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AbstractWe survey some of what can be deduced about automorphisms of a graph from infor-mation on its eigenvalues and eigenvectors. Two of the main tools are convex polytopesand a number of matrix algebras that can be associated to the adjacency matrix of a graph.



Eigenvectors and EigenpolytopesWe study eigenvectors of the adjacency matrix of a graph, and how these interact withthe graph's automorphisms. The treatment in the �rst four sections is based loosely on[10,16].1. Eigenvalues and AutomorphismsOur aim in this section is to introduce the idea that the eigenvectors of the adjacencymatrix of a graph are best viewed as a class of functions on the vertices of the graph. Sowe present some de�nitions and then use them to derive some classical results concerningsimple eigenvalues of vertex-transitive graphs.Let X be a graph with vertex set V . If i and j are vertices in X, we write i � jto denote that i is adjacent to j. Let F (V ) denote the space of real functions on V . Wedenote the characteristic vector of the vertex i of X by ei; the vectors ei form the standardbasis of F (V ). The adjacency operator A is the linear operator on F (V ) de�ned by(Af)(i) :=Xj�i f(j):The matrix that represents A relative to the standard basis is the usual adjacency matrixA of X.The inner product of two functions f and g from F (V ) isXi2V f(i)g(i);the adjacency operator is self-adjoint relative to this inner product (equivalently, the ad-jacency matrix is symmetric). We denote the function on V that is constant and equal to1 by 1. A function f is an eigenvector for A if it is not zero and there is a constant � suchthat, for each vertex i in V �f(i) =Xj�i f(j);or Af = �f . The constant � is, of course, the eigenvalue of f . The graph X is regularif and only if 1 is an eigenvector for A, with the corresponding eigenvalue equal to thevalency of X.Let f be an eigenvector for A and let i be the vertex of X such that jf(i)j � jf(j)j,for all j 2 V . Then j�jjf(i)j = jXj�i f(j)j �Xj�i jf(j)j;



2 Chan & Godsiland therefore, j�j �Xj�i jf(j)jjf(i)j :If X is connected then equality holds if and only if jf j is a constant function. If f itselfis constant, then X is regular, otherwise X is regular and bipartite. In both cases, thefunction jf j is an eigenvector. Moreover, by our choice of i, we can conclude that j�j is lessthan or equal to the valency of i and, thus, the absolute value of all eigenvalues for A isbounded above by the maximum valency of X.If X is a complete graph on the vertex set V of size n, then since it is regular, it haseigenvector 1 with eigenvalue (n� 1). Let f 2 F (V ) such that Pi2V f(i) = 0. Then forall i 2 V , Xj�i f(j) = �f(i);and therefore �1 is an eigenvalue for X with n � 1 linearly independent eigenvectors. IfX is a circuit on n vertices and � is the primitive nth root of unity, then the functionf(i) = � i, for i = 0 : : : n� 1 is an eigenvector for X with eigenvalue (� + ��1).We denote the automorphism group of X by Aut(X); if i 2 V and a 2 Aut(X) thenia is the image of i under a. If f 2 F (V ) and a 2 Aut(X) then the composition f � a isagain a real function on X, with (f � a)(i) = f(ia):The map f 7! f � ais an invertible linear mapping of F (V ) onto itself. If we need to distinguish the abovemapping from the automorphism a, we will denote it by â. Our conventions imply thatbabf = âb̂f:If a 2 Sym(V ) then âei = eia�1 ;which is probably not what we would expect.Now we show that if a 2 Sym(V ) then a 2 Aut(X) if and only if â and A commute.Equivalently, if a 2 Aut(X) then â lies in the centralizer C(A) of A. Consider for anyf 2 F (V ) and i 2 V , (Aâ)f(i) =Xj�i âf(j) =Xj�i f(ja)



Symmetry and Eigenvectors 3and (âA)f(i) = Af(ia) =Xl�ia f(l):Then A and â commute if and only if the right hand side of the above equations are equal.This occurs exactly when i � j if and only if ia � ja for all i 2 V ; that is a 2 Aut(X).If f is an eigenvector with eigenvalue � and a 2 Aut(X) then f � a is again aneigenvector with eigenvalue �; simply note thatXj�i(f � a)(j) =Xj�i f(ja) = X`�ia f(`) = �(f � a)(i):Although we have not developed much theory yet, we can use what we have to derivesome results concerning the eigenvalues of vertex-transitive graphs.Assume X is a vertex-transitive graph with automorphism group G. Let � be a simpleeigenvalue of A, and let f be a corresponding eigenvector. If a 2 G then f � a is again aneigenvector with eigenvalue �, as � is simple it follows thatf � a = cf (1:1)for some constant c. Now there is a least positive integer r such that ar = 1; from (1.1)we then �nd that cr = 1. Hence c is an r-th root of unity. As both f and f � a are realfunctions this implies that c = �1.1.1 Theorem (Petersdorf and Sachs [26]). Let X be a vertex transitive graph onn vertices with valency k, and let � be a simple eigenvalue of A. Then k � � is an eveninteger. If � 6= k then jV j is even.Proof. Let f be an eigenvector for �. If a 2 Aut(X) and f � a = f then f is constanton the orbits of a. If f � a = �f and S is an orbit of a then either f is zero on S, orf(ia) = �f(i) for each i in S.If f is constant then Af = kf , i.e, � = k. So we may assume that f is not constant.As Aut(X) is vertex-transitive, it follows that there is a constant c such that f(i) = �c,for all vertices i in X. We may assume without loss that c = 1. Let i be a vertex of Xand let `i be the number of neighbours j of i such that f(j) = �f(i). Then�f(i) =Xj�i f(j) = (k � 2`i)f(i): (1:2)This proves our claim concerning �.



4 Chan & GodsilFinally, as X is regular, the all ones vector 1 is an eigenvector for A. As A is self-adjoint, eigenvectors with distinct eigenvalues are orthogonal. Hence0 = hf;1i =Xi2V f(i)and thus we deduce that jV j must be even.It is an interesting exercise to show that, if X is vertex transitive and has two simpleeigenvalues, neither equal to the valency k, then jV (X)j must be divisible by 4. It canalso be shown that X has at least three vertices then it has at most jV (X)j=2 simpleeigenvalues. This is another reasonable exercise. (Proofs of both these results are given in[16].)A natural question is how many simple eigenvalues a vertex transitive graph can have.Note that (1.2) implies that `i is independent of the vertex i. Let � be the partitionof V (X), where vertices i and j are in the same cell of � if f(i) = f(j). Then � has exactlytwo cells, and the number of neighbours in a given cell of a vertex i of X is determined bythe cell in which i lies. This means, in the terminology of Section 5, that � is an equitablepartition of X.2. EigenspacesIf real-valued functions on V (X) are interesting then it is not unreasonable to considerfunctions on V (X) with values in the vector space Rm , in particular those functions f fromV to Rm such that, for some constant ��f(i) =Xj�i f(j): (2:1)By way of example, consider a regular dodecahedron in 3-space, with centre of mass atthe origin. Let X be the 1-skeleton of this solid and let p be the map that associates eachvertex of X with its image in R3 . From the symmetry of the solid, we see that each vertexi there is a constant ci such that cip(i) =Xj�i p(j):Since all vertices of the solid are equivalent under its symmetry group, ci is independentof i and so (2.1) holds.



Symmetry and Eigenvectors 5Our aim is to generalize this example. We use A to denote the adjacency matrix ofX. Let � be an eigenvalue of A with multiplicity m and let U� be a jV j �m matrix whosecolumns form an orthonormal basis for the eigenspace belonging to �. As each column ofU� is an eigenvector for A we have �U� = AU�. Hence, if u�(i) denotes the i-th row ofU�, then (2.1) holds (with u� in place of f). We call the function u� from V to Rm therepresentation belonging to �. As the columns of U� form an orthonormal set of vectors,UT� U� = Iand therefore, if we de�ne E� := U�UT� then E� = ET� andE�E� = �E�; if � = �;0; otherwise.In fact E� is the matrix representing orthogonal projection onto the column space ofU�. This implies that E� is an invariant of the eigenspace, and does not depend on theorthonormal basis we chose to form U�.Next, if x and y are vectors in Rm , for somem, then hx; yi denotes their inner product.If i and j are two vertices of X then(E�)i;j = hu�(i); u�(j)i:This shows that the Euclidean distance between the points u�(i) and u�(j) is determinedby i, j and �.A convex polytope is the convex hull of a �nite set of points in Rm . A vertex of apolytope is a point in it which is an endpoint of any closed line segment that contains itand is contained in the polytope. (Equivalently, a vertex is an extreme point.)If S is a �nite subset of Rm then the vertices of the convex hull C of S are a subsetof S. Any linear mapping of Rm that �xes S as a set must �x the polytope generatedby S, and a linear mapping �xes all points in C if and only if it �xes each vertex of C.The simplest example occurs when m = 1. If jSj � 2 then C has exactly two vertices andcertainly any linear mapping that �xes these two vertices �xes all points in C.The convex hull of the set of points u�(i), for all i in V (X), is the eigenpolytopebelonging to �. Figure 1 illustrates the four eigenpolytopes of the cube. The correspondingmatrices U� are listed in the following table. If h is an eigenvector for A with eigenvalue� and S is the set of vertices on which h takes its maximum value then the convex hullof the points u�(i), for i 2 S is a face of the eigenpolytope. Conversely each face canbe obtained from an eigenvector, since we can de�ne the faces of a polytope as the set
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of points on which a linear function takes its maximum value. Note that the eigenvector�h determines a face disjoint from that gotten from h. Eigenpolytopes of distance-regulargraphs are studied at some length in [14].
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8 Chan & Godsil3. WalksA walk of length r in a graph X is a sequence x0; : : : ; xr of vertices from X, such thatconsecutive vertices are adjacent. A walk is closed if its �rst and last vertices are equal. Inthis section we show that the geometry of each eigenpolytope of X is determined by thenumber of walks of certain types in X. The number of walks Wi;j(X; r) of length r fromvertex i to vertex j in X is equal to hei;Areji:We will derive an alternative expression for this number. The walk generating functionWi;j(X; t) is de�ned to be the formal sumXr�0Wi;j(X; r)tr:The geometry of the eigenpolytopes ofX is completely determined by these walk generatingfunctions. Our main goal in this section is to demonstrate this.If � is an eigenvalue of A, let E� denote orthogonal projection onto the associatedeigenspace. For each eigenvalue � of A, we haveAE� = E�A = �E�: (3:1)The spectral decomposition of A is equivalent to the identityA =X� �E�;where we sum over all eigenvalues � of A. This is a standard result, of course, which can befound in many texts. (See [21], for example.) From (3.1) and the spectral decompositionwe obtain, for any non-negative integer r:Ar =X� �rE�:Consequently hei;Areji =X� �rhei; E�eji: (3:2)As E� = U�UT� , we obtain our next result.



Symmetry and Eigenvectors 93.1 Theorem. For any two vertices i and j in the graph X and any non-negative integerr, we have Wi;j(X; r) =X� �rhu�(i); u�(j)i;where we sum over all eigenvalues � of A.3.2 Corollary. The inner product hu�(i); u�(j)i is determined by � and the sequenceWi;j(X; r) for r = 0; 1; : : :.Proof. >From (3.2), we have hei; p(A)eji = P� p(�)hu�(i); u�(j)i, for any polynomial p.Let p�(x) := Y�6=� (x� �)(� � �) = � 1; if x = �;0; if x 6= �, x an eigenvalue of A,be a product over all eigenvalues of A. Then hu�(i); u�(j)i = hei; p�(A)eji and the resultfollows.The signi�cance of Corollary 3.2 is that it shows that the geometry of the set of pointsfu�(i) : i 2 V gis determined by � and the walk generating functions Wi;j(X; t) for all vertices i and j ofX. As one useful consequence we note that, if X is a vertex-transitive graph, the walkgenerating function Wi;i(X; t) is independent of the vertex i and therefore the length ofthe vector u�(i) does not depend on i. Thus in this case all points u�(i) for i in V lie on asphere with centre at the origin. The same conclusion will hold more generally for graphsX with the property that the walk generating functions Wi;i(X; t) are independent of i.We will call such graphs walk-regular. They need not be vertex-transitive, but nonethelesshave a number of properties in common with vertex-transitive graphs. For examples, thePetersdorf-Sachs theorem (Theorem 1.1) holds for walk-regular graphs. For if X is walk-regular and � is a simple eigenvalue for X then ju�(i)j is independent of i, and the rest ofthe proof follows. (For further information, see [16,11].)



10 Chan & Godsil4. AutomorphismsIt follows from the spectral decomposition of A that each projection E� is a polynomial inA. Therefore each automorphism of X, viewed as a linear mapping, commutes with eachprojection E�. As E� = U�UT� , we thus haveĝU� = ĝU�UT� U� = U�UT� ĝU�;which implies that u�(ig) = u�(i)UT� ĝU�:Here UT� ĝU� is an m �m matrix that is easily shown to be orthogonal. Let us denote itby g�. The mapping g 7! g� is thus a representation of the automorphism group into thegroup of m � m real orthogonal matrices; we obtain one such representation from eacheigenspace of X.An automorphism g lies in the kernel of the representation if and only if ĝU� = U�,i.e., if and only if ĝ �xes each column of U�. It follows that if g� is the identity foreach eigenvalue � then ĝ �xes every eigenvector of A, which implies that it is the identitymapping on F (V ).Now consider the eigenpolytope of X associated to an eigenvalue � of X, with multi-plicity m.If m = 1 then this is either a single point or a closed line segment in R1 . In the �rstcase the representation of Aut(X) a�orded by the eigenspace is trivial (each automorphismis mapped to the identity). In the second case, the image of an automorphism either �xeseach endpoint of the line segment, and hence induces the identity mapping, or it swaps thetwo endpoints and its square is the identity. Thus the representation of Aut(X) determinesa homomorphism of Aut(X) onto the group of order 2, and therefore Aut(X) contains asubgroup of index 2. If each eigenvalue of X has multiplicity 1, it follows that Aut(X) mustbe an elementary abelian 2-group. (It is an interesting problem just how large Aut(X) canbe in this case. Note that we saw in Section 1 that the eigenvalues of a vertex-transitivegraph cannot all be simple, hence jV j � 1 is an upper bound.)If m = 2 then the eigenpolytope is either a closed line segment or a convex polygon.In the �rst case our previous analysis su�ces, in the second we obtain a representationof Aut(X) as a subgroup of a dihedral group. If each eigenvalue of X has multiplicity atmost 2 then Aut(X) is therefore a subgroup of a direct product of dihedral groups.Babai, Grigoryev and Mount [1] have proved that if the multiplicity of the eigenvaluesare bounded by some constant, then Aut(X) can be computed in polynomial time.



Symmetry and Eigenvectors 11Equitable PartitionsLet C1; : : : ; Cm be the orbits of a group of automorphisms of X. Any two vertices inCi must have the same number of neighbours in Cj , for all 1 � i; j � m. Equitablepartitions are partitions of V (X) with this regularity property, that are not necessarilyorbit partitions. Our treatment in this and the next section follows [15] and [11: Chapter 5].5. BasicsIf � is a partition of a set, let j�j denote the number of cells of �. A partition is discreteif its cells are all singletons.Let X be a graph with vertex set V and let � be a partition of V with cells C1; : : : ; Cm.We say that � is equitable if, for each i and j, the number of neighbours in Cj of a givenvertex u in Ci is determined by i and j, and is independent of the choice of u in Ci.If G is a subgroup of Aut(X), then the orbits of G form a partition � of V with theproperties that the subgraph induced by a cell of � is regular and the subgraph formed bythe edges joining any two cells of � is bipartite and semiregular. Hence, the orbits of anautomorphism group of X form an equitable partition. However, the converse is not true,Figure 2 shows an example of an equitable partition that is not an orbit partition.
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Figure 2: An equitable partition that is not an orbit partitionThe quotient X=� of X relative to the equitable partition � is the directed graph withthe cells C1; : : : ; Cm of � as its vertices and ci;j arcs from cell i to cell j, where ci;j is thenumber of vertices in Cj adjacent to a given vertex in Ci. The adjacency matrix of X=�is the m�m matrix with ij-entry equal to ci;j .Figure 3 lists four equitable partitions of the Petersen graph with their quotients.If � is a partition of V , let F (V; �) denote the space of real functions on V (X) thatare constant on the cells of �.
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Figure 3: Equitable partitions of Petersen graph



Symmetry and Eigenvectors 135.1 Lemma. A subspace U of F (V ) equals to F (V; �) for some partition � of V if andonly if U is a subalgebra of F (V ) which contains the constant functions.Proof. If � a partition of V then F (V; �) is a subspace of F (V ) that contains all theconstant functions; it is also closed under multiplication and is thus a subalgebra of F (V ).Conversely, suppose U is a subalgebra of F (V ) which contains the constant functionsand with basis fx1; : : : ; xmg. For each vector xi, let �i be the partition of V such thatvertices u; v belong to the same cell if and only if xi(u) = xi(v). Let � be the partition ofV whose cells are the non-empty pairwise intersections of the cells of �1; : : : �m. Letc = bx1 + b2x2 + : : :+ bmxm;where the real number b is chosen large enough that c takes distinct values on vertices indistinct cells of �. Suppose v1; : : : ; vr are vertices in the cells C1; : : : ; Cr of � respectively,and for k = 1; : : : ; r letyk(v) =Yj 6=k (c(v)� c(vj))(c(vk)� c(vj)) = � 1; if v 2 Ck;0; otherwise.The functions y1; : : : ; yr are the characteristic functions of C1; : : : ; Cr respectively. They allbelong to U because U contains the constant functions c(vj). Moreover, they are linearlyindependent in U . Since each cell of � is contained in a cell of �i, for i = 1; : : : ;m, we canexpress the xi as a linear combination of y1; : : : ; yr. As a result, the yj 's form a basis of Uand U is equal to F (V; �).5.2 Lemma. Let X be a graph and let � be a partition of V (X). Then � is equitableif and only if F (V; �) is A-invariant.Proof. Suppose that x is the characteristic function of the subset S, a cell of � of V (X).If i 2 V then (Ax)(i) equals the number of vertices in S adjacent to i. So Ax is constanton the cells of � if and only if the number of neighbours in S of a vertex i is determinedby the cell of � in which i lies. Now the result follows at once.Equivalently, for undirected graphs, we can de�ne a partition � to be equitable if andonly if F (V; �) is A-invariant. For directed graphs, there is a choice of the algebra hAi orhA;AT i used to de�ne equitable partitions.If � and � are partitions of V and each cell of � is contained in a cell of �, we say that� is a re�nement of �, and write � � �. This shows that the set of all partitions of V forms



14 Chan & Godsila partially ordered set, but in fact it is even a lattice. The meet � ^ � of two partitions �and � is the partition whose cells are all the nonempty pairwise intersections of cells of �with cells of �. The join �_� is most easily de�ned as the meet of all the partitions � suchthat � � � and � � �. Alternatively, de�ne a graph with vertex set V , where two verticesare adjacent if and only if they lie in the same cell of � or of �; the connected componentsof this graph are the cells of � _ �.The meet of two equitable partitions need not be equitable. An example is given inFigure 4, which is the meet of �2 and �3 of the Petersen graph in Figure 3. However thejoin must be. We will derive this from the next result, the proof of which is left as anexercise.

Figure 4: Meet of �2 and �3 is not equitable5.3 Lemma. Let � and � be partitions of the set V . Then F (V; � _ �) = F (V; �) \F (V; �).5.4 Corollary (McKay [22, Lemma 5.3]). Let � and � be equitable partitions ofthe graph X. Then � _ � is equitable.Proof. Assume V = V (X). As � and � are equitable, both F (V; �) and F (V; �) are A-invariant. Now the above lemma implies that F (V; � _ �) is A-invariant and so � _ � isequitable.One important consequence is that any partition � has a unique maximal equitablere�nement|it is the join of all the equitable partitions that re�ne �.



Symmetry and Eigenvectors 15If � is a partition of V such that each cell is �xed by Aut(X) then the set of equitablere�nements of � is �xed by Aut(X), and therefore the coarsest equitable re�nement of �is �xed by Aut(X). (For example, we might choose � to be the partition of the verticesof X by valency, which is clearly invariant under Aut(X). If �0, the coarsest equitablere�nement of �, is discrete then it follows that Aut(X) must be the identity group.) If �is a partition with cells C1; : : : ; Cr and v 2 Ci, de�ne the pro�le of v to be (n1; : : : ; nr; i),where nj is the number of neighbours v has in Cj . Let �1 be the partition such that twovertices are in the same cell if and only if their pro�les (relative to �) are equal. Then �1is a re�nement of � which is invariant under any automorphism that �xes each cell of �. Itcan be computed from � in polynomial time, hence it follows that by repeatedly computingre�nements in this manner, we can determine �0 in polynomial time. So it is not surprisingthat equitable partitions play an important role in practical graph isomorphism packagessuch as nauty. Further details will be found in [7].6. QuotientsAny subset S of V can be represented by its characteristic function, which takes the value1 on each element of S and 0 on each element not in S. Because a partition of V is a setwhose elements are sets, we can represent a partition � by its characteristic matrix, whichis the jV j � j�j matrix with the characteristic functions of the cells of � for columns.6.1 Lemma. Let A be the adjacency matrix of X and let � be a partition of V (X)with characteristic matrix D. Then � is equitable if and only if there is a matrix B suchthat AD = DB.Proof. The column space of D can be identi�ed with F (V; �). Hence � is equitable if andonly if the column space of D is A-invariant. This holds if and only if, for each column xof D, the vector Ax is a linear combination of columns of D and so can be written as Dbfor some vector b.The columns of the characteristic matrix of a partition are linearly independent,therefore there is at most one matrix B such that AD = DB. Alternatively, notethat DTD is invertible and diagonal with entries being the sizes of the cells, and thatB = (DTD)�1DTAD, thus is determined by A and D. If � is equitable then B must bethe adjacency matrix of X=�.



16 Chan & Godsil6.2 Theorem. Let X be a graph with adjacency matrix A and let � be an equitablepartition of X. Then the characteristic polynomial of A(X=�) divides the characteristicpolynomial of A.Proof. Suppose that v = jV (X)j and m = j�j. Let x1; : : : ; xv be a basis for Rv such thatx1; : : : ; xm are the distinct columns of the characteristic matrix of � and xm+1; : : : ; xv areeach orthogonal to x1; : : : ; xm. Let D1 = (x1; : : : ; xm) and D2 = (xm+1; : : : ; xv). Thenthe matrix representing A relative to this basis is� (DT1 D1)�1 00 (DT2 D2)�1��DT1DT2 �A (D1 D2 ) :Since AD1 = D1B and DT1 D2 = 0, the matrix has the block diagonal form�B 00 Y � (6:1)where B is the adjacency matrix of X=�. Since the characteristic polynomial of the matrixin (6.1) is the characteristic polynomial of A, the result follows.Note that it follows from this that, if the characteristic polynomial of A is irreducibleover the rationals, then the only equitable partition of X is the discrete partition.Suppose S � V (X). The distance partition of X relative to S is the partition withcells C0; : : : ; Cr, where Ci is the set of vertices in X at distance i from S. The integerr is the covering radius of S. We say that S is a completely regular subset of X if itsdistance partition is equitable. For example, the leftmost cell of each of the four partitionsin Figure 3 are four di�erent completely regular subsets of the Petersen graph. The ballof radius r about a vertex u of X consists of all vertices in X at distance at most r fromu. The packing radius of S is the maximum integer e such that the balls of radius e aboutthe vertices in S are pairwise disjoint. A subset with packing radius e is also called ane-code. If S has packing radius e and covering radius r then e � r. We call S a perfectcode if r = e. (This terminology is consistent with the standard usage in coding theory.)The Johnson graph, J(n; k) has as vertices all the k-subsets of a n-set, where twok-subsets are adjacent if and only if they intersect in k � 1 elements. Any single vertexin J(n; k) is a perfect code. Furthermore, when n = 2k and k is odd, any pair of disjointk-subsets form a perfect (k�1)2 -code. No further perfect codes are known in the Johnsongraphs. As a result, Delsarte [8, p55] states that \it is tempting to conjecture that suchcodes do not exist"; this question is still open.



Symmetry and Eigenvectors 176.3 Theorem. Let X be a regular graph. If X has a perfect 1-code then �1 is aneigenvalue of A.Proof. Assume that the valency of X is k. Suppose that C is a perfect code in X, andthat c = jCj. Let � be the partition with C and V nC as its cells. A vertex in C has noneighbours in C and k neighbours in V nC. A vertex in V nC is adjacent to exactly onevertex in C, and to k � 1 vertices in V nC. Therefore � is equitable, and the adjacencymatrix of the quotient is � 0 k1 k � 1� :The characteristic polynomial of this matrix isx2 � (k � 1)x� k = (x� k)(x+ 1);whence Theorem 6.2 implies that �1 must be an eigenvalue of A.



18 Chan & GodsilAlgebrasIn the next two sections, we derive results concerning some matrix algebras, and applythem to equitable partitions. The following section provides some information about oneof these algebras for trees.7. AlgebrasAs we have seen, �nding the equitable partitions of a graph is equivalent to �nding the A-invariant subalgebras of F (V ) that contain the constant functions. If Y is such a subalgebrathen Y is invariant under all elements of the algebra generated by A. But there is a largeralgebra that we can work with. Let J denote the square matrix with all entries equal to1 (and order determined by the context.) A subspace of F (V ) is J -invariant if and onlyif it contains all constant functions, and therefore a subspace F (V; �) is invariant under Aand J if and only if it is A-invariant.The operator J is a polynomial in A if and only if X is a connected regular graph.(This result was �rst observed by A. J. Ho�man, for a proof see Biggs [3, Prop. 3.2].)Hence, if X is not regular, then hA;J i is strictly larger than hAi. In particular, if hA;Jiis equal to the algebra of all linear operators on F (V ), then no proper non-zero subspaceof F (V ) is hA;J i-invariant, and consequently the only equitable partition of X is thediscrete partition. (And X has no non-identity automorphisms.)In fact, under comparatively mild conditions, hA;J i is equal to the algebra of alllinear operators on F (V ). We introduce some machinery to let us justify this claim. IfS � V (X), let JS be the operator on F (V ) de�ned by(JSf)(i) = �Pj2S f(j); if i 2 S;0; otherwise.7.1 Theorem. Let A be the adjacency operator of the graph X and let S be a subsetof V (X) with characteristic function �. Let W be the subspace of F (V ) spanned by thefunctions Ar�. Then the algebra generated by A and JS is isomorphic to the direct sumof the algebra of all linear operators on W and the algebra generated by the restriction ofA to W?.Proof. The space F (V ) is a direct sum of eigenspaces of A; let �1; : : : ; �m denote thedistinct non-zero projections of � on the eigenspaces of A. As the vectors �i lie in distinct



Symmetry and Eigenvectors 19eigenspaces of A, they have distinct eigenvalues and therefore, for each i, there is a poly-nomial pi such that pi(A)�i = �i and pi(A)�j = 0 when j 6= i. This also shows that thevectors �i all lie in W . Because � =Pi �i, we see that W is contained in the span of thevectors �i and therefore these vectors form a basis for W .Since �T�i = �Ti �Ti we havepi(A)JSpj(A)�r = pi(A) ��Tpj(A)�r = � k�jk2�i; if r = j;0; otherwise.This implies that the m2 operators pi(A)JSpj(A) span the space of all linear operators onW . As � 2W , each vector in W? is orthogonal to � and therefore JS acts on W? as thezero operator.7.2 Corollary. Let A be the adjacency operator of the graph X, let S be a subset ofV (X) with characteristic function � and let � be the partition of V with S and V nS asits cells. If no eigenvector of A is orthogonal to � then the discrete partition is the onlyequitable re�nement of �.Proof. IfW? is non-zero then it contains an eigenvector for A, this eigenvector is necessar-ily orthogonal to �. Thus the hypothesis implies thatW = F (V ), and therefore that A andJS generate the algebra of all linear operators on F (V ). Consequently no non-zero propersubspace of F (V ) is invariant under A and JS . This implies that there is no equitablere�nement of the partition with cells S and V nS.If i 2 V (X) and f is an eigenvector for A such that f(i) = 0 then the restrictionof f to V n i is an eigenvector for A(X n i), with the same eigenvalue. ConsequentlyCorollary 7.2 implies that, if A(X) and A(X n i) have no eigenvalue in common, no non-identity automorphism of X �xes i.If A has no eigenvector orthogonal to 1 then Corollary 7.2 implies that the discretepartition is the only equitable partition of X. We leave it as an exercise to show that, ifthe characteristic polynomial of A is irreducible over the rationals, then A and J have nocommon eigenvector, and consequently X has no non-identity automorphisms. This is aclassical result, �rst appearing in [25]. Another proof follows from Theorem 6.2.We present an extension of Theorem 7.1.



20 Chan & Godsil7.3 Theorem. Let X be a connected graph and let �1; : : : ; �m be characteristic vectorsof subsets S1; : : : ; Sm of V (X). Let W be the space spanned by all vectors of the formAr�i. Then the algebra M generated by A and JSi (i = 1; : : : ;m) is isomorphic to thedirect sum of the algebra of all linear operators on W and the algebra generated by therestriction of A to W?.Proof. Suppose y is an eigenvector for A in W . If �Ti y = 0 for each i then�Ti Ary = 0for each i and so y 2W? \W ; hence y = 0. Thus we may assume that �Ti y 6= 0 for somei. We now show thatW is an irreducibleM-module. Suppose that y lies in a submoduleW1 of W with �i 2W1. As X is connected, for any j there is an integer r such that�Tj Ar�i > 0:Consequently �j 2W1, for all j, and therefore W1 =W .Next, let L be a linear endomorphism of W that commutes with each element of M.We aim to show that L is a scalar multiple of the identity map. For any vector �, ifL��T = ��TLthen L� and � must be parallel; i.e, � is a right eigenvector for L. Similarly �T and �TLare parallel and therefore �T is a left eigenvector. If L� = c� and �TL = c�T thenc�T� = �TL� = d�T�;whence we see that � and �T have the same eigenvalue.Suppose now that L�i = 0. Because A and L commute we than have LAr�i = 0 forall r and therefore, for any j, �Tj LAr�i = 0. Since L commutes with JSj = �j�Tj , fromabove, �Tj L = c�Tj for some c. It follows that c�Tj Ar�i = 0 for all r, and hence c = 0.Thus we have proved that L�i = 0 for all i.Assume next that L�i = ci�i for i = 1; : : : ;m and ci 6= 0 for any i. Thenci�Tj Ar�i = �Tj ArL�i = cj�Tj Ar�i;for all values of r. This implies that ci is independent of i; denote its common value by c.



Symmetry and Eigenvectors 21If y 2W and Ay = �y then �Ly = LAy = ALywhich shows that each eigenspace of A in W is �xed by L. Suppose that y1; : : : ; yr are thenon-zero projections of �i on the eigenspaces of A in W . Then�i = y1 + � � �+ yrand so c�i = L�i = Ly1 + � � �+ Lyr:>From this it follows that Lyj = cyj for all j.To complete the proof that L is a scalar operator, it su�ces to show that eacheigenspace of A in W is spanned by projections of the vectors �i. Assume by way ofcontradiction that this is false. Then we would have an eigenspace U and a vector u in Uorthogonal to the projection of each vector �i onto U . This implies that �Ti u = 0 for all iand hence u = 0.Summing up, we have shown that W is an irreducible M-module, and that the onlylinear endomorphisms of W that commute with M are the scalar operators. By Schur'stheorem [19, Theorem 5.3], it follows that M acts on W as the algebra of all linearendomorphisms. Because W contains each vector �i, we see that JSi acts on W? as thezero operator. This completes the proof.The condition that hA;J i is the algebra of all linear operators of F (V ) is clearly verystrong. Nonetheless it often holds. Some evidence for this is provided by the followingtable. We believe that the proportion of graphs on n vertices such that hA;J i is the fullmatrix algebra tends to 1 as n increases. (This belief is based on the results in the tableand on experiments with random graphs on up to 20 vertices.)jV j No. of No. of graphs with No. of asymmetric No. of asymmetric &graphs hA;J i =Mn�n(R) graphs connected graphs6 78 4 4 47 522 46 76 728 6996 1370 1848 17869 154354 48457 67502 65726Figure 5 contains all four graphs of order six with the property that hA;Ji generatesthe algebra of all linear operators of F (V ).



22 Chan & Godsil
Figure 5: Graphs of order 6 with hA;J i =Mn�n(R)The proofs of the main results in this section (Theorem 7.1 and Theorem 7.3) arebased on ideas from La�ey [20].8. Walks AgainTwo graphs X and Y are cospectral if A(X) and A(Y ) are similar. The following resultimplies that cospectral graphs have the same closed walk generating function.8.1 Lemma. If A and B are symmetric matrices, then the following are equivalent:i. A and B are similar.ii. A and B have the same characteristic polynomial.iii. tr(An) = tr(Bn), for all n � 0.We let W (X; t) denote the generating function for walks in the graph X, enumeratedby their length. If S � V (X) then WS(X; t) is the generating function for the walks in Xthat start at a vertex in S, enumerated by length. If S and T are subsets of V (X) thenWS;T (X; t) is the generating function for the walks in X that start at a vertex in S and�nish in T . In particular, Wi(X; t) is the generating function for the walks in X that startat i and Wi;i(X; t) is the generating function for the walks in X that start and �nish atthe vertex i.The next two results can be derived from identities in [17].8.2 Lemma. Let X and Y be cospectral graphs. Then their complements X and Y arecospectral if and only if W (X; t) =W (Y; t).8.3 Lemma. Let i and j be vertices in the graph X. Then Xni and Xnj are cospectralif and only if Wi;i(X; t) = Wj;j(X; t). Their complements are cospectral as well if andonly if we also have Wi(X; t) =Wj(X; t).



Symmetry and Eigenvectors 23If � is the characteristic vector of S and the space spanned by the vectors Ar� hasdimension s + 1, we say that S has dual degree s. The covering radius of S is the leastinteger r such that each vertex of X is at distance at most r from some vertex in S. Itfollows that (I + A)0�; : : : ; (I + A)r� are linearly independent with increasing numberof non-zero entries, thus r � s. As the diameter of X is the maximum value for thecovering radius of a vertex, this inequality is a generalization of the well known fact thatthe diameter of X is bounded above by the number of distinct eigenvalues of X, less 1.The terms covering radius and dual degree come from coding theory, where they referto the covering radius and dual degree of subsets of the n-cube or,more generally, of theHamming graph H(n; q). For more information see, e.g., [11, Chapter 11].Let S be a subset of V (X) with characteristic function �. De�ne two vertices i and jof X to be equivalent if (Ar�)(i) = (Ar�)(j); r � 0:This determines a partition of V , which we call the partition induced by S. The partitioninduced by V itself is the walk partition, since two vertices i and j are in the same cell ifand only the generating function for the walks in X that start at i is equal to the generatingfunction for the walks in X that start at j. The walk partition ! is a re�nement of thepartition of V (X) by valency. It is re�ned in turn by the coarsest equitable partition of Xthat re�nes the partition with S and its complement as its cells. This shows that the dualdegree of X is a lower bound on the number of cells in this partition.It follows from the proof of Theorem 7.1 that the A-module generated by � is anirreducible module for the algebra hA;JSi. This module has a basis consisting of vectorsAr�, and so the matrix M representing the action of A on this module is determined bythe inner products hAr�;AAs�i; r; s � 0:As hAr�;AAs�i = h1;Ar+s+1�i it follows that M is determined by the numbers �TAr�,i.e., by the number of walks in X that start in �nish in S and have length r, for eachnon-negative integer r.8.4 Theorem. Let X be a graph on n vertices and let S be a subset of V (X) with dualdegree n� 1. Then the walk generating functions Wi;S(X; t), for i 2 V (X), determine X.Proof. Let � be the characteristic function of S. As the dual degree of S is n�1, it followsfrom the proof of Theorem 7.1 that the matricesAr;s := Ar��TAs; 1 � r; s � n



24 Chan & Godsilform a basis for the algebra of all n� n matrices. ButAr��TAr = Ar�(As�)T ;consequently the matrices Ar;s are determined by the given walk generating functions.As these matrices form a basis, we can write A as a linear combination of them. Thecoe�cients in this linear combination are determined by the inner productshA;Ar;si = hA;Ar��TAsi = �TAr+s+1�:Hence these coe�cients are determined by the walk generating function WS;S(X; t); sincethis equals Pi2SWi;S(X; t), the theorem follows.If Wi;S =Wj;S then hei � ej ;Ar�i = 0for all non-negative integers r. But if the dual degree of S is n � 1 then the vectors Ar�span Rn , consequently in this case ei� ej must zero, and therefore i and j are equal. Notealso thatWi;S(X; t) is determined by its �rst n coe�cients. We can order the set of all realgenerating functions by writing F (t) > G(t) if the �rst non-zero coe�cient of F (t)�G(t)is positive. The point of Theorem 8.4 is that, under the given hypothesis, the graph X isdetermined by the ordered set of walk generating functions. Thus it provides an e�ectiveisomorphism test.9. TreesLet D be the diagonal matrix whose i-th diagonal entry is the valency of the i-th vertexof the graph X. If X is connected then 0 is a simple eigenvalue of A�D with eigenvector1; it follows from the spectral decomposition that the all-ones matrix J is a polynomial inA�D. Hence, when X is connected, the algebra generated by A and J is contained in thealgebra generated by A and D. If X is a tree we can say more about the latter algebra.What we do say has not been published before.First we need some more notation. A walk in X is closed if its �rst and last vertices arethe same; it is irreducible if any two vertices at distance two in the sequence are distinct.If X is a tree then any two vertices are joined by exactly one irreducible walk, and thelength of this walk is the distance between the two vertices.Let A be the adjacency matrix of X, and let pr(A) denote the matrix with ij-entryequal to the number of irreducible walks of length r from i to j in X. De�ne the generating



Symmetry and Eigenvectors 25function �(X; t) by �(X; t) =Xr pr(A)tr:Note that p0(A) = I and p1(A) = A. As a walk of length two is either closed or irreducible,p2(A) = A2 � D. Our next result implies that pr(A) is a polynomial in A and D, withdegree r in A.9.1 Theorem. Let A be the adjacency matrix of X. We have(t2(D � I)� tA+ I)�(X; t) = (1� t2)I: (9:1)Proof. The coe�cient of tr in (9.1) is(D � I)pr�2(A)� Apr�1(A) + pr(A);with the understanding that r � 0 and pr(A) = 0 when r < 0.Suppose that i and j are vertices ofX. Assume further that r � 3. Then (Apr�1(A))i;jequals the number of walks of length r from i to j that are formed by a walk of length 1from i to one of its neighbours, ` say, followed by an irreducible walk of length r� 1 from` to j. This class of walks includes all irreducible walks of length r from i to j. It alsocontains the walks that start (i; `; i), followed an irreducible walk of length r� 2 from i toj with second vertex distinct from `, that is, an irreducible walk of length r � 2 from i toj with second vertex not equal to `. The number of these walks is ((D � I)pr�2(A))i;j.Accordingly we have proved that the coe�cient of tr in (t2(D � I)� tA + I)�(X; t)is zero when r � 3. We have�(X; t) = I + tA+ t2(A2 �D) + t3M;for some matrix M (with entries formal power series in t). Now(I � tA+ t2(D � I))(I + tA+ t2(A2 �D) + t3M) = I + t2(A2 �D �A2 +D � I) + t3N;where the entries of N are, again, formal power series in t. It follows from this that theleft and right sides of (9.1) are equal as generating functions.



26 Chan & Godsil9.2 Corollary. Let A be the adjacency matrix of the graph X, and let D be the diagonalmatrix of valencies of X. Then pr(A) is a polynomial in A and D with degree r in A.If X has vertex set V , let Xi denote the graph with the same vertex set, where twovertices are adjacent in Xi if and only if they are at distance i in X. (Thus X1 = X.) LetAi be the adjacency matrix of Xi, and let A0 denote the identity matrix of order jV j� jV j.If r is greater than the diameter of X then Xr has no edges and Ar = 0. We call the Ai'sthe distance matrices of X.9.3 Corollary. If X is a tree with diameter d then hA;Di contains A0; : : : ; Ad.Proof. If X is a tree then two vertices are at distance r if and only if there is a uniqueirreducible walk of length r joining them. Therefore Ar = pr(A) andXr Artr = (1� t2)(I � tA+ t2(D � I))�1and therefore the matrices Ar are polynomials in A and D.The remaining results in this section have no bearing on the main topic of these notes,but may still be interesting.If X is a graph on n vertices, W (X; t) denotes the n�n matrix with ij-entry equal tothe generating function for the walks in X from i to j, counted by length. We callW (X; t)the walk generating function of X. It is not hard to show that, if A is the adjacency matrixof X, then W (X; t) = (I � tA)�1:Our next result shows that, for regular graphs, �(X; t) is determined by W (X; t).9.4 Corollary. If X is a regular graph with valency k then�(X; t) = 1� t21 + (k � 1)t2 W (X; t(1 + (k � 1)t2)�1):Suppose that X has exactly c connected components. It follows from Theorem 9.1that each entry of �(X; t) is the product of a formal power series in t with the polynomial1� t2, given this it can be shown that (1� t2)c divides det�(X; t).



Symmetry and Eigenvectors 279.5 Lemma. Let X be a graph. Thendet(I � tA+ t2(D � I)) = 1� t2if and only if X is a tree.Proof. We �rst show that the result holds when X is a tree. We proceed by inductionon the number of vertices, noting that it can be easily veri�ed when X has two vertices.Suppose X has at least three vertices. Suppose i is a vertex in X with valency 1, adjacentto a vertex j. with valency at least 2. Let Y be the graph got by deleting i from X. LetD1 and A1 be respectively the valency and adjacency matrices of Y . IfM := I � tA+ t2(D � I)then Mi;i = 1, Mi;j = �t and Mi;r = 0 if r 6= i; j. If we add t times column i of M tocolumn j and delete row and column i, the resulting matrix is I � tA1 + t2(D1 � I), andits determinant is equal to det(M).Now we prove the converse. By Theorem 9.1,�(X; t) = (1� t2)(I � tA+ t2(D � I))�1:If det(I� tA+ t2(D�I)) = (1� t2), this implies that the entries of �(X; t) are polynomialsin t and therefore there is an upper bound on the length of an irreducible walk in X.Consequently X has no cycles. From the �rst part of the proof, it follows that det(I �tA+ t2(D � I)) is (1� t2)c, where c is the number of components of X; this forces us toconclude that X is a tree.It is left an exercise to show that det(I � tA+ t2(D� I)) divides (1� t2)n if and onlyif X is a forest.Finally, we note that di�erentiating both sides of (9.1) with respect to t yields, aftersome manipulation, that(I � tA+ t2(D � I))�0(X; t)(I � tA+ t2(D � I)) = (t2 + 1)A� 2tD:Here �0(X; t) is the derivative of �(X; t) with respect to t. If X is a forest then �0(X; 1)is the distance matrix of X.



28 Chan & GodsilCompact GraphsCompact graphs are a class of graphs with the property that, if a non-identity automor-phism exists then we can �nd one in polynomial time. Equitable partitions provide a usefultool to study them with. Our treatment follows [13], with some adjustments occasionedby interesting work of Evdokimov, M. Karpinski and I. Ponomarenko [9].10. A Convex PolytopeLet M be a matrix algebra, for example, the adjacency algebra of a graph. We de�neS(M) to be the set of all doubly stochastic matrices that commute with each element ofM. When M = hAi, we will usually write S(A) rather than S(M). The set S(M) isconvex and contains the permutation matrices that commute with each element of M. IfG and H are two matrices in S(M) and F = tG + (1 � t)H for some t in the interval[0; 1] then Fi;j 6= 0 if either Gi;j 6= 0 or Hi;j 6= 0. From this we see that any permutationmatrix in S(M) is an extreme point. Slightly modifying Evdokimov et al, we de�ne M tobe compact if all the extreme points of S(M) are permutation matrices. Note that whenM is �nitely generated the set S(M) is polyhedral|ifM is generated by A1; : : : ; Ar thenS(M) consists of the matrices F such thatF � 0;AiF = FAi; i = 1; : : : ; rF1 = 1;FT1 = 1:As S(M) is clearly bounded, it will therefore be a convex polytope.We say that a graph X is compact if its adjacency algebra is compact. In this casethe terminology, and many of the basic results, are due to Tinhofer [30].Why is this property signi�cant? One reason is that it is possible to �nd extremepoints of S(A) in polynomial time. If all extreme points of S(A) belonged to Aut(A) thenwe would be able to decide, in polynomial time, whether a graph admitted an non-identityautomorphism. In general, no such algorithm is known.The complete graphs are compact, a fact which is equivalent to the statement thatany doubly stochastic matrix is a convex combination of permutation matrices. Cycles andtrees are compact graphs; the disjoint union of two connected non-isomorphic k-regulargraphs is not compact. (For proofs of these assertions, see [30].) The complement of a



Symmetry and Eigenvectors 29compact graph is compact, as is easily shown. The next result provides further evidencethat being compact is a strong condition.10.1 Lemma. A compact regular graph is vertex-transitive.Proof. Suppose X is compact and regular, with adjacency matrix A. Then 1jV jJ 2 S(A)and, as X is compact, we may assume thatJ =Xi aiPiwhere ai � 0 and Pi is an automorphism of X, for all i. Assume 1 2 V (X). Since all entriesin J are equal to 1 it follows that, for each r, there is a permutation matrix in the abovesum, P say, such that P1;r = 1. Hence, for each vertex r of X, there is an automorphismof X that maps 1 to r, and thus Aut(X) acts transitively on V (X) as claimed.Lemma 10.1 is not the full truth, we have stated it here because the argument usedin its proof is important. We now o�er a more precise result, from [13], but with a newproof. Note that a permutation group on a set V is generously transitive if, given any twopoints in X, there is a permutation that swaps them.10.2 Lemma. If X is regular, connected and compact, then Aut(X) is generouslytransitive.Proof. Let G = Aut(X). As X is compact, the matrices in G span the same subspace asthe matrices in S(A). As X is regular and connected, and matrix which commutes withA commutes with J , and therefore its row and columns sums are all equal. Hence thereal span of the matrices in S(A) is equal to C(A), and consequently the centralizer of Gin Mn�n(R) is C(C(A)) = hAi, [28, Theorem 39.3], which is commutative. Hence G ismultiplicity free, with rank equal to the number of eigenvalues of A [2, Example 2.1]. Also,hAi is an association scheme|since it is generated by A and A = AT , all matrices in hAiare symmetric and so all orbitals of G are symmetric. Hence G is generously transitive.



30 Chan & Godsil11. Equitable PartitionsLet � be an equitable partition of X, and let D be the characteristic matrix of �. Let Pbe de�ned by P = D(DTD)�1DT :Then P is symmetric, P 2 = P and P and D have the same column space. Hence P is thematrix representing orthogonal projection onto the column space of D, i.e., onto F (V; �).Note that DTD is a diagonal matrix, with i-th diagonal entry equal to the size of the i-thcell of �, and that P is a block-diagonal matrix with each diagonal block a multiple of the`all-ones' matrix. In particular, all entries of P are non-negative. Because 1 2 F (V; �) itfollows that P1 = 1, which implies that each row of P sums to 1. Similarly each columnsums to 1 and therefore P is a doubly stochastic matrix.11.1 Lemma. Let X be a graph and let � be a partition of V (X). Then � is equitableif and only if the matrix P representing orthogonal projection onto F (V; �) lies in S(A).Proof. The entries of P are non-negative, as we saw above. Because 1 2 F (V; �) it followsthat P1 = 1 and, because P is symmetric, it is therefore a doubly stochastic matrix. Thecolumn space of P is F (V; �), which is A-invariant. Hence each column of AP lies inF (V; �) and therefore PAP = AP . AccordinglyPA = (AP )T = (PAP )T = PAP = AP;which proves that A and P commute and therefore P 2 S(A). Conversely, if P and Acommute then AP = APP = PAP;since P represents the orthogonal projection onto F (V; �), AP 2 F (V; �). As a result,F (V; �) is A-invariant, and by Lemma 5.2, � is equitable.11.2 Lemma. If X is a compact graph, each equitable partition is an orbit partition.Proof. Let � be an equitable partition of the compact graph X, and let P be the matrixrepresenting orthogonal projection on F (V (X); �). Then P 2 S(A(X)), and hence P is aconvex combination of automorphisms of X. Arguing as in the proof of Lemma 10.1, itfollows that the cells of � are the orbits of some group of automorphisms of X.



Symmetry and Eigenvectors 31One consequence of this is that the line graph of Kn, L(Kn), is not compact whenn � 7|the spanning subgraph of Kn formed by a 3-cycle and and (n� 3)-cycle, with itscomplement, determines an equitable partition of L(Kn) with two cells that is not an orbitpartition.But a stronger statement is true. Evdokimov, M. Karpinski and I. Ponomarenko [9]have recently proved that the Johnson graph J(v; k) is compact if and only if k = 1 orv = 4 and k = 2. This answers a question raised in an earlier draft of this work, where weasked whether the Petersen graph is compact. Their argument is based on the followingresult.11.3 Lemma. If X is a compact regular graph then Aut(X) contains automorphismsthat map each vertex of X to an adjacent vertex.Proof. Suppose that X has valency k and adjacency matrix A. Then 1kA belongs to S(A),hence is a convex combination of automorphisms. Each of these automorphisms maps anyvertex to and adjacent vertex.It is a simple exercise using this to determine the compact Johnson graphs. Evdoko-mov et al also show that the n-cube is compact if and only if n � 4.We have shown that each equitable partition of X determines an element of S(A).There is a converse to this. If M 2 S(A), let XM denote the directed graph with vertexset V (X) and with arc from i to j if and only if Mi;j 6= 0.11.4 Theorem. Let X be a graph and suppose that M 2 S(A). Then the strongcomponents of XM form an equitable partition of X.Proof. Let Y denote XM and assume that C is a subset of V (Y ) such that there is no arc(u; v) with u 2 C and v =2 C. Then the sum of the entries of M in the rows correspondingto C is jCj, whence the sum of the entries in the submatrix of M with rows and columnsindexed by C is again jCj. But this implies that if v =2 C and u 2 C then (M)vu = 0, andtherefore there are no arcs in Y from a vertex not in C to a vertex in C. It follows that,as M is doubly stochastic, we may write in block-diagonal form asM = 0B@M1 . . . Mr1CA



32 Chan & Godsilwhere M1; : : : ;Mr are doubly stochastic matrices and the graphs XMi are strongly con-nected.Let � be the partition whose cells are the vertex sets of the strong components of Y ,and let P be the matrix representing orthogonal projection on F (V (X); �). We aim toshow that P is a polynomial inM ; since P is doubly stochastic it will follow that P 2 S(A).Assume that Y is a strongly connected directed graph on m vertices with adjacencymatrix Mi. Then the matrix 12(Mi + I) is doubly stochastic and, for some s,N = (12(Mi + I))s > 0:Choose 1 � c > 0 maximal such that N � cmJ � 0. Now, we want to show by inductionthat for all k � 1, Nr � (1� (1� c)k) 1mJ:This is true when k = 1. Suppose the inequality holds for all k � t. Then(N � c 1mJ)(N t � (1� (1� c)t) 1mJ) = N t+1 � (1� (1� c)t+1) 1mJ� 0:Since 1 � c > 0, we have limt!1N t � limt!1(1� (1� c)t) 1mJ = 1mJ:Because N t is doubly stochastic for all t � 0, we have limt!1N t = 1mJ . Consequently,any matrices that commute with Mi would commute with 1mJ , that is, 1mJ 2 C(C(Mi)).In [28], Theorem 39.3 states that any matrix in C(C(Mi)) = hMii; as 1mJ 2 C(C(Mi)) itfollows that J = qi(Mi) for some polynomial qi.Accordingly, for i = 1; : : : ; r there is a polynomial qi such thatqi(Mi) = 1jV (Yi)jJ ;It is now a straightforward exercise to show that, if q := Qi qi, then q(M) is the matrixrepresenting orthogonal projection P on F (V (Y ); �).11.5 Corollary. The discrete partition is the only equitable partition of X if and onlyif S(A) = fIg.To complete this section, we comment further on the recent interesting work by Ev-dokimov, M. Karpinski and I. Ponomarenko [9]. A cellular algebra is a matrix algebra



Symmetry and Eigenvectors 33which contains I and J and is closed under Schur multiplication. (Cellular algebras arealso known as coherent algebras, and Schur multiplication is often referred to as Hadamardmultiplication.) It is not too hard to show that an automorphism of a graph X commuteswith each elements of the cellular algebra generated by A(X). Evdokimov et al de�ne agraph X to be weakly compact if the cellular algebra generated by its adjacency matrix iscompact. Every compact graph must be weakly compact. However Evdokomov et al showthat if Aut(X) is a regular permutation group, or has an abelian regular subgroup of indextwo, then X is weakly compact. Since the automorphism group of a compact regular graphmust be generously transitive, it follows that there are many weakly compact graphs thatare not compact. Their works indicates that the class of weakly compact graphs is at leastas nice as the class of compact graphs. In particular, they show that the automorphismgroup of a weakly compact graph can be computed in polynomial time.We can de�ne a partition � of V (X) to be equitable relative to the cellular algebra Cgenerated by A(X) if F (V; �) is invariant under C. With this de�nition, Lemma 11.1 andTheorem 11.4 can be extended without further work to weakly compact graphs.



34 Chan & GodsilDistance Regular GraphsThe material in these last three sections follows the treatment from [11, Chapters 11 &13]. (Fairly closely, which may not be a surprise.)12. De�nitionsWe de�ne a graph X to be distance regular if(a) it is connected,(b) for each vertex u, the distance partition @u of X relative to u is equitable, and(c) the quotient X=@u is independent of u.In fact condition (c) can be replaced by the assumption that X is regular, although this isnot trivial to prove. (See [18].) We consider one family of examples. The vertices of theJohnson graph J(v; k) are the k-subsets of a �xed set of size k; two k-subsets are adjacentif their intersection has size k � 1. The easiest way to see this graph is distance regular isto show that the distance partition relative to a vertex u is also the orbit partition for thestabilizer of u in Aut(J(v; k)).A graph X is distance transitive if, given two ordered pairs (u; u0) and (v; v0) suchthat dist(u; u0) = dist(v; v0)there is an automorphism a of X such that ua = v and u0a = v0. Every distance transitivegraph is distance regular, but the converse is far from true. We note one class of examples,Latin square graphs. Let L be an n�n Latin square, which we view as a set of n2 orderedtriples (i; j; Li;j); 1 � i; j � n:(Here Li;j denotes the ij-entry of L.) Let X(L) be the graph with these triples as vertices,where two triples are adjacent if they agree in some coordinate. Note that the de�nitionof a Latin square implies that two triples can agree in at most one coordinate. The graphX(L) has n2 vertices, valency 3(n� 1) and diameter 2. It is distance regular, but we leavethe proof of this for the reader. There are examples of Latin squares L of order as low as8 such that X(L) has trivial automorphism group. (For details, see [27].)A Steiner triple system is a collection of 3-subsets, called blocks, of a v-set such thatevery 2-subset of the v-set occurs in exactly one of the blocks. The line graph of a Steinertriple system has the blocks being its vertices, and two blocks are adjacent if and only iftheir intersection is non-empty. The line graphs of a Steiner triple system are distance



Symmetry and Eigenvectors 35regular with diameter two, which are also called the strongly regular graphs. Mendelsohnhas shown that every �nite group is the automorphism group of a �nite Steiner triplesystem and a strongly regular graph, [23, 24].If X is a connected graph, let Xr denote the graph with the same vertex set as X,but with two vertices adjacent in Xr if and only if they are at distance r in X. Let Ardenote the adjacency matrix of Xr and let A0 denote the identity matrix. Let J denote thematrix with all entries equal to 1. If X is connected with diameter d, then the followingconditions hold (as the reader may verify).1. A0 = I,2. Pdr=0Ar = J ,3. ATr = Ar.Furthermore, the connected graph X is distance regular if and only if the followingholds [11],4. ArAs belongs to the real span of A0; : : : ; Ad, for all r and s.This shows that the matrices form an association scheme with d classes. For back-ground on association schemes see, e.g., [8,2,4,11].12.1 Theorem. Let X be a distance regular graph. Then the walk generating functionWi;j(X; t) is determined by the distance between i and j in X.Proof. It follows from Axiom 4 above that Am1 lies in the span of A0; : : : ; Ad, for all non-negative integers m. Hence the ij-entry of Am1 is determined by the distance between iand j in X.13. CosinesSuppose X is a distance regular graph with diameter d and let u� be the representationbelonging to the eigenvalue � of A. As we noted at the end of the last section, the walkgenerating function Wi;j(X; t) is determined by the distance between i and j in X. Oneconsequence of this is that Wi;i(X; t) is independent of the choice of the vertex i, andtherefore X is walk-regular, in the sense used at the end of Section 3. This means that allvectors u�(i) have the same length, and hence that the geometry of the points u�(i), fori in V (X), is determined by the inner products hu�(i); u�(j)i. Hence we de�ne the cosine



36 Chan & Godsilw�(r) to be the cosine of the angle between u�(i) and u�(j), where i and j are two verticesat distance r in X.Let @ be the distance partition of X relative to some vertex. As X is distance regular,this partition is equitable. Let B denote the adjacency operator for the quotient X=@.Then w� is a function on the vertices of X=@, with the following important property.13.1 Theorem. Let � be an eigenvalue of the distance-regular graph X and let @ bethe distance partition of X relative to some vertex. Then w� is an eigenvector for theadjacency operator of X=@.Proof. Assume @ is the distance partition relative to the vertex 1 ofX, with cells @0; : : : ; @d,and let i be a vertex at distance r from 1. Let Br;s denote the number of vertices in @sadjacent to a given vertex in @r; note that this is 0 if jr� sj > 1. Thus the matrix B withrs-entry Br;s is tridiagonal. Let u be the representation of X a�orded by the eigenspacebelonging to �. Then �u(i) =Xj�i u(j):A neighbour of i is at distance r�1, r or r+1 from 1. Hence, if we take the inner productof each side of the equality with u(1) and then divide by the square of the length of u(1),we �nd that �w�(r) = Br;r�1w�(r � 1) + Br;rw�(r) +Br;r+1w�(r + 1):This proves our claim.One consequence of this theorem is that each eigenvalue of A must be an eigenvalueof B. (It follows from Theorem 6.2 that each eigenvalue of B is an eigenvalue of A.) Thisimplies in turn that the eigenvalues of A are determined by the quotient X=@. Since thenumber of vertices in X=@ is usually much smaller than the number of vertices of X, thisis somewhat surprising. Theorem 13.1 also implies that the function on V (X) that mapseach vertex in @r to w�(r) is an eigenvector for A contained in F (V; @).The cosines belonging to an eigenvalue of a distance regular graph satisfy a numberof useful identities. Assume that X has valency k. As�u�(i) =Xj�i u�(j)



Symmetry and Eigenvectors 37we have � =Xj�i hu�(j); u�(i)ihu�(i); u�(i)i = kw�(1)and therefore w�(1) = �k � 1: (13:1)14. FeasibilityLet u be the representation belonging to the eigenvalue � of the distance regular graph X,and let E be the matrix representing orthogonal projection on the eigenspace belongingto �. If i and j are vertices of X at distance r thenEi;j = hu(i); u(j)i = w(r)hu(i); u(i)i:Let m be the multiplicity of �. As E2 = E, each eigenvalue of E is 0 or 1, hence trE isequal to the rank of E, which is m. On the other handtrE =Xi2V hu(i); u(i)i:But X is walk-regular, whence hu(i); u(i)i is independent of i and thereforehu(i); u(i)i = mjV j :Consequently Ei;j = w(r)m=jV j.As E2 = E and E = ET , we haveXj2V (E1;j)2 = E1;1: (14:1)Let vr denote the number of vertices at distance r from a �xed vertex in X. Then (14.1)can be rewritten as Xr vrw(r)2m2jV j2 = mjV j ;from which it follows that Xr vrw(r)2 = jV jm : (14:2)It can be shown that the integers vr are determined by the quotient of X with respect tothe distance partition of a vertex. Given this, (14.2) implies that the multiplicities of theeigenvalues of X can be determined from this quotient.



38 Chan & GodsilThis leads to the most important feasibility condition for the existence of distance-regular graphs. We do not discuss this here, but simply refer the reader to [4,11]. Insteadwe consider a related result, which constrains the possible automorphisms of distance-regular graphs. The result is due to G. Higman, although the �rst published account is inCameron [6]. (And our treatment follows Section 13.8 of [11].)Let X be a distance-regular graph with diameter d. If a 2 Aut(X), let vr(a) denotethe number of vertices i of X such that ia is at distance r from i. An algebraic integer isa complex number that satis�es a monic polynomial with integer coe�cients.14.1 Theorem (G. Higman). Let X be a distance-regular graph with diameter d andlet � be an eigenvalue of X with multiplicity m. If a 2 Aut(X) thenmjV (X)j dXr=0 vr(a)w�(r)is an algebraic integer.Proof. Let u = u� be the representation belonging to �. If a 2 Aut(X) thena� = UT� âU�:Given that â and E� = U�UT� commute, it is easy to show thatar� = UT� (â)rU�:Now am = 1 for some integer m, whence am� = 1 and hence each eigenvalue of a� is anm-th root of unity, and an algebraic integer. Accordingly, tr(a�) is a sum of algebraicintegers, and so is itself an algebraic integer.To complete the proof, we show that the sum in the statement of the theorem is justthe trace of a�. We havetr(a�) = tr(UT� âU�) = tr(U�UT� â) = tr(E�â):To compute the last trace, we compute the ii-entry of E�â. This is the i-th entry of E�âei.But E�âei = E�eia�1and therefore (E�â)i;i = (E�)i;ia�1 = hu(i); u(ia�1)i:This implies that tr(a�) =Xi hu(i); u(ia�1)i =Xr vr(a) mjV jw�(r);from which the theorem follows.



Symmetry and Eigenvectors 39Following G. Higman, Cameron [6] uses Theorem 14.1 to show that the Moore graphon 3250 vertices cannot be vertex-transitive, if it exists.Theorem 14.1 can also be used to that show there is no automorphism of the linegraph of Kn that maps each vertex to a distinct, non-adjacent vertex. Suppose such anautomorphism a exists, that is v0(a) = v1(a) = 0 and v2(a) = jV (L(Kn))j. It is su�cientto show that m�w�(2) is not an algebraic integer for some eigenvalue � of L(Kn). Thegraph L(Kn) is a strongly regular graph, from [11: Chapter 5], the eigenvalues of L(Kn) arek = 2(n� 2); � = (n� 4) and � = �2 with multiplicities 1; n� 1 and n(n�3)2 respectively.We have w�(1) = �k = n� 42(n� 2) :The complement of L(Kn) is also strongly regular, therefore,w�(2) = �� � 1v � 1� k = �2(n� 2) ;and m�w�(2) = �2(n� 1)(n� 2)which is not an algebraic integer when n � 4.A similar argument shows that the block graph of a Steiner triple system cannot havean automorphism that maps each vertex to a distinct and non-adjacent vertex.
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