is homotopic to Ch(Q) then�(P ) = �(Q).Proof. The M�obius number of P is determined by the Euler characteristic of Ch(P ).Homotopic simplicial complexes have the same Euler characteristic.A topological space is contractible if it is homotopic to a point. One class of con-tractible simplicial complexes are cones. A simplicial complex S is a cone if it contains anelement v such that v _ x is de�ned for all elements x of S. It is not hard to see that ifthe poset P is a cone then Ch(P ) is a cone as a simplicial complex (and as a poset). Wewill say a poset P is contractible if Ch(P ) is. We have the following important result.11.2 Theorem (Quillen [13]). Let P and Q be posets and let f be an order-preservingmap from P to Q. If f�1(q) is contractible for any element q of Q then P and Q arehomotopic.Note that in all cases where we have proved that the �bres of some order-preservingmap have M�obius number zero, we have actually shown that the �bres are cones and hencecontractible. Thus if L is a lattice, p 2 L and S is the set of complements of s in L thenL0 nS is contractible. 15



The M�obius FunctionIf P and Q are posets, it makes sense to talk about two order-preserving maps f andg from P to Q as being homotopic. No combinatorial characterisation of what this meansis known. However if f(x) � g(x) for all x in P then it is easy to show that f is homotopicto g.We may view QP as a poset, where f � g for two elements f and g of QP if f(x) � g(x)for all x in P . The poset QP is the disjoint union of a number of connected components; twomaps in the same component will be homotopic. The constant map taking each elementof P to a �xed element of Q is always order-preserving, so jQP j � jQj.It turns out that lying in the same component of QP is not a good approximation tothe topological notion of homotopy, for reasons we now discuss.Suppose that a is an element of P which covers a unique element b of P . De�ne amap 'a : P ! P naby setting 'a(x) equal to x if x 6= a and 'a(a) = b. Call 'a a deletion. Each �bre of theinclusion mapping of P n a into P has a 1-element. (It is not hard to see that P n a is aretract of P .)Now suppose that f is an order-preserving map of P into itself and f(x) � x for allelements x of P . Let a be an element of P that is minimal, subject to the condition thatf(a) < a. If b < a then, by our choice of a, we have f(b) = b. On the other hand, f isorder-preserving and so f(b) � f(a). Hence if b < a then f(b) � f(a) and we have shownthat f(a) is the unique element of P covered by a.Exercise: Show that any order-preserving and decreasing map from P into itself is acomposition of deletions.It is possible that, by applying a sequence of deletions, we might able to map P ontothe poset with exactly one element. In this case we say that P is dismantlable, and P ishomotopic to a 1-element poset, i.e., it is contractible.Exercise: Let P be a poset. The following are equivalent:(a) P is dismantlable,(b) PX has exactly one component for any poset X and(c) PP has exactly one component. 16



C. D. Godsil12. Geometric LatticesThe M�obius function is particularly useful when applied to geometric lattices. This sectionintroduces these lattices brie
y. There are two parts to their de�nition.A lattice is a point-lattice if every non-zero element can be expressed as the join ofpoints.A lattice is semimodular if, whenever a and b are elements such that if a covers a ^ bthen b is covered by a _ b. There are a number of equivalent de�nitions, which we willdiscuss shortly. What we have just called a semimodular lattice is more strictly an uppersemimodular lattice. A lattice which is dual to a semimodular lattice is lower semimodular.A lattice is geometric if it is a semimodular point lattice. One class of examples arisesas follows. Let X be a set of points in a �nite-dimensional projective space. A 
at in X isany subset of X of the form H \X, where H is a projective subspace. The lattice of 
atsof X is geometric.Exercise: Show that P(n), the lattice of all partitions of an n-set, is geometric.The points of a geometric lattice may also be referred to as atoms. A maximal 
at iscalled a hyperplane.Exercise: Show that each element in a geometric lattice is the meet of a set of hyperplanes.We will use the result of the next exercise several times.Exercise: Show that any interval in a geometric lattice is geometric.For the remainder of this section, we discuss some of the properties of semimodularlattices.12.1 Lemma. A lattice L is semimodular if a _ b covers both a and b whenever a andb cover a ^ b.A poset P is ranked if any two maximal chains joining the same pair of elementshave the same length. (Equivalently, we may say that P satisi�es the Jordan-Dedekindcondition.) If P is ranked and a 2 P then the maximum length of a chain ending on ais the rank of a, which we denote by r(a). If P is a ranked poset and b covers a thenr(b) = r(a) + 1. 17



The M�obius Function12.2 Lemma. Let L be a lattice with rank function r. Then L is semimodular if andonly if r(a ^ b) + r(a _ b) � r(a) + r(b) (12:1)for all elements a and b of L.We call (12.1) the semimodular identity. A ranked lattice is modular if equality holdsin the semimodular identity for all pairs of elements a and b. The lattice of subspaces ofa vector space is modular, as are the Boolean lattices.We will need the next result in �geo-moeb.12.3 Lemma. Any point in a geometric lattice has a complement.Proof. Let L be geometric and let p be a point in L. Let a be an element of L which ismaximal, subject to the condition that a ^ p = 0. If a _ p = 1 then a is a complement of pand we are �nished.Otherwise a _ p < 1 and, since 1 is join of points, it follows that there is point q of Lsuch that q 6� a _ p. Now there are two possibilities. If p � a _ q thenp _ a � q _ a:But p and q cover 0, hence both a_p and a_q cover a. This implies that r(a_p) = r(a_q)and therefore q � a _ p, which contradicts our choice of q.If p 6� a _ q then p ^ (a _ q) = 0. Since q 6� a _ p, it follows that a < a _ q, and thuswe have a contradiction to our choice of a.For further background on geometric lattices, see [1, 5].13. Modular ElementsAn element a in a geometric lattice L is modular if the semimodular identity holds for allpairs (a; b), i.e., r(a ^ b) + r(a _ b) = r(a) + r(b)for all elements b of L. Equivalently a is modular if the set of all complements of L forman antichain.Exercise: Prove that an element a in a geometric lattice is modular if and only if itscomplements form an antichain. 18



C. D. GodsilAny point in a geometric lattice L is modular. If a is a point of L and b 2 L then,since a covers 0, either a ^ b = 0 or a ^ b = a. In the �rst caser(x) + 1 = r(x) + r(a) � r(x ^ a) + r(x _ a) = r(x _ a) > r(x);while in the second r(x) + r(a) � r(x ^ a) + r(x _ a) = r(a) + r(x):In both cases we have equality in the semimodular inequality. The fact that points aremodular is not always useful; it may be better to have modular elements of higher rank.We note two examples.Let Bq(n) denote the lattice of subspaces of an n-dimensional vector space over a �eldwith q elements. This is a modular lattice, and thus all its elements are modular. If P(n)is the lattice of all partitions of f1; : : : ; ng then the partition with cells f1; : : : ; n� 1g andfng is a modular hyperplane.13.1 Lemma. Let a and b be elements in the geometric lattice L. If a is modular thenthe map x 7! x _ a is an isomorphism from [a ^ b; a] to [b; a _ b].Proof. If x 2 [a ^ b; a] then the mapping x 7! b ^ x is order-preserving, as is the mappingy 7! a _ y when y 2 [a; a _ b]. Hence the composite map  de�ned by (x) = a ^ (x _ b)is an order-preserving map from [a ^ b; a] into itself. Since a ^ (x _ b) � x, it is alsoincreasing.Suppose c 2 [a ^ b; a]. Since a ^ b = c ^ b, the semimodular identity implies thatr(c _ b) � r(b) = r(c) � r(a ^ b):Applying the semimodular identity to the pair (a;_b) and noting that (a _ c) _ b = b _ a,we get r(a _ b)� r(c _ b) � r(a) � r(a ^ (c _ b)):Summing the last two inequalities yields thatr(a _ b) � r(b) � r(a) � r(a ^ b)� (r(a ^ (c _ b)) � r(c)):19



The M�obius FunctionAs a is modular r(a _ b) � r(b) = r(a) � r(a ^ b)and, given the previous inequality, we deduce thatr(a ^ (c _ b)) � r(c):However c � a^ (c_b) and therefore we have proved that c = a^ (c_b). So if a is modularthen  is the identity mapping and the intervals [a ^ b; a] and [b; a _ b] are isomorphic.14. M�obius Functions and Geometric LatticesOur �rst result will enable us to compute the M�obius function on intervals in Bq(n) andP(n). We need one preliminary result.14.1 Lemma. If C is an antichain in the poset P then�(P ) = �(P nC) +Xx2C �(Pa<)�(P<a):Proof. Apply Theorem 7.2 with f the inclusion mapping of P nC into P . The details areleft as an exercise.This lemma is useful even when C is a single element of P .14.2 Theorem. Suppose a is a modular element of the geometric lattice L, not 0 or 1,and let a? be the set of all complements of a in L. Then�L(0; 1) = �L(0; a) Xx2a? �L(0; x):Proof. Let P be L0 and let a? be the set of all complements to a in L. Then a? is anantichain and so, using Lemma 14.1, we get�(L0) = �(L0 na?) + Xx2a? �(L0x<)�(L0<x):By Theorem 10.2 we have that �(L0na?) = 0. By Lemma 13.1, if x 2 a? then the intervals[x ^ a; a] = [0; a] and [x; x _ a] = [x; 1] are isomorphic, hence�(L0x<) = �L(x; 1) = �L(0; a):As �(L0<x) = �L(0; x), the theorem follows. 20



C. D. Godsil14.3 Corollary. If L is a geometric lattice and a and b are elements of L such that a � bthen (�1)r(b)�r(a)�L(a; b) > 0.Proof. Since any interval of a geometric lattice is geometric, it su�ces to assume thata = 0 and b = 1. Let p be a point in L. Then p is modular and all its complements arehyperplanes. (It has complements by Lemma 12.3.) By the theorem�L(0; 1) = � Xx2p? �(0; x):We may assume inductively that �(0; x) is non-zero and has the same sign for all x in p?,whence the result follows.Next we compute the M�obius function on Bq(n) using Theorem 14.2. Let h be ahyperplane in Bq(n). Then h is modular and so, if L = Bq(n),�L(0; 1) = �L(0; h) Xp2h? �L(0; p):Since h is modular, all its complements are points. Consequently �L(0; p) = �1. Thenumber of points in h? is qn�1 and therefore�L(0; 1) = �qn�1�L(0; h):As �L(0; h) = �Bq(n�1)(0; 1), a trivial induction argument yields that�Bq(n)(0; 1) = (�1)nq(n2):We can also compute the M�obius function for P(n). Here h = ff1g; f2; : : : ; ngg is amodular hyperplane whose complements are the partitions with one non-trivial cell, of theform f1; ig. Hence �P(n)(0; 1) = �(n� 1)�P(n�1)(0; 1):Once again a simple induction argument yields that�P(n)(0; 1) = (�1)n�1(n � 1)!:21



The M�obius Function15. Broken CircuitsThe main result of this section shows that if L is a geometric lattice then (�1)r�L(0; 1) isnot only non-negative, it counts something.Let L be a geometric lattice and let S be the set of all points in it. Since L is apoint-lattice, we can identify each element of L with the set of points below it in L. Wecan extend the rank function of L to a function on subsets of S by de�ning r(T ) to ber(_T ), for any subset T of S. We have(1) r(;) = 0,(2) if p 2 S then r(p) = 1,(3) if T and U are subsets of S and T � U then r(T ) � r(U) and(4) for any pair of subsets T and U of S,r(T ) + r(U) � r(T [ U) + r(T \ U):We de�ne a subset T of S to be independent if r(T ) = jT j, all other subsets are dependent.The set S, together with its collection of independent subsets, is a matroid. A circuit is aminimal dependent subset of S. A 
at is a subset, F say, of S such that if p 2 S nF thenr(p [ F ) > r(F ). Thus the 
ats correspond precisely to the elements of L. We will not bedoing any matroid theory, but we will need to refer to the circuits and independent sets ofa geometric lattice.The independent sets of a geometric lattice form a simplicial complex|every subset ofan independent set is independent. We are now going to de�ne the broken circuit complex,which is a subcomplex of the independent set complex. Assume L is a geometric latticeand let E be a total order on its points. A set of points is a broken circuit if it can beobtained from some circuit by deleting its least element, relative to E. The broken circuitcomplex Br(L) has as its elements all independent sets which do not contain a brokencircuit. Since a set of points which contains no broken circuit cannot contain a circuit, theelements of Br(L) are all independent sets. If T 2 Br(L) then _T contains no point lessthan the least element of T . (If p is a point in _T and p =2 T then there is a circuit p [ S,for some subset S of T .)15.1 Theorem (Whitney [17]). Let L be a geometric lattice and let E be a total orderon its points. Then the number of independent sets of k points which contain no brokencircuit is Pa:r(a)=k(�1)k�L(0; a). 22



C. D. GodsilProof. Any independent set of size k lies in a unique element of L with height k. Hence itsu�ces to prove that (�1)r�L(0; 1) is the number of independent sets of r atoms containingno broken circuits, where r is the height of L. We prove this by induction on r.Let p1 be the least point of L and let b be a complement of p in L. Then b has heightr�1. LetM the geometric lattice formed by the interval [0; b] and let Br(M) be the brokencircuit complex of M , relative to the ordering of the points of M obtained by restrictionof E. We claim that T is an independent set of r � 1 points of M then T [ p1 2 Br(L) ifand only if T 2 Br(M).Suppose �rst that T 2 Br(M). If T [ p1 contains a broken circuit C from L theneither C � T and so C is a broken circuit in M , or C [ p1 is a circuit in L and thereforep1 2 _C � b:Conversely, let S be an r-subset in Br(L). Then all points of L lie in _S, and thereforep1 [S is dependent. Since S is independent any circuit in p1 [S must contain p1, whenceS contains a broken circuit.By induction, the number of (r � 1)-subsets of Br(M) is equal to(�1)r�1�M (0; 1) = (�1)r�1�L(0; b)and therefore the number of r-sets in Br(L) is equal to(�1)r�1 Xb2p?1 �L(0; b):Since �L(0; p1) = �1, by Theorem 13.2 this last sum is equal to (�1)r�L(0; 1), as re-quired.Exercise: A simplicial complex is pure if all its maximal elements have the same height.Show that any broken circuit complex is pure.
23



The M�obius Function16. The Partition LatticeIn this section we apply Theorem 15.1 to the partition lattice P(n). We identify the pointsof P(n) with the edge set of Kn and we let E denote the lexicographic order on the points.An independent set is then a forest, i.e., an acyclic subgraph of Kn. If i < j < k thenthe edges ik and jk form a broken circuit. It follows that a forest F in E(Kn) containsno broken circuit if and only if each component of F has the property that the vertices inany path going away from the least vertex form an increasing sequence. (This conditionis equivalent to containing no \broken triangle", the details are up to you.) Consequentlythe forests in Kn containing no broken circuits can be viewed as non-increasing functionson the set f1; : : : ; ng, the number of components in the forest is equal to the number of�xed points of the function.Since 1 is a �xed point of any non-increasing function, the number of such functionswith exactly one �xed point is (n� 1)!. This shows that�P(n)(0; 1) = (�1)n�1(n � 1)!:Fortunately this is consistent with our earlier result. The problem which remains is todetermine the number of non-increasing functions with exactly k �xed points when k > 1.I claim that this is equal to the number of permutations of f1; : : : ; ng with exactly k cycles.The proof of this is indirect. The �rst step is an encoding of a permutation in cyclicform as a sequence. Start with a permutation in cyclic form, with any 1-element cycleswritten out explicitly. (To give an extreme case, the identity permutation in cyclic form isusually written as (1), but we must write it as (1)(2) � � � (n).) Now write each cycle so thatthe largest element is �rst (so if n = 4 then (123) is now (312)(4)). Next, order the cyclesso that the �rst elements form an increasing sequence. Finally remove the parentheses.You are invited to prove that we have now de�ned a bijection from Sym(n) onto itself.Denote the image of a permutation � under this bijection by b�.What is the relation between the cycles of � and b�? If � 2 Sym(n), de�ne j to bea record if �(i) < �(j) whenever i < j. Our claim (well it is my claim, but you have toprove it) is that the number of cycles in � is equal to the number of records of b�.But this only completes the �rst step; we need to convert b� into a non-decreasingfunction. This is easy. If � 2 Sym(n), let f� be de�ned byf�(j) = jfi : i < ��1(j); �(i) � jgjAgain, you must convince yourself that � can be reconstructed from f�. Note howeverthat the �xed points of f� are precisely the records of �. Hence the number of �xed pointsof fb� is equal to the number of cycles of �. 24



C. D. GodsilA forest in Kn with exactly n � d edges has exactly d components. So we haveshown that the number of forests with k edges which contain no broken circuit is equalto the number of permutations of f1; : : : ; ng with exactly n� k cycles. This number hasno nice explicit form, but it is known to be equal to (�1)k times the coe�cient of xk inx(x � 1) � � � (x � n + 1). The coe�cient itself is a Stirling number of the �rst kind. (Forbackground see, e.g., [15: Chapter 1].)17. Contractions and ColouringsWe consider a family of geometric lattices including P(n) as a special case. Let G bea graph with vertex set V and edge set E. A contraction of G will be de�ned to be apartition of V such that the subgraph induced by any cell is connected. Equivalently wemay view them as subsets S of E with the property that, for any edge f 2 E nS, thenumber of components of S [ f is less than the number of components of S. We will bea question and denote the set of all contractions of G by LG. Every contraction of G is apartition of V and so, if n = jV j, it can viewed as an element of P(n). Further the join ofany two contractions is a contraction, and so the contractions of G form a sub-semilatticeof P(n). As we remark in the Appendix, any join-semilattice with zero can be turned intoa lattice|in this case we de�ne the meet of contractions � and � by� ^ � := _f
 2 LG : 
 � �; �g:Exercise: Show that LG, as de�ned above is a geometric lattice, and that if S is a set ofpoints of LG then n� r(S) is the number of components of S.The points of LG are precisely the edges of G. The independent sets of points areprecisely the (edge-sets of the) forests in G, and the circuit are the circuits. The mainresult of this section will be an expression for the number of proper k-colourings of G interms of the M�obius function of LG.A proper k-colouring of G is a mapping f : V ! f1; : : : ; kg such that f(u) 6= f(v)whenver uv is an edge. If f is a mapping from V to f1; : : : ; kg, de�ne the set K(f) byK(f) := fuv 2 E : f(u) = f(v)g:Note that the components of K(f) form a contraction and that f is a proper colouringof G if and only if K(f) = ;. Let F=(A; k) denote the number of mappings f from Vto f1; : : : ; kg such that K(f) = A and let F�(A; k) be the number of mappings from V25



The M�obius Functionto f1; : : : ; kg such that K(f) � A. Since B � K(f) if and only if f is constant on thecomponents of B, we have F�(B; k) = kn�r(B):As we also have F�(B; k) = XA�B F=(A; k);by M�obius inversion we �nd thatF=(A; k) = XB:B�A�LG(A;B)kn�r(B):Thus we have proved the following.17.1 Theorem. The number of proper k-colourings of the graph G is equal toXi 0@XjAj=i�LG(0; A)1A kn�i:In other words Xi 0@XjAj=i�LG(0; A)1A xn�iis the chromatic polynomial of G. We have shown that the coe�cients of the chromaticpolynomial are the level numbers of the broken circuit complex of G. (Perhaps we shouldsay of LG.)Let 
 be a set of points in the projective space PG(d; q). Then, as we noted earlier,the intersections of S with the hyperplanes of PG(d; q) are the elements of a geometriclattice. The rank of a subset of 
 is equal to the dimension of the space spanned by it. Weare interested in counting the number of hyperplanes of PG(n; q) that contain no point of
. (Well, I am interested. You may have to fake it.)The points of 
 can be represented by vectors x1; : : : ; xn in V (d + 1; q). If a 2V (d + 1; q) then the vectors xi such that aTxi = 0 are a hyperplane in the geometriclattice L determined by 
. Denote the hyperplane corresponding to the vector a by h(a).If S � 
, de�ne f(S) to be the number of vectors a such that h(a) = S and let g(S) bethe number of vectors a such that h(a) � S. Then g(S) = qd�r(S) and consequentlyf(S) =XT �L(S; T )qd�r(T ):26



C. D. GodsilTherefore f(;) =XT �L(0; T )qd�r(T ) =Xk�00@ Xr(T )=k �L(0; T )1A qd�k:This is a polynomial in q, which we will denote by FL(q). It is called the characteristicpolynomial of L.Exercise: Show that the number of t-tuples of vectors a1; : : : ; at such that \ih(ai) = ; isequal to FL(qt).There is coding theory view of all this, which is both interesting and useful. Supposethat we arrange the vectors x1; : : : ; xn given above into a (d + 1)� n matrix, G say. Therow space of G is a linear code over the �eld GF (q). If a 2 V then aTG is a code word andthe weight of this word is the number of elements of 
 not in h(a). Thus the hyperplanesof the lattice of 
ats of 
 correspond to the code words with minimal non-zero weight.Further, there is a vector a such that h(a) is disjoint from 
 if and only if there is a codeword with weight n, and the number of such codewords is equal to f(;).18. Points and HyperplanesThe main result in this section is that a geometric lattice always has at least as manyhyperplanes as points. The lattice of subspaces of a �nite vector space shows that equalitycan occur. The proof makes use of another interesting result.18.1 Theorem (Dowling and Wilson [7]). Let L be a �nite lattice. If �L(p; 1) 6= 0for all elements p of L then there is a permutation � of the elements of L such thatq _ �(q) = 1 for all q in L.Proof. We use Lemma 6.1. Let g be the real-valued function on L de�ned byg(p) = � 1 if p = 1;0; otherwise.Let G be the matrix with rows and columns indexed by the elements of L and with(G)pq = g(p_ q). We can complete the proof by showing that detG 6= 0. By Equation (1)from �dets we have detG =Yx Xy �L(x; y)g(y) =Yx �L(x; 1)and, by our hypothesis on L, it follows that detH 6= 0.27



The M�obius FunctionAny permutation � satisfying the condition of Theorem 18.1 must map 0 to 1. Henceif L is geometric and p is a point of L then �(p) must be a hyperplane. Therefore �determines an injection of the points of L into its hyperplanes, and so the number ofhyperplanes in a geometric lattice is at least as large as the number of points. Actually asomewhat stronger statement can be made.If L is a lattice let Wk denote the number of elements in L with height k. If Lis geometric with height n then W0 = Wn = 1, while W1 is the number of points andWn�1 is the number of hyperplanes. We have just seen that Theorem 18.1 implies thatW1 �Wn�1. (The numbersWi are sometimes referred to as the Whitney numbers of the�rst kind.)18.2 Corollary. If L is a geometric lattice with rank d thenW0 + � � �+Wk �Wd�k + � � �+Wd:Proof. Assume L is geometric and p _ �(p) = 1 for all elements p of L. Sincer(p _ �(p)) + r(p ^ �(p)) � r(p) + r(�(p))we see that if r(p) + r(�(p)) � d for all p. So if r(p) � k then r(�(p)) � d� k.A well known conjecture asserts that for a geometric lattice the numbers Wi form aunimodal sequence. The previous corollary is probably the best evidence for this conjec-ture. As stated, Corollary 18.2 is due to Dowling and Wilson [7], but the most interestingcase is when k = 1, where the result was �rst established by Baster�eld and Kelly [3],and independently by C. Greene [8]. If equality holds in Corollary 18.2 then Dowling andWilson [7] prove that L must be modular; in the case k = 1 this was also observed in [3,8]. We take this further in �pt-hyps.If p is a point in L then �(P ) must be a complement to p. (This can be viewed asa consequence of the fact that points are modular elements.) Thus it is natural to ask ifthere could be a permutation � such that �(p) is a complement of p, for all elements p inthe lattice. This can be achieved under suitable conditions.18.3 Theorem (Dowling [6]). Let L be a lattice such that �L(0; p)�L(p; 1) 6= 0, forany element p. Then there is a permutation � of L such that �(p) is a complement of p,for all p in L.Proof. Let G(p) denote the set of all elements x of L0 such that x _ p < 1. Let M be thematrix with rows and columns indexed by L, such that(M)pq := �(G(p)�q ):28



C. D. GodsilBy Lemma 10.1, the pq-entry of M is zero if p and q are not complements, so we can provethe theorem by showing that detM 6= 0. (Perhaps it is worth noting that M is probablynot symmetric.)If x 2 L0 then p 6= 0 and so Pz�p �L(0; z) = 0. Hence0 = Xz�q; z_p<1 �L(0; z) + Xz�q; z_p=1�L(0; z)= �(G(p)�q) + Xz�q; z_p=1�L(0; z):Therefore �(G(p)�q) = � Xz�q;z_p=1 �L(0; z):If H denotes the matrix we used in the proof of Theorem 18.1 and D is the diagonal matrixwith (D)pp = �L(0; p) then M = �ZTDH;from which the theorem follows immediately.Unfortunately Theorem 18.3 does not seem to lead to any strengthening of Corol-lary 18.2.19. Modular LatticesWe have seen that if L is geometric with height n thenW1 �Wn�1. It is reasonable to askwhat can be said if equality holds. As we will see in the next section, the answer is that Lmust be modular. For this to make sense we must �rst de�ne modular lattices themselves.We start with an identity due to Dedekind, which holds in any lattice L. Supposethat a, b and c are elements of L. Then a _ (b ^ c) lies below both a _ b and a _ c. Hencea _ (b ^ c) � (a _ b) ^ (a _ c) and so we see we have proved that, if a � c thena _ (b ^ c) � (a _ b) ^ c: (19:1)This is Dedekind's identity. A lattice is modular if equality holds in Dedekind's identityfor all a, b and c in L with a � b. It is not hard to verify that any sublattice of a modularlattice is modular, and that products of modular lattices are modular. The dual of amodular lattice is modular. All modular lattices are ranked, but the proof of this is left toyou as well. 29



The M�obius FunctionExercise: Show that a lattice is modular if and only if it is both upper and lower semi-modular.A word of warning here. We de�ned modular elements of geometric lattices. Notethough that even if a is a modular element of L, neither [0; a] nor [a; 1] need be modular.Our next lemma shows that we can test if a lattice is modular without looking at alltriples a, b and c where a � c.19.1 Lemma. A lattice L is modular if and only if a_ (b^ c) = c whenever c 2 [a; a_ b].Proof. Maybe this will be left for you too.We now turn to characterisations of modular geometric lattices.19.2 Lemma. Let L be a geometric lattice. An element b of L is modular if and only ifa _ (b ^ c) = (a _ b) ^ c whenever a � c.Proof. Suppose that a � c and let w and w0 respectively denote (a _ b) ^ c and a _ (b ^ c).Note that w0 � w, by Dedekind's identity. We haveb ^ c � b ^ (a _ (b ^ c)) � b ^ (b ^ c) = b ^ cand b _ a � b _ ((a _ b) ^ c) � b _ (b _ a);therefore b ^w0 = b ^ c and b _w = b _ a. It is even easier to verify that b ^w = b ^ c andb _ w0 = b _ a. So if b is modular we have bothr(w) + r(b) = r(b _ w) + r(b ^ w) = r(b _ a) + r(b ^ c)and r(w0) + r(b) = r(b _ w0) + r(b ^ w0) = r(b _ a) + r(b ^ c);whence r(w) = r(w0). As w � w0, this implies that w = w0.Now suppose that a _ (b ^ c) = (a _ b) ^ c whenever a � c. We show that no twocomplements of b are comparable. But if a and c are complements to b and a � b thena = a _ 0 = a _ (b ^ c) = (a _ b) ^ c = 1 ^ c = c:Hence the complements of b form an antichain, and so b is a modular element.30



C. D. Godsil19.3 Corollary. A geometric lattice is modular if and only if each element is modular.19.4 Lemma. A geometric lattice is modular if and only if each hyperplane is a modularelement of L.Proof. Suppose c 2 L and c 6� h. Then h _ c = 1 and h ^ c is a hyperplane in the interval[0; c]. We �rst show that if h is modular in L then h ^ c is modular in [0; c]. If h is ahyperplane and a 6� h thenr(h) + r(a) � r(h _ a) + r(h ^ a) = r(1) + r(h ^ a):Hence h is modular if and only if r(a)� r(h^ a) = r(1)� r(h) = 1, i.e., if and only if a^his covered by a, for any a in L such that a 6� h. If b � a then (h ^ a) ^ b = h ^ b. If h ismodular then b must cover h ^ b, whence (h ^ a) ^ b is covered by b. It follows that h ^ ais a modular hyperplane in [0; a].Now suppose that L is a geometric lattice in which every hyperplane is modular. Weprove L is modular by induction on its height. If a < 1 then all hyperplanes in [a; 1] aremodular. If a > 0 then, by the previous paragraph, all hyperplanes in [0; a] are modular.(You should show that if a covers b then there is a hyperplane h such that h ^ a = b.) Byinduction it follows that all proper intervals of L are modular.Now let a and b be any two elements of L. We want to verify thatr(a) + r(b) = r(a _ b) + r(a ^ b): (19:2)If either a _ b < 1 or a ^ b > 0 then this already holds, by our induction hypothesis. Wetherefore assume that a and b are complements. Since every element of L is the intersectionof the hyperplanes containing it, there is a hyperplane h containing a but not b. If h^b = 0then, since h is modular b must be a point. As all points are modular, equality then holdsin (19.2).Hence we may assume that h ^ b > 0. Since [0; h] is modularr(a) + r(b ^ h) = r(a _ (b ^ h)) + r(a ^ b ^ h) = r(a _ (b ^ h))and, since [b ^ h; 1] is modularr(b) + r(a _ (b ^ h)) = r(1) + r(b ^ (a _ (b ^ h))):Combining these two inequalities we deduce thatr(b) + r(a) = r(1) + r(b ^ (a _ (b ^ h))) � r(b ^ h):31



The M�obius FunctionLet w denote b ^ (a _ (b ^ h)). Clearly w � b ^ h, if we can show that w = b ^ h thenr(a) + r(b) = 1, as required.Since a^ b = 0, it is trivial to verify that b ^ h is a complement to a in [0; a_ (b ^ h)].Further a ^ w = a ^ (b ^ (a _ (b ^ h))) � a ^ b = 0while a _ (b ^ h) = a _ (a _ (b ^ h)) � a _ (b ^ (a _ (b ^ h))) � a _ (b ^ h)and so w is a second complement to a in [0; a _ (b ^ h)]. Since this interval is contained in[0; h] it is modular and, as b ^ h � w it follows that w = b ^ h.A line in a geometric lattice is an element of height two, i.e., the join of two points.19.5 Lemma. A hyperplane h in a geometric lattice is modular if and only if h^ ` > 0,for every line `.Proof. Let h be a hyperplane. To show h is modular we need only verify that if b 6� h thenb covers b^h. Assume by way of contradiction that b 6� h and b does not cover h. We willuse this to �nd a line meeting h in 0.Let c be a complement to b^h in [0; b]. Since r(b^c) = 0 we have r(c) � r(b)�r(b^h),consequently r(c) � 2 and so there is a line ` lying below c. But thenh ^ ` = h ^ (b ^ `) = (h ^ b) ^ ` = 0:It follows that h is modular.20. Points and Hyperplanes (again)We will prove now that if the number of points in a geometric lattice L is equal to thenumber of hyperplanes then L is modular. Both proofs proceed by showing that if Lhas rank d and W1(L) = Wd�1(L) then any hyperplane meets any line non-trivially. (Sothere was some point to the trials of the previous section.) One reason this result is sointeresting is that the structure of complemented modular lattices is very restricted: everycomplemented modular lattice is a direct sum of subspace lattices Bq(n) and copies ofB(1). 32



C. D. Godsil20.1 Theorem (Baster�eld and Kelly [3]). Let L be a geometric lattice of rank d.Then W1(L) =Wd�1(L) if and only if L is modular.Proof. The proof that W1(L) =Wd�1(L) when L is modular is left as an exercise; we willonly consider the su�ciency of the stated condition.Let G be the 01-matrix with rows and columns indexed by L and with (G)ab = 1 ifand only if a _ b = 1. As we saw in �dets, we haveG = ZFZTwhere Z = ZL and F is the diagonal matrix with with (F )aa = �(a; 1). Since L isgeometric, F is invertible and therefore G is invertible. We claim that if a ^ b = 0 then(G�1)ab 6= 0. In fact we have G�1 = (ZT )�1F�1Z�1 and therefore(G�1)ab = Xx�a^b �(x; a)�(x; b)�(x; 1) :When a ^ b = 0 this implies that(G�1)ab = �(0; a)�(0; b)�(0; 1) 6= 0:We may write G in partitioned form asG = � 0 MN X �where the rows of M are indexed by the points of L and its columns by the hyperplanes.Since G is invertible the rows ofM are linearly independent; this proves again thatW1(L) �Wd�1(L).Now assume that W1(L) = Wd�1(L). Then M and N are square invertible matricesand accordingly G�1 = ��N�1XM�1 N�1M�1 0 � :What matters here is the zero submatrix of G�1|its presence shows that if a is not apoint and h is a hyperplane of L then (G�1)ah = 0. This implies that h ^ a > 0 andconsequently for all hyperplanes h and all lines ` of L we have h ^ ` > 0. Therefore L ismodular by Lemma 19.5.The proof of Theorem 20.1 can be extended to show that if equality holds in Corol-lary 18.2 then L is modular. (This is not an unreasonable exercise.) If L is a modulargeometric lattice then it can be shown that the Whitney numbersWi(L) form a symmet-ric unimodal sequence. As we noted earlier, it has been conjectured that this sequence isunimodal for any geometric lattice. There is one more thing that can be proved.33



The M�obius Function20.2 Corollary (Greene [8]). Let L be a geometric lattice of rank d. Then W1(L) �Wi(L), and if equality holds then i = d� 1.Proof. Let L be a geometric lattice and let f be the map from L to L de�ned byf(x) = �x; if r(x) < k;1; otherwise.Then f is order-preserving and its image is a geometric lattice (albeit, not a sublattice ofL). The image of L under f is an upper truncation of L. Suppose that W1(L) = Wi(L)and let L0 be the geometric lattice obtained by truncating L at height i + 1. Then L0 isgeometric and we have W1(L) =W1(L0) �Wi(L0) =Wi(L):Further, if the �rst and last terms here are equal then L0 is modular, by the previoustheorem.Assume i < d and choose an element a of L with rank i � 2. Then the interval [a; 1]in L has height four and therefore it contains a set of four independent points. Thesefour points generate a sublattice isomorphic to B(4), and the elements of rank two in ithave rank i in L. Hence the interval [a; 1]L0 has height three and contains four points andsix lines. This implies that it is not modular, but every interval in a modular lattice ismodular and therefore L0 cannot be modular.Our proof of Theorem 20.1 was based on the approach of Dowling and Wilson. Wenow present a version of the original proof of Baster�eld and Kelly. (It is simple andelegant|our only criticism is that it does not use the M�obius function.)Assume that L is a geometric lattice with rank d. We aim to prove by induction on dthat W1(L) � Wd�1(L), with equality implying that L is modular. Let p be a point andh a hyperplane of L such that p 6� h. We make two claims:(a) Wd�2[p; 1] �W1[0; h] and(b) W1[p; 1] �W1[0; h].To prove (a), suppose that a and b are covered by h. If p _ a = p _ b thenp _ a = p _ a _ b = p _ h;but since p is modular r(p _ a) < r(p _ h) and therefore the map x! x _ p is in injectionfrom the hyperplanes of [0; h] into the hyperplanes of L on p. ThusWd�2[0; h] �Wd�2[0; p].34



C. D. GodsilSince [0; h] is geometric, W1[0; h] � Wd�2[0; h] by induction and thus (a) is proved. For(b), the map x! x _ p is a bijection from the points of [0; h] to the lines of L on p whichintersect h nontrivially.Now we prove that W1(L) � Wd�1(L) and that, if equality holds, Wd�2[p; 1] =W1[0; h] for any point p and hyperplane h such that p ^ h = 0. Let �p and �h denoteWd�2[p; 1] and W1[0; h] respectively. By (a) above, �p � �h. Let n be the number of pointsand m be the number of hyperplanes in L. Thenn =Xp m� �pm� �p = Xp;h:p^h=0 1m� �p � Xp;h:p^h=0 1m� �h =Xh n� �hm� �h: (20:1)If m < n then n� �hm� �h > nmwhence the last term in (20.1) is strictly great than n. Hence we conclude that m � nand, if equality holds, �p = �h for any point p and hyperplane h with p ^ h = 0.Assume that m = n and that p is a point and h is a hyperplane not on p. Since [p; 1]is geometric, we may use (b) above to deduce that�h =W1[0; h] �W1[p; 1] �Wd�2[1; p] = �p:This implies that W1[0; h] =W1[p; 1], and our proof of (b) then implies that every line onp meets h non-trivially. Thus we have shown that if h is a hyperplane and ` is a line in Lthen h ^ ` > 0 and therefore L is modular, by Lemma 19.5.21. Kung Fu?We will describe some important work of J. Kung [10], in a formulation communicatedprivately to the author by C. Greene. This provides yet another approach to some of thework in �hypers and �pt-hyps.If f is a function on a lattice L, let f̂ be de�ned byf̂ (a) =Xx�a f(x):Our main theorem can be viewed as providing one answer to the following problem. Sup-pose that A and B are subsets of a lattice L. What conditions on A and B guarantee thatany function f on L with support in A is determined by the restriction f̂ �B of f̂ to B?(Admittedly this appears to be a convoluted problem, with little hope of a useful answerarising.) 35



The M�obius Function21.1 Theorem (Kung [10]). Let A and B be subsets of the lattice L such that, if x 2 Lthen either(a) x 2 B, or(b) there exists x� in L such that �(x; x�) 6= 0 and a _ x 6= x� if a 2 A.Then f̂ �B determines f̂ , and there is an injection ' : A 7! B such that '(a) � a for all ain A.Before embarking on the proof of this result, we present one application. Let L be ageometric lattice with rank d, let A be the set of elements of L with rank at most k andlet B be the set of elements with rank at least d� k. If x 2 L, let x� = 1.If x 62 B then �L(x; 1) 6= 0. If, further, a 2 A thenr(x _ a) � r(x) + r(a) � d� k � 1 + k < d = r(1):Hence the conditions of Theorem 20.1 are (and can be!) satis�ed. What may we conclude?Let fa be the function on L de�ned byfa(x) = � 1; if x = a;0; otherwise.Then f̂a(b) = 1 if b � a, and is zero otherwise. The theorem implies that, for functions fsupported on A, the linear mapping f ! f̂ �Bis injective. This implies that dimRB � dimRA, from which it follows that jAj � jBj.This provides another proof of Corollary 18.2. In fact a stronger statement can be made.The function f̂a can be identifed with the row of ZL indexed by a and therefore Kung'stheorem implies that the submatrix of ZL with rows indexed by elements of A and columnsby elements of B has linearly independent rows. Hence there is an injection ' : A ! Bsuch that '(a) � a, for all a in A.We start the proof of Theorem 20.1 now. If x and y are elements of L such that x < yand f is a function on L, we haveXt2[x;y] �L(t; y)f̂ (t) = Xt2[x;y]Xs�t �L(t; y)f(s) =Xs f(s) Xt2[x_s;y] �L(t; y)= Xs:s_x=y f(s):36



C. D. GodsilNow suppose x 62 B and let y be x�. Then, if the support of f is contained in A, the lastterm above is zero and so�L(x; x�)f̂ (x) = � Xx<t�x� �L(t; x�)f̂ (t): (21:1)Condition (b) of the theorem implies that 1 must lie in B. By (21.1), if x 62 B then f̂ (x)is determined by the value of f̂ on elements t in L such that t > x. It follows by inductionthat f̂ is determined by f̂ �B. This completes the proof.We describe a second application of Theorem 21.1, to modular lattices. An elementa in a lattice L is join-irreducible if, whenever x _ y = a, either x = a or y = a. In otherwords, a is not the join of two smaller elements. The set of all join-irreducible elements ofL will be denoted by J(L). Similarly we may de�ne meet-irreducible elements; the set ofmeet-irreducible elements of L will be denoted by M(L). Note 0 2 J(L) and 1 2 M(L),hence these subsets are not empty. In a geometric lattice, J(L) consists of 0 and all thepoints, while M(L) consists of the hyperplanes and 1.Assume L is modular with A = J(L) and B = M(L). If x 62 B, de�ne x� to be thejoin of the elements which cover x. Then [x; x�] is a modular point-lattice, therefore itis geometric and �L(x; x�) 6= 0. Suppose a is join-irreducible. Since L is modular, theintervals [a ^ x; a] and [x; x _ a] are isomorphic (by Lemma 13.1). But this implies thatx _ a is join-irreducible in [x; x _ a], which is a geometric lattice. Therefore x _ a mustx, and hence cannot be equal to x�. Thus the conditions of Kung's theorem are satis�ed,whence we conclude that in a modular lattice jJ(L)j � jM(L)j. As Lop is modular if L isand J(Lop) =M(L); M(Lop) = J(L)it follows that jJ(L)j = jM(L)j for modular lattices. (This is a famous result of Dilworth's.)22. Contraction and DeletionLet L be a point lattice with point set 
 and suppose p 2 
. We de�ne a function f fromL into itself as follows: f(a) = _fq : q 2 
np; q � a; g;with the understanding that f(0) = 0. It is easy to check that f is order preserving andthat f(x) is either x itself or the unique element covered by x and not in [p; 1]. Hence f isa decreasing map. Note that f is an order preserving and decreasing map from L0 np intoitself. 37



The M�obius FunctionLet M be the poset of �xed points of f . This is a join semi-lattice with a 0- and1-element. (The latter is usually the 1-element of L.) If M 0 := M n f0; 1Lg then, byLemma 8.4, M 0 is a retract of L0 n p and therefore �(M 0) = �(L0 n p). On the other handby Lemma 14.1 we have �(L0) = �(L0 np) + �(L0<p)�(L0>p):Since p is a point, �(L0<p) = �1 and therefore�L(0; 1) = �(M 0)� �L(p; 1):There are two cases to be considered. If the join of the points of L distinct from p is equalto 1L then �(M 0) = �M (0; 1). If the join of the points of L distinct from p is not equalto 1L then, because of the careful way we de�ned it, M 0 has a 1-element and �(M 0) = 0.We will call a point p a co-loop if the join h of the points distinct from p is not equal to 1.(If L is geometric and h 6= 1 then h is a modular hyperplane.) Since M is a semi-lattice itgives rise naturally to a lattice that we will denote by Lnp. (This is not a particularly goodchoice of notation, but will do for now.) We can summarise our conclusions as follows.22.1 Lemma. Let L be a point lattice and let p be a point of L. Then�L(0; 1) = (��L(p; 1); if p is a co-loop;�Lnp(0; 1) � �L(p; 1); otherwise.If L is the lattice of contractions of a graph G and e is an edge in G then e is a pointin L and Lne is the lattice of contractions of the graph Gne, obtained by deleting e fromG. The interval [e; 1] in L is the lattice of contractions of G=e, which is the graph obtainedfrom G be contracting the edge e. It can be shown that if L is geometric then so is Lnp.Exercise: Use Lemma 22.1 to prove the broken circuit theorem (Theorem 15.1).The only signi�cant application of Lemma22.1 I know of is to geometric lattices. Thereare many other classes of point lattices though|the face lattices of convex polytopes, forexample. 38



C. D. Godsil23. Null DesignsLet P be a poset. A function of strength at least t on P is an function f with values insome ring such that such that Xx�a f(x) = 0for any element a of P with height at most t. (In practice we assume that the ring is thering of integers.) The most important case is when P is the lattice of all subsets of a setV , when a function of strength at least t is sometimes called a null t-design. Our basicproblem is to �nd good lower bounds on the support of a function of strength t.If f is any function on P and f̂ is as in the previous section then f has strength atleast t if and only if the support of f̂ contains no elements of height t or less. Let P be aposet with zero. If b 2 P let fb be the function obtained by M�obius inversion on [0; b] tof̂ . Then fb is a function on [0; b], which we extend to a function on P by setting fb(x) = 0if x 6� b. It is immediate that fb is a function of strength at least t with support containedin [0; b]. We have two formulas for computing the values of fb.23.1 Lemma. Let P be a meet semi-lattice. If b 2 P thenfb(c) = Xx^b=cf(x):Proof. We have fb(c) =Xy�b �(c; y)f̂ (y) =Xy�b �(c; y)Xx�y f(x)= Xx;y:c�y�x �(c; y)f(x)=Xx 0@ Xy:c�y�x �(c; y)1A f(x)= Xx^b=cf(x):The next result is trivial to verify.23.2 Lemma. Let f be a function on the poset P with strength at least t and let b bean element of P in the support of f̂ with minimal height. If c � b thenfb(c) = �(c; b)f̂ (b):39



The M�obius FunctionAs an immediate corollary of Lemma 23.2, we see that the support of f is boundedbelow by jfc � b : �(c; b) 6= 0gj:This bound can be improved in two cases. The previous two lemmas combine to yield that�(c; b)f̂ (b) = Xx^b=cf(x): (23:1)23.3 Lemma. Let P be a meet semi-lattice and let f be a (0;�1)-valued function ofstrength t on P . If b is an element of height t in P such that f̂ (b) 6= 0 then the supportof f has size at least Xc�b j�(c; b)j:Proof. If f is (0;�1)-valued then jf̂ (b)j � 1 and (23.1) implies that there at least j�(c; b)jelements x in P such that x ^ b = c and f(x) 6= 0.Both the previous lemma and the following theorem seem to have appeared �rst inunpublished work of Cho.23.4 Theorem. Let P be a semi-lattice, let f be a function on P with strength t whichis supported by elements of height t + 1. If b is an element of P with height t + 1 suchthat f̂ 6= 0 then the support of f has size at leastXc�b j�(c; b)j:If equality holds then f is (0;�1)-valued.Proof. Assume that, amongst all elements of height t + 1 in the support of f̂ , we havechosen b so that jf̂(b)j is maximal. Our constraint on the support of f implies that if bhas height t+ 1 then f̂(b) = f(b). By (23.1),�(c; b) = Xx^b=c f(x)f(b) � Xx:x^b=cf(x) 6=0 1:The theorem follows at once. 40



C. D. GodsilIt is reasonable to ask which meet semi-lattices we would like to apply the results ofthis section to. The �rst two cases of interest are B(n) and Bq(n), which are lattices. Wealso have the subspace lattice of a polar space. Finally suppose that V is a d-dimensionalvector space over a �nite �eld and U is a subspace of V . Then the set of subspaces of Vwhich intersect U in the zero subspace is a meet semi-lattice. Both these last exampleshave the property that any interval is the subspace lattice of a projective space, and thusits M�obius function is known.For B(n), it is not too hard to prove that a function of strength at least t has supportof size at least 2t+1. This is stronger that we have just proved. But for Bq(n) the results ofthis section are the strongest known. It is sometimes possible to give a simpler expressionfor Xc�b j�(c; b)j:If P = B(n) and b is a set of size (t + 1), this sum equals 2t+1. If P is Bq(n) and b hasdimension t+ 1 then it equals tYi=0(1 + qi):If P = P(n) and b is a partition with exactly n � k cells then our sum equals (n � k)!.(These claims all follow from [1: Proposition 4.20].)

41



The M�obius FunctionAppendix: Posets and LatticesThe material in Aigner [1: Chapter II] provides more than enough background for ourpurposes. Crawley and Dilworth's book [5] is a masterpiece.Let (P;�) be a poset. We usually use the same symbol to denote both the poset andits underlying set, i.e, we will usually be lazy and write P rather than (P;�). If a; b 2 Pand a � b but a 6= b, we write a < b. If a < b and there is no element of P strictly betweena and b, we say that a covers b. We de�ne (P op;�) to be the poset with on the same set ofelements as P , with a � b if and only if b � a. We say P op is obtained from P be reversal.The interval [a; b] in P consists of all elements x such that a � x � b.Suppose x, y and a belong to P . We call a the least upper bound of x and y in P if,whenever z 2 P and x; y � z, we have a � z. We denote it by x _ y. Similarly we de�nethe greatest lower bound, and denote it by x ^ y. For a general poset neither x _ y norx ^ y need exist; if they are de�ned for all pairs x and y then P is a lattice. Note thatevery lattice has an underlying partial order, and that this partial order determines thelattice completely. If x ^ y is de�ned for all pairs x and y then we may de�ne x _ y to be_fa 2 P : a � x; yg:This de�nition may not work if P is in�nite, but such concerns are above us.A point in a lattice is an element which covers 0. (The term atom may also be met.)A complement of a in a lattice is an element x such thata _ x = 0; a ^ x = 1:A lattice is complemented if every element has a complement, and is relatively comple-mented when all intervals in it are complemented. The Boolean lattice B(n) is relativelycomplemented, as is the lattice of subspaces of a �nite-dimensional vector space.References[1] M. Aigner, Combinatorial Theory (Springer, Berlin) 1979.[2] K. Baklawski, Galois connections and the Leray spectral sequence, Advances in Math.25 (1977), 191{215.[3] J. G. Baster�eld and L. M. Kelly, A characterisation of n points which determine nhyperplanes, Proc. Camb. Phil. Soc. 64 (1968), 585{588.42
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