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Abstract

We survey some of what can be deduced about automorphisms of a graph from infor-
mation on its eigenvalues and eigenvectors. Two of the main tools are convex polytopes

and a number of matrix algebras that can be associated to the adjacency matrix of a graph.



Eigenvectors and Eigenpolytopes

We study eigenvectors of the adjacency matrix of a graph, and how these interact with
the graph’s automorphisms. The treatment in the first four sections is based loosely on
[10,16].

1. Eigenvalues and Automorphisms

Our aim in this section is to introduce the idea that the eigenvectors of the adjacency
matrix of a graph are best viewed as a class of functions on the vertices of the graph. So
we present some definitions and then use them to derive some classical results concerning
simple eigenvalues of vertex-transitive graphs.

Let X be a graph with vertex set V. If ¢ and j are vertices in X, we write ¢ ~ j
to denote that ¢ is adjacent to j. Let F(V') denote the space of real functions on V. We
denote the characteristic vector of the vertex ¢ of X by e;; the vectors e, form the standard

basis of F(V)). The adjacency operator A is the linear operator on F'(V') defined by

(Af)(@) =D £()-

jri
The matrix that represents .A relative to the standard basis is the usual adjacency matrix

A of X.
The inner product of two functions f and g from F(V) is

> fi)g(i);

1%
the adjacency operator is self-adjoint relative to this inner product (equivalently, the ad-
jacency matrix is symmetric). We denote the function on V' that is constant and equal to
1 by 1. A function f is an eigenvector for A if it is not zero and there is a constant € such

that, for each vertex 7 in V'

0f(i) = F(i),

jri
or Af = 6f. The constant 6 is, of course, the eigenvalue of f. The graph X is regular
if and only if 1 is an eigenvector for A, with the corresponding eigenvalue equal to the
valency of X.
Let f be an eigenvector for A and let i be the vertex of X such that |f(:)| > |f(j)],
for all j € V. Then

017 @) =X FODI< D16,

jri jri
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and therefore, ™

g < LV

o= 2 17
If X is connected then equality holds if and only if |f| is a constant function. If f itself
is constant, then X is regular, otherwise X is regular and bipartite. In both cases, the
function |f| is an eigenvector. Moreover, by our choice of i, we can conclude that || is less
than or equal to the valency of ¢ and, thus, the absolute value of all eigenvalues for A is
bounded above by the maximum valency of X.

If X is a complete graph on the vertex set V of size n, then since it is regular, it has

eigenvector 1 with eigenvalue (n —1). Let f € F'(V) such that ).y, f(i) = 0. Then for
alli eV,

> FG) =—f(),

jri
and therefore —1 is an eigenvalue for X with n — 1 linearly independent eigenvectors. If

h root of unity, then the function

X is a circuit on n vertices and 7 is the primitive n'
f(i)=7% for i =0...n — 1 is an eigenvector for X with eigenvalue (7 + 7 1).

We denote the automorphism group of X by Aut(X); if i € V and a € Aut(X) then
ia is the image of 7 under a. If f € F(V) and a € Aut(X) then the composition f o a is

again a real function on X, with

(f 0a)(i) = f(ia).

The map
fr—=foa

is an invertible linear mapping of F(V') onto itself. If we need to distinguish the above

mapping from the automorphism a, we will denote it by a. Our conventions imply that
abf = abf.

If a € Sym(V) then

ae; = €;,-1,

which is probably not what we would expect.

Now we show that if a € Sym(V') then a € Aut(X) if and only if @ and A commute.
Equivalently, if a € Aut(X) then a lies in the centralizer C(A) of A. Consider for any
feF(V)andieV,

(Aa)f(i) = > af(j) = f(ja)

jri jrvi
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and

(@A) f(i) = Af(ia) = > f(1)

I~ia
Then A and a commute if and only if the right hand side of the above equations are equal.
This occurs exactly when i ~ j if and only if ia ~ ja for all ¢ € V; that is a € Aut(X).
If f is an eigenvector with eigenvalue # and a € Aut(X) then f oa is again an

eigenvector with eigenvalue #; simply note that

Y (fea)(i) =) flia) =D f(t) =6(foa)(i).
i ji t~ia
Although we have not developed much theory yet, we can use what we have to derive
some results concerning the eigenvalues of vertex-transitive graphs.
Assume X is a vertex-transitive graph with automorphism group G. Let 6 be a simple
eigenvalue of A, and let f be a corresponding eigenvector. If a € G then f o a is again an

eigenvector with eigenvalue 6, as 6 is simple it follows that

foa=cf (1.1)

for some constant c. Now there is a least positive integer r such that a” = 1; from (1.1)
we then find that ¢” = 1. Hence c is an r-th root of unity. As both f and f o a are real
functions this implies that ¢ = 1.

1.1 Theorem (Petersdorf and Sachs [26]). Let X be a vertex transitive graph on
n vertices with valency k, and let 8 be a simple eigenvalue of A. Then k — 6 is an even
integer. If 6 # k then |V| is even.

Proof. Let f be an eigenvector for 6. If a € Aut(X) and foa = f then f is constant
on the orbits of a. If foa = —f and S is an orbit of a then either f is zero on S, or
f(ia) = — f(i) for each i in S.

If f is constant then Af = kf, i.e, 8 = k. So we may assume that f is not constant.
As Aut(X) is vertex-transitive, it follows that there is a constant ¢ such that f(i) = +c,
for all vertices ¢ in X. We may assume without loss that ¢ = 1. Let ¢ be a vertex of X
and let £, be the number of neighbours j of i such that f(j) = — f(¢). Then

=Y () = (k= 26)f(5). (1.2)

i

This proves our claim concerning 6.
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Finally, as X is regular, the all ones vector 1 is an eigenvector for A. As A is self-

adjoint, eigenvectors with distinct eigenvalues are orthogonal. Hence

0=(f1)=> f(i)

i€V
and thus we deduce that |V| must be even. 0

It is an interesting exercise to show that, if X is vertex transitive and has two simple
eigenvalues, neither equal to the valency k, then |V(X)| must be divisible by 4. It can
also be shown that X has at least three vertices then it has at most |V (X)|/2 simple
eigenvalues. This is another reasonable exercise. (Proofs of both these results are given in
16].)

A natural question is how many simple eigenvalues a vertex transitive graph can have.

Note that (1.2) implies that ¢; is independent of the vertex i. Let 7 be the partition
of V(X), where vertices i and j are in the same cell of 7 if f(7) = f(j). Then 7 has exactly
two cells, and the number of neighbours in a given cell of a vertex ¢ of X is determined by
the cell in which ¢ lies. This means, in the terminology of Section 5, that 7 is an equitable

partition of X.

2. Eigenspaces

If real-valued functions on V(X)) are interesting then it is not unreasonable to consider
functions on V(X) with values in the vector space R, in particular those functions f from

V to R™ such that, for some constant 6

0f(i) = F). (2.1)

ji
By way of example, consider a regular dodecahedron in 3-space, with centre of mass at
the origin. Let X be the 1-skeleton of this solid and let p be the map that associates each

vertex of X with its image in R®. From the symmetry of the solid, we see that each vertex

¢ there is a constant c; such that

ep(i) = p(j)-

jei
Since all vertices of the solid are equivalent under its symmetry group, c; is independent
of i and so (2.1) holds.
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Our aim is to generalize this example. We use A to denote the adjacency matrix of
X. Let 6 be an eigenvalue of A with multiplicity m and let Uy be a |V| x m matrix whose
columns form an orthonormal basis for the eigenspace belonging to . As each column of
U, is an eigenvector for A we have U, = AU,. Hence, if uy(i) denotes the i-th row of
Uy, then (2.1) holds (with u, in place of f). We call the function u, from V to R™ the

representation belonging to 6. As the columns of U, form an orthonormal set of vectors,
Ulu, =1

and therefore, if we define E, := U,U{ then E, = E} and

E,, itT=0;

0, otherwise.

EQET — {

In fact E, is the matrix representing orthogonal projection onto the column space of
U,. This implies that E, is an invariant of the eigenspace, and does not depend on the
orthonormal basis we chose to form Uy.

Next, if  and y are vectors in R, for some m, then (z,y) denotes their inner product.

If 7 and j are two vertices of X then

(Ee)i,j = (up(7), up(J))-

This shows that the Euclidean distance between the points uy(i) and u,(j) is determined

by ¢, j and 6.

A convex polytope is the convex hull of a finite set of points in R™. A vertex of a
polytope is a point in it which is an endpoint of any closed line segment that contains it
and is contained in the polytope. (Equivalently, a vertex is an extreme point.)

If S is a finite subset of R™ then the vertices of the convex hull C of S are a subset
of S. Any linear mapping of R™ that fixes S as a set must fix the polytope generated
by S, and a linear mapping fixes all points in C' if and only if it fixes each vertex of C.
The simplest example occurs when m = 1. If |S| > 2 then C has exactly two vertices and
certainly any linear mapping that fixes these two vertices fixes all points in C.

The convex hull of the set of points uy(i), for all ¢ in V(X), is the eigenpolytope
belonging to 6. Figure 1 illustrates the four eigenpolytopes of the cube. The corresponding
matrices U, are listed in the following table. If h is an eigenvector for A with eigenvalue
6 and S is the set of vertices on which h takes its maximum value then the convex hull
of the points uy(i), for ¢ € S is a face of the eigenpolytope. Conversely each face can

be obtained from an eigenvector, since we can define the faces of a polytope as the set
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Figure 1: Eigenpolytopes of the Cube

of points on which a linear function takes its maximum value. Note that the eigenvector
—h determines a face disjoint from that gotten from h. Eigenpolytopes of distance-regular
graphs are studied at some length in [14].
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3. Walks

A walk of length r in a graph X is a sequence z,...,z, of vertices from X, such that
consecutive vertices are adjacent. A walk is closed if its first and last vertices are equal. In
this section we show that the geometry of each eigenpolytope of X is determined by the
number of walks of certain types in X. The number of walks W, ;(X,r) of length r from

vertex ¢ to vertex 7 in X is equal to
(es AT€j>'

We will derive an alternative expression for this number. The walk generating function
W, ;(X,t) is defined to be the formal sum

2 Wi

r>0

The geometry of the eigenpolytopes of X is completely determined by these walk generating
functions. Our main goal in this section is to demonstrate this.
If 6 is an eigenvalue of A, let E, denote orthogonal projection onto the associated

eigenspace. For each eigenvalue # of A, we have

The spectral decomposition of A is equivalent to the identity
A - Z eEe,
6

where we sum over all eigenvalues 6 of A. This is a standard result, of course, which can be
found in many texts. (See [21], for example.) From (3.1) and the spectral decomposition

we obtain, for any non-negative integer r:
6

Consequently
(e;, A"e; ZG (e;5 Ege;) (3.2)

As E, = U,U}', we obtain our next result.
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3.1 Theorem. For any two vertices ¢ and j in the graph X and any non-negative integer

r, we have

Wi,j(X7T) = ZGT<UG(i)aU9(j)>,
)

where we sum over all eigenvalues 6 of A. O

3.2 Corollary. The inner product (uy(i),uy(j)) is determined by 6 and the sequence
WZ,](X’ ’r) fOI" T = 0, ]_, P

Proof. ;From (3.2), we have (e;,p(A)e;) = > 4 p(0)(ug(i), ug(j)), for any polynomial p.

Let
1, ifx =20,

S G

A£6

if x # 6, r an eigenvalue of A,

be a product over all eigenvalues of A. Then (uy(i), uqg(j)) = (e;,pg(A)e;) and the result

follows. .

The significance of Corollary 3.2 is that it shows that the geometry of the set of points

{ug(i) : 1€ V}

is determined by 6 and the walk generating functions W; ;(X,t) for all vertices ¢ and j of
X.

As one useful consequence we note that, if X is a vertex-transitive graph, the walk
generating function W, ;(X,t) is independent of the vertex i and therefore the length of
the vector u,(i) does not depend on i. Thus in this case all points u,(i) for 7 in V' lie on a
sphere with centre at the origin. The same conclusion will hold more generally for graphs
X with the property that the walk generating functions W, ;(X,t) are independent of i.
We will call such graphs walk-regular. They need not be vertex-transitive, but nonetheless
have a number of properties in common with vertex-transitive graphs. For examples, the
Petersdorf-Sachs theorem (Theorem 1.1) holds for walk-regular graphs. For if X is walk-
regular and 6 is a simple eigenvalue for X then |u,(7)| is independent of 4, and the rest of

the proof follows. (For further information, see [16,11].)
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4. Automorphisms

It follows from the spectral decomposition of A that each projection E, is a polynomial in
A. Therefore each automorphism of X, viewed as a linear mapping, commutes with each

projection E,. As Ey = UyUZ, we thus have
§Uy = §UsUy Uy = UyUy 9Us,

which implies that
ug(ig) = Ua(i)UeTgUa-

Here U/} U, is an m x m matrix that is easily shown to be orthogonal. Let us denote it
by gy. The mapping g — g, is thus a representation of the automorphism group into the
group of m x m real orthogonal matrices; we obtain one such representation from each
eigenspace of X.

An automorphism g lies in the kernel of the representation if and only if gU, = Uy,
i.e., if and only if § fixes each column of U,. It follows that if g, is the identity for
each eigenvalue 6 then ¢ fixes every eigenvector of A, which implies that it is the identity

mapping on F (V).

Now consider the eigenpolytope of X associated to an eigenvalue 6 of X, with multi-
plicity m.

If m = 1 then this is either a single point or a closed line segment in R'. In the first
case the representation of Aut(X) afforded by the eigenspace is trivial (each automorphism
is mapped to the identity). In the second case, the image of an automorphism either fixes
each endpoint of the line segment, and hence induces the identity mapping, or it swaps the
two endpoints and its square is the identity. Thus the representation of Aut(X ) determines
a homomorphism of Aut(X) onto the group of order 2, and therefore Aut(X) contains a
subgroup of index 2. If each eigenvalue of X has multiplicity 1, it follows that Aut(X) must
be an elementary abelian 2-group. (It is an interesting problem just how large Aut(X) can
be in this case. Note that we saw in Section 1 that the eigenvalues of a vertex-transitive
graph cannot all be simple, hence |V| — 1 is an upper bound.)

If m = 2 then the eigenpolytope is either a closed line segment or a convex polygon.
In the first case our previous analysis suffices, in the second we obtain a representation
of Aut(X) as a subgroup of a dihedral group. If each eigenvalue of X has multiplicity at
most 2 then Aut(X) is therefore a subgroup of a direct product of dihedral groups.

Babai, Grigoryev and Mount [1] have proved that if the multiplicity of the eigenvalues

are bounded by some constant, then Aut(X) can be computed in polynomial time.
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Equitable Partitions

Let C,,...,C,, be the orbits of a group of automorphisms of X. Any two vertices in
C, must have the same number of neighbours in C;, for all 1 < 4, 5 < m. Equitable
partitions are partitions of V(X)) with this regularity property, that are not necessarily

orbit partitions. Our treatment in this and the next section follows [15] and [11: Chapter 5].

5. Basics

If 7 is a partition of a set, let |7| denote the number of cells of 7. A partition is discrete
if its cells are all singletons.

Let X be a graph with vertex set V and let 7 be a partition of V with cells C;,...,C,,.
We say that 7 is equitable if, for each ¢ and j, the number of neighbours in C; of a given
vertex u in C; is determined by ¢ and 7, and is independent of the choice of u in C,.
If G is a subgroup of Aut(X), then the orbits of G form a partition © of V' with the
properties that the subgraph induced by a cell of 7 is regular and the subgraph formed by
the edges joining any two cells of 7 is bipartite and semiregular. Hence, the orbits of an
automorphism group of X form an equitable partition. However, the converse is not true,

Figure 2 shows an example of an equitable partition that is not an orbit partition.

Figure 2: An equitable partition that is not an orbit partition

The quotient X /7 of X relative to the equitable partition 7 is the directed graph with
the cells Cy,...,C,, of 7 as its vertices and ¢, ; arcs from cell 7 to cell j, where ¢, ; is the
number of vertices in C; adjacent to a given vertex in C;. The adjacency matrix of X /7
is the m x m matrix with ij-entry equal to ¢, ;.

Figure 3 lists four equitable partitions of the Petersen graph with their quotients.

If 7 is a partition of V, let F(V, ) denote the space of real functions on V(X)) that

are constant on the cells of .
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Figure 3: Equitable partitions of Petersen graph

Chan & Godsil

o = O
R O W

o KB B
N O N

N N O

= N O



Symmetry and Eigenvectors 13

5.1 Lemma. A subspace U of F(V) equals to F(V,n) for some partition = of V if and

only if U is a subalgebra of F (V) which contains the constant functions.

Proof. If m a partition of V' then F(V,7) is a subspace of F(V) that contains all the
constant functions; it is also closed under multiplication and is thus a subalgebra of F(V).

Conversely, suppose U is a subalgebra of F(V') which contains the constant functions
and with basis {z,...,z,,}. For each vector z,, let w;, be the partition of V' such that
vertices u, v belong to the same cell if and only if z;(u) = z;(v). Let m be the partition of

V whose cells are the non-empty pairwise intersections of the cells of 7wy, ...m,,. Let

m

c=bx, + bz, + ...+ bz

m?

where the real number b is chosen large enough that ¢ takes distinct values on vertices in
distinct cells of 7. Suppose vy, ..., v, are vertices in the cells Cy, ..., C, of 7 respectively,
and for k =1,...,r let

ye(0) =] (e(v) — c(vj?) B {1, if v € Cy;

0, otherwise.

The functions ¥4, ..., y, are the characteristic functions of Cy, ..., C, respectively. They all

belong to U because U contains the constant functions c(vj). Moreover, they are linearly

independent in U. Since each cell of 7 is contained in a cell of 7, for i = 1,...,m, we can
express the z; as a linear combination of yy,...,y,. As a result, the y;’s form a basis of U
and U is equal to F(V, ). 0

5.2 Lemma. Let X be a graph and let m be a partition of V(X). Then = is equitable
if and only if F(V,r) is A-invariant.

Proof. Suppose that x is the characteristic function of the subset S, a cell of 7 of V(X).
If i € V then (Ax)(i) equals the number of vertices in S adjacent to i. So Az is constant
on the cells of 7 if and only if the number of neighbours in S of a vertex 7 is determined

by the cell of 7 in which ¢ lies. Now the result follows at once. O

Equivalently, for undirected graphs, we can define a partition 7w to be equitable if and
only if F(V,r) is A-invariant. For directed graphs, there is a choice of the algebra (A) or
(A, AT used to define equitable partitions.

If 7 and p are partitions of V' and each cell of p is contained in a cell of 7, we say that

p is a refinement of 7, and write p < 7. This shows that the set of all partitions of V' forms
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a partially ordered set, but in fact it is even a lattice. The meet w A p of two partitions 7
and p is the partition whose cells are all the nonempty pairwise intersections of cells of m
with cells of p. The join 7V p is most easily defined as the meet of all the partitions ¢ such
that 7 < o and p < 0. Alternatively, define a graph with vertex set V, where two vertices
are adjacent if and only if they lie in the same cell of 7 or of p; the connected components
of this graph are the cells of 7V p.

The meet of two equitable partitions need not be equitable. An example is given in
Figure 4, which is the meet of m, and 74 of the Petersen graph in Figure 3. However the
join must be. We will derive this from the next result, the proof of which is left as an

exercise.

Figure 4: Meet of 7, and 74 is not equitable

5.3 Lemma. Let m and p be partitions of the set V. Then F(V,nV p) = F(V,m) N
F(V,p). ]

5.4 Corollary (McKay [22, Lemma 5.3]). Let m and p be equitable partitions of
the graph X. Then 7 V p is equitable.

Proof. Assume V = V(X). As 7 and p are equitable, both F(V,x) and F(V,p) are A-
invariant. Now the above lemma implies that F(V, 7 V p) is A-invariant and so 7 V p is

equitable. O

One important consequence is that any partition 7 has a unique maximal equitable

refinement—it is the join of all the equitable partitions that refine =.
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If 7 is a partition of V such that each cell is fixed by Aut(X) then the set of equitable
refinements of 7 is fixed by Aut(X), and therefore the coarsest equitable refinement of m
is fixed by Aut(X). (For example, we might choose 7 to be the partition of the vertices
of X by valency, which is clearly invariant under Aut(X). If «’, the coarsest equitable
refinement of 7, is discrete then it follows that Aut(X) must be the identity group.) If
is a partition with cells Cy,...,C, and v € C;, define the profile of v to be (ny,...,n,;i),
where n; is the number of neighbours v has in C;. Let m; be the partition such that two
vertices are in the same cell if and only if their profiles (relative to ) are equal. Then
is a refinement of 7 which is invariant under any automorphism that fixes each cell of 7. It
can be computed from 7 in polynomial time, hence it follows that by repeatedly computing
refinements in this manner, we can determine 7’ in polynomial time. So it is not surprising

that equitable partitions play an important role in practical graph isomorphism packages

such as nauty. Further details will be found in [7].

6. Quotients

Any subset S of V' can be represented by its characteristic function, which takes the value
1 on each element of S and 0 on each element not in S. Because a partition of V is a set
whose elements are sets, we can represent a partition 7 by its characteristic matrix, which

is the |V| x |7| matrix with the characteristic functions of the cells of = for columuns.

6.1 Lemma. Let A be the adjacency matrix of X and let m be a partition of V(X)
with characteristic matrix D. Then w is equitable if and only if there is a matrix B such
that AD = DB.

Proof. The column space of D can be identified with F(V, 7). Hence 7 is equitable if and
only if the column space of D is A-invariant. This holds if and only if, for each column x
of D, the vector Az is a linear combination of columns of D and so can be written as Db

for some vector b. O

The columns of the characteristic matrix of a partition are linearly independent,
therefore there is at most one matrix B such that AD = DB. Alternatively, note
that DT D is invertible and diagonal with entries being the sizes of the cells, and that
B = (DTD) DT AD, thus is determined by A and D. If 7 is equitable then B must be

the adjacency matrix of X /7.
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6.2 Theorem. Let X be a graph with adjacency matrix A and let m be an equitable
partition of X. Then the characteristic polynomial of A(X /) divides the characteristic
polynomial of A.

Proof. Suppose that v = |V(X)| and m = |r|. Let z,...,x, be a basis for R” such that
are the distinct columns of the characteristic matrix of = and z,,,,,,...,z, are
Let D, = (zy,...,2,,) and D, = (z,,,4,...,%,). Then

the matrix representing A relative to this basis is

<(D1T§1)_1 (D%gw) (g:;)A(Dl Ds)-

Tyyee oy T

m

each orthogonal to z,,...,x

m*

Since AD, = D,B and DT D, = 0, the matrix has the block diagonal form

(o +) (6.1)

where B is the adjacency matrix of X /7. Since the characteristic polynomial of the matrix

in (6.1) is the characteristic polynomial of A, the result follows. O

Note that it follows from this that, if the characteristic polynomial of A is irreducible

over the rationals, then the only equitable partition of X is the discrete partition.

Suppose S C V(X). The distance partition of X relative to S is the partition with
cells Cy,...,C,, where C; is the set of vertices in X at distance ¢ from S. The integer
r is the covering radius of S. We say that S is a completely regular subset of X if its
distance partition is equitable. For example, the leftmost cell of each of the four partitions
in Figure 3 are four different completely regular subsets of the Petersen graph. The ball
of radius r about a vertex u of X consists of all vertices in X at distance at most r from
u. The packing radius of S is the maximum integer e such that the balls of radius e about
the vertices in S are pairwise disjoint. A subset with packing radius e is also called an
e-code. If S has packing radius e and covering radius r then e < r. We call S a perfect
code if r = e. (This terminology is consistent with the standard usage in coding theory.)

The Johnson graph, J(n,k) has as vertices all the k-subsets of a n-set, where two
k-subsets are adjacent if and only if they intersect in k£ — 1 elements. Any single vertex
in J(n, k) is a perfect code. Furthermore, when n = 2k and k is odd, any pair of disjoint
k-subsets form a perfect (k—gl)—code. No further perfect codes are known in the Johnson
graphs. As a result, Delsarte [8, p55] states that “it is tempting to conjecture that such

codes do not exist”; this question is still open.
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6.3 Theorem. Let X be a regular graph. If X has a perfect 1-code then —1 is an

eigenvalue of A.

Proof. Assume that the valency of X is k. Suppose that C' is a perfect code in X, and
that ¢ = |C|. Let 7 be the partition with C' and V' \ C as its cells. A vertex in C' has no
neighbours in C' and k neighbours in V'\ C. A vertex in V'\ C is adjacent to exactly one

vertex in C, and to k — 1 vertices in V' \ C. Therefore 7 is equitable, and the adjacency

()

The characteristic polynomial of this matrix is

matrix of the quotient is

22— (k—1z—k=(z— k) (z+1),

whence Theorem 6.2 implies that —1 must be an eigenvalue of A. O
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Algebras

In the next two sections, we derive results concerning some matrix algebras, and apply
them to equitable partitions. The following section provides some information about one

of these algebras for trees.

7. Algebras

As we have seen, finding the equitable partitions of a graph is equivalent to finding the A-
invariant subalgebras of F/(V') that contain the constant functions. If Y is such a subalgebra
then Y is invariant under all elements of the algebra generated by A. But there is a larger
algebra that we can work with. Let J denote the square matrix with all entries equal to
1 (and order determined by the context.) A subspace of F(V') is J-invariant if and only
if it contains all constant functions, and therefore a subspace F(V,7) is invariant under A
and J if and only if it is A-invariant.

The operator J is a polynomial in A if and only if X is a connected regular graph.
(This result was first observed by A. J. Hoffman, for a proof see Biggs [3, Prop. 3.2].)
Hence, if X is not regular, then (A, 7) is strictly larger than (.A). In particular, if (A, J)
is equal to the algebra of all linear operators on F(V'), then no proper non-zero subspace
of F(V) is (A, J)-invariant, and consequently the only equitable partition of X is the
discrete partition. (And X has no non-identity automorphisms.)

In fact, under comparatively mild conditions, (A, J) is equal to the algebra of all
linear operators on F (V). We introduce some machinery to let us justify this claim. If
S CV(X), let Jg be the operator on F (V') defined by

Zje,s‘ f(g), ifiesS;

0, otherwise.

s = {

7.1 Theorem. Let A be the adjacency operator of the graph X and let S be a subset
of V(X)) with characteristic function o. Let W be the subspace of F(V') spanned by the
functions A"c. Then the algebra generated by A and Jg is isomorphic to the direct sum
of the algebra of all linear operators on W and the algebra generated by the restriction of
A to W—.

Proof. The space F(V) is a direct sum of eigenspaces of A; let o4,...,0,, denote the

distinct non-zero projections of o on the eigenspaces of A. As the vectors o, lie in distinct
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eigenspaces of A, they have distinct eigenvalues and therefore, for each i, there is a poly-
nomial p; such that p;(A)o; = o, and p,(A)o; = 0 when j # i. This also shows that the
vectors o; all lie in W. Because 0 = ) 0;, we see that W is contained in the span of the
vectors o,; and therefore these vectors form a basis for W.

T T_ T

Since 0" 0; = 0; o; we have

112, =i
P (A)Tsp: (A)a, = pi(A) 00T p (A)o, — { lo;l e, it =

0, otherwise.

This implies that the m? operators p;(A)Jsp;(A) span the space of all linear operators on
w.
As 0 € W, each vector in W~ is orthogonal to o and therefore Jg acts on W~ as the

zero operator. |

7.2 Corollary. Let A be the adjacency operator of the graph X, let S be a subset of
V(X)) with characteristic function o and let p be the partition of V with S and V'\ S as
its cells. If no eigenvector of A is orthogonal to o then the discrete partition is the only

equitable refinement of p.

Proof. If W~ is non-zero then it contains an eigenvector for A, this eigenvector is necessar-
ily orthogonal to o. Thus the hypothesis implies that W = F(V'), and therefore that A and
Jg generate the algebra of all linear operators on F(V). Consequently no non-zero proper
subspace of F(V) is invariant under A and Jg. This implies that there is no equitable
refinement of the partition with cells S and V'\ S. 0

If i € V(X) and f is an eigenvector for A such that f(i) = 0 then the restriction
of f to V' \i is an eigenvector for A(X \ ¢), with the same eigenvalue. Consequently
Corollary 7.2 implies that, if A(X) and A(X \ ¢) have no eigenvalue in common, no non-
identity automorphism of X fixes i.

If A has no eigenvector orthogonal to 1 then Corollary 7.2 implies that the discrete
partition is the only equitable partition of X. We leave it as an exercise to show that, if
the characteristic polynomial of A is irreducible over the rationals, then A and J have no
common eigenvector, and consequently X has no non-identity automorphisms. This is a

classical result, first appearing in [25]. Another proof follows from Theorem 6.2.

We present an extension of Theorem 7.1.
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7.3 Theorem. Let X be a connected graph and let o, ..., 0,, be characteristic vectors
of subsets Sy,...,S,, of V(X). Let W be the space spanned by all vectors of the form
A"c;. Then the algebra M generated by A and Jg, (i = 1,...,m) is isomorphic to the

2

m

direct sum of the algebra of all linear operators on W and the algebra generated by the
restriction of A to W—.

Proof. Suppose y is an eigenvector for A in W. If 07y = 0 for each i then
ol Ay =0

for each i and so y € W~ N W, hence y = 0. Thus we may assume that o, y # 0 for some
i.
We now show that W is an irreducible M-module. Suppose that y lies in a submodule

W, of W with o, € W;. As X is connected, for any j there is an integer r such that
T
o; Ao, > 0.

Consequently o; € Wy, for all j, and therefore W, = W.
Next, let L be a linear endomorphism of W that commutes with each element of M.

We aim to show that L is a scalar multiple of the identity map. For any vector o, if

LooT = 00T L

then Lo and o must be parallel; i.e, o is a right eigenvector for L. Similarly ¢ and o7 L

T

are parallel and therefore o7 is a left eigenvector. If Lo = co and 07 L = co” then

colo =ocTLo =do’o,

whence we see that o and o7 have the same eigenvalue.

Suppose now that Lo, = 0. Because A and L commute we than have LA"o;, = 0 for

all » and therefore, for any j, O'JTL.ATO'i = 0. Since L commutes with Ts, = aja;-r, from
above, O'JTL = ca]T for some c. It follows that caJTATai = 0 for all r, and hence ¢ = 0.

Thus we have proved that Lo, = 0 for all z.

Assume next that Lo, = c,0, for i =1,...,m and ¢; # 0 for any 7. Then

T Ar T gr o T gr
co; Ao, =0, A'Lo, = c;o; Aoy,

for all values of r. This implies that ¢, is independent of 7; denote its common value by c.
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If y e W and Ay = 6y then
6Ly = LAy = ALy

which shows that each eigenspace of A in W is fixed by L. Suppose that y,,...,y, are the

non-zero projections of o, on the eigenspaces of A in W. Then
o, =Y+t

and so
co, = Lo, =Ly, +---+ Ly,.

;From this it follows that Ly; = cy; for all j.

To complete the proof that L is a scalar operator, it suffices to show that each
eigenspace of A in W is spanned by projections of the vectors o,. Assume by way of
contradiction that this is false. Then we would have an eigenspace U and a vector u in U
orthogonal to the projection of each vector o; onto U. This implies that o] u = 0 for all i
and hence u = 0.

Summing up, we have shown that W is an irreducible M-module, and that the only
linear endomorphisms of W that commute with M are the scalar operators. By Schur’s
theorem [19, Theorem 5.3], it follows that M acts on W as the algebra of all linear
endomorphisms. Because W contains each vector o;, we see that Jg acts on W™ as the

zero operator. This completes the proof. O

The condition that (A, J) is the algebra of all linear operators of F/(V) is clearly very
strong. Nonetheless it often holds. Some evidence for this is provided by the following
table. We believe that the proportion of graphs on n vertices such that (A, J) is the full
matrix algebra tends to 1 as n increases. (This belief is based on the results in the table

and on experiments with random graphs on up to 20 vertices.)

V| No. of No. of graphs with No. of asymmetric No. of asymmetric &
graphs (A, TJ) =M, (R) graphs connected graphs

6 78 4 4 4

7 522 46 76 72

8 6996 1370 1848 1786

9 154354 48457 67502 65726

Figure 5 contains all four graphs of order six with the property that (A, J) generates

the algebra of all linear operators of F(V).
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Figure 5: Graphs of order 6 with (A, J) = M,,.,,(R)

The proofs of the main results in this section (Theorem 7.1 and Theorem 7.3) are

based on ideas from Laffey [20].

8. Walks Again

Two graphs X and Y are cospectral if A(X) and A(Y) are similar. The following result

implies that cospectral graphs have the same closed walk generating function.

8.1 Lemma. If A and B are symmetric matrices, then the following are equivalent:
i. A and B are similar.
ii. A and B have the same characteristic polynomial.
iii. tr(A") = tr(B™), for alln > 0. 0

We let W (X, t) denote the generating function for walks in the graph X, enumerated
by their length. If S C V(X)) then W¢(X,t) is the generating function for the walks in X
that start at a vertex in S, enumerated by length. If S and T are subsets of V(X) then
Wg (X, t) is the generating function for the walks in X that start at a vertex in S and
finish in 7. In particular, W;(X,t) is the generating function for the walks in X that start
at ¢ and W, ;(X,t) is the generating function for the walks in X that start and finish at
the vertex 1.

The next two results can be derived from identities in [17].

8.2 Lemma. Let X and Y be cospectral graphs. Then their complements X and Y are
cospectral if and only if W (X,t) = W(Y,1t). 0

8.3 Lemma. Let i and j be vertices in the graph X. Then X \i and X \j are cospectral
if and only if W, ,(X,t) = W, ;(X,t). Their complements are cospectral as well if and
only if we also have W;(X,t) = W,(X,t). 0
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If o is the characteristic vector of S and the space spanned by the vectors A"c has
dimension s + 1, we say that S has dual degree s. The covering radius of S is the least
integer r such that each vertex of X is at distance at most r from some vertex in S. It
follows that (I + A)%,...,(I + A)"c are linearly independent with increasing number
of non-zero entries, thus » < s. As the diameter of X is the maximum value for the
covering radius of a vertex, this inequality is a generalization of the well known fact that
the diameter of X is bounded above by the number of distinct eigenvalues of X, less 1.
The terms covering radius and dual degree come from coding theory, where they refer
to the covering radius and dual degree of subsets of the n-cube or,more generally, of the
Hamming graph H(n,q). For more information see, e.g., [11, Chapter 11].

Let S be a subset of V(X)) with characteristic function o. Define two vertices ¢ and j
of X to be equivalent if

(A"0)(i) = (A"0)(j), r=0.

This determines a partition of V', which we call the partition induced by S. The partition
induced by V itself is the walk partition, since two vertices ¢ and j are in the same cell if
and only the generating function for the walks in X that start at ¢ is equal to the generating
function for the walks in X that start at j. The walk partition w is a refinement of the
partition of V(X)) by valency. It is refined in turn by the coarsest equitable partition of X
that refines the partition with S and its complement as its cells. This shows that the dual
degree of X is a lower bound on the number of cells in this partition.

It follows from the proof of Theorem 7.1 that the A-module generated by o is an
irreducible module for the algebra (A, Jg). This module has a basis consisting of vectors
A"o, and so the matrix M representing the action of A on this module is determined by

the inner products

(A"0, AA°0), r,s > 0.
As (A0, AA%c) = (1, A"+*+15) it follows that M is determined by the numbers o7 A" 0,
i.e., by the number of walks in X that start in finish in S and have length r, for each

non-negative integer r.

8.4 Theorem. Let X be a graph on n vertices and let S be a subset of V(X) with dual
degree n — 1. Then the walk generating functions W, (X, t), for i € V(X), determine X.

Proof. Let o be the characteristic function of S. As the dual degree of S is n —1, it follows

from the proof of Theorem 7.1 that the matrices

A =A"coTA*, 1<r,s<n

T,S
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form a basis for the algebra of all n x n matrices. But
A"ooT A" = A"o(A%0)T,

consequently the matrices A, ; are determined by the given walk generating functions.

S
As these matrices form a basis, we can write A as a linear combination of them. The

coefficients in this linear combination are determined by the inner products
(A A, )= (A, A"00" A%) = cT A"t g,

Hence these coefficients are determined by the walk generating function Wg (X, t); since
this equals ) ;. W; (X, 1), the theorem follows. ]

If Wi,S = Wj,S then
(e; —e;,A"0) =10

for all non-negative integers r. But if the dual degree of S is n — 1 then the vectors A"
span R", consequently in this case e; —e; must zero, and therefore 7 and j are equal. Note
also that W; ¢(X,t) is determined by its first n coefficients. We can order the set of all real
generating functions by writing F'(t) > G(t) if the first non-zero coefficient of F(t) — G(t)
is positive. The point of Theorem 8.4 is that, under the given hypothesis, the graph X is
determined by the ordered set of walk generating functions. Thus it provides an effective

isomorphism test.

9. Trees

Let D be the diagonal matrix whose i-th diagonal entry is the valency of the i-th vertex
of the graph X. If X is connected then 0 is a simple eigenvalue of A — D with eigenvector
1; it follows from the spectral decomposition that the all-ones matrix J is a polynomial in
A — D. Hence, when X is connected, the algebra generated by A and J is contained in the
algebra generated by A and D. If X is a tree we can say more about the latter algebra.
What we do say has not been published before.

First we need some more notation. A walk in X is closed if its first and last vertices are
the same; it is irreducible if any two vertices at distance two in the sequence are distinct.
If X is a tree then any two vertices are joined by exactly one irreducible walk, and the
length of this walk is the distance between the two vertices.

Let A be the adjacency matrix of X, and let p, (A) denote the matrix with ij-entry

equal to the number of irreducible walks of length r from 7 to j in X. Define the generating
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function ®(X,¢t) by
(X, 1) = Y p (A"

Note that py(A) = I and p;(A) = A. As a walk of length two is either closed or irreducible,
po(A) = A% — D. Our next result implies that p,.(A) is a polynomial in A and D, with

degree r in A.

9.1 Theorem. Let A be the adjacency matrix of X. We have
(t*(D — 1) —tA+ D®(X,t) = (1 - t*)I. (9.1)
Proof. The coefficient of ¢" in (9.1) is

(D —1I)p, 5(A) — Ap, 1(A) +p,.(A);

with the understanding that » > 0 and p,(A) = 0 when r < 0.

Suppose that i and j are vertices of X. Assume further that r > 3. Then (Ap,_,(4)), ;
equals the number of walks of length r from ¢ to j that are formed by a walk of length 1
from 7 to one of its neighbours, ¢ say, followed by an irreducible walk of length » — 1 from
¢ to j. This class of walks includes all irreducible walks of length r from 7 to 5. It also
contains the walks that start (i, /¢, ), followed an irreducible walk of length r — 2 from i to
j with second vertex distinct from ¢, that is, an irreducible walk of length » — 2 from i to
j with second vertex not equal to £. The number of these walks is ((D — I)p, 5(A)); ;-

Accordingly we have proved that the coefficient of ¢" in (t*(D — I) — tA + 1)®(X, 1)

is zero when r > 3. We have

®(X,t) =1+tA+t*(A*> — D) +t°M,
for some matrix M (with entries formal power series in ¢). Now
(I—tA+t*(D—1))(I+tA+t*(A>—D)+t°M)=1+t*(A>-~D—A>+D—1I)+tN,

where the entries of N are, again, formal power series in t. It follows from this that the

left and right sides of (9.1) are equal as generating functions. 0
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9.2 Corollary. Let A be the adjacency matrix of the graph X, and let D be the diagonal
matrix of valencies of X. Then p,.(A) is a polynomial in A and D with degree r in A. [

If X has vertex set V, let X, denote the graph with the same vertex set, where two
vertices are adjacent in X, if and only if they are at distance ¢ in X. (Thus X; = X.) Let
A, be the adjacency matrix of X;, and let A, denote the identity matrix of order |V| x |V|.
If r is greater than the diameter of X then X, has no edges and A, = 0. We call the A,’s

the distance matrices of X.

9.3 Corollary. If X is a tree with diameter d then (A, D) contains A, ..., A .

Proof. If X is a tree then two vertices are at distance r if and only if there is a unique

irreducible walk of length r joining them. Therefore A, = p,(A) and

YA =(1-t)I-tA+t*(D-1)) "

and therefore the matrices A, are polynomials in A and D. 0

The remaining results in this section have no bearing on the main topic of these notes,
but may still be interesting.
If X is a graph on n vertices, W (X, t) denotes the n X n matrix with ij-entry equal to
the generating function for the walks in X from i to j, counted by length. We call W (X, t)
the walk generating function of X. It is not hard to show that, if A is the adjacency matrix
of X, then
W(X,t)= (I —tA)~"

Our next result shows that, for regular graphs, ®(X,t) is determined by W (X, t).

9.4 Corollary. If X is a regular graph with valency k then

1—¢2

R

W(X,t(1+ (k—1)t>)1). O
Suppose that X has exactly ¢ connected components. It follows from Theorem 9.1

that each entry of ®(X,t) is the product of a formal power series in ¢ with the polynomial
1 — t2, given this it can be shown that (1 — #2)¢ divides det ®(X, ).
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9.5 Lemma. Let X be a graph. Then
det(I —tA+t*(D—1)) =1~
if and only if X is a tree.

Proof. We first show that the result holds when X is a tree. We proceed by induction
on the number of vertices, noting that it can be easily verified when X has two vertices.
Suppose X has at least three vertices. Suppose ¢ is a vertex in X with valency 1, adjacent
to a vertex j. with valency at least 2. Let Y be the graph got by deleting ¢ from X. Let

D, and A, be respectively the valency and adjacency matrices of Y. If
M:=1-tA+t*(D~-1)

then M, =1, M, , = —tand M; . = 0if r # 4,5. If we add ¢ times column ¢ of M to
column j and delete row and column i, the resulting matrix is I — tA; +t2(D; — I), and
its determinant is equal to det(M).

Now we prove the converse. By Theorem 9.1,
O(X,t)=(1—t*)(I - tA+t*(D - I))""

If det(I —tA+t*>(D—1)) = (1—1t2), this implies that the entries of ®(X,t) are polynomials
in ¢t and therefore there is an upper bound on the length of an irreducible walk in X.
Consequently X has no cycles. From the first part of the proof, it follows that det(I —
tA+t*(D —1)) is (1 —t?)¢, where c is the number of components of X; this forces us to
conclude that X is a tree. 0l

It is left an exercise to show that det(I —tA+t*(D — I)) divides (1 —t*)" if and only
if X is a forest.
Finally, we note that differentiating both sides of (9.1) with respect to ¢ yields, after

some manipulation, that
(I —tA+t*(D - 1) (X,t)I —tA+t>(D—1I)) = (t>*+1)A - 2tD.

Here ®'(X,t) is the derivative of ®(X,t) with respect to ¢t. If X is a forest then ®'(X, 1)

is the distance matrix of X.
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Compact Graphs

Compact graphs are a class of graphs with the property that, if a non-identity automor-
phism exists then we can find one in polynomial time. Equitable partitions provide a useful
tool to study them with. Our treatment follows [13], with some adjustments occasioned

by interesting work of Evdokimov, M. Karpinski and I. Ponomarenko [9].

10. A Convex Polytope

Let M be a matrix algebra, for example, the adjacency algebra of a graph. We define
S(M) to be the set of all doubly stochastic matrices that commute with each element of
M. When M = (A), we will usually write S(A) rather than S(M). The set S(M) is
convex and contains the permutation matrices that commute with each element of M. If
G and H are two matrices in S(M) and F = tG + (1 — t)H for some ¢ in the interval
[0, 1] then F; ; # 0 if either G, ; # 0 or H, ; # 0. From this we see that any permutation
matrix in S(M) is an extreme point. Slightly modifying Evdokimov et al, we define M to
be compact if all the extreme points of S(M) are permutation matrices. Note that when
M is finitely generated the set S(M) is polyhedral—if M is generated by A,,..., A, then
S(M) consists of the matrices F' such that

F >0,
AF=FA, i=1,...r
F1=1,
FT1=1.

As §(M) is clearly bounded, it will therefore be a convex polytope.

We say that a graph X is compact if its adjacency algebra is compact. In this case
the terminology, and many of the basic results, are due to Tinhofer [30].

Why is this property significant? One reason is that it is possible to find extreme
points of S(A) in polynomial time. If all extreme points of S(A) belonged to Aut(A) then
we would be able to decide, in polynomial time, whether a graph admitted an non-identity
automorphism. In general, no such algorithm is known.

The complete graphs are compact, a fact which is equivalent to the statement that
any doubly stochastic matrix is a convex combination of permutation matrices. Cycles and
trees are compact graphs; the disjoint union of two connected non-isomorphic k-regular

graphs is not compact. (For proofs of these assertions, see [30].) The complement of a
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compact graph is compact, as is easily shown. The next result provides further evidence

that being compact is a strong condition.

10.1 Lemma. A compact regular graph is vertex-transitive.

Proof. Suppose X is compact and regular, with adjacency matrix A. Then ‘—‘l/‘j € S(A)

and, as X is compact, we may assume that
7-Yar
i

where a; > 0 and P, is an automorphism of X, for all i. Assume 1 € V(X). Since all entries
in J are equal to 1 it follows that, for each r, there is a permutation matrix in the above
sum, P say, such that P, , = 1. Hence, for each vertex r of X, there is an automorphism
of X that maps 1 to r, and thus Aut(X) acts transitively on V(X) as claimed. 0

Lemma 10.1 is not the full truth, we have stated it here because the argument used
in its proof is important. We now offer a more precise result, from [13], but with a new
proof. Note that a permutation group on a set V' is generously transitive if, given any two

points in X, there is a permutation that swaps them.

10.2 Lemma. If X is regular, connected and compact, then Aut(X) is generously

transitive.

Proof. Let G = Aut(X). As X is compact, the matrices in G span the same subspace as
the matrices in S(A). As X is regular and connected, and matrix which commutes with
A commutes with J, and therefore its row and columns sums are all equal. Hence the
real span of the matrices in S(A) is equal to C(A), and consequently the centralizer of G
in M, ,.(R) is C(C(A)) = (A), [28, Theorem 39.3|, which is commutative. Hence G is
multiplicity free, with rank equal to the number of eigenvalues of A [2, Example 2.1]. Also,
(A) is an association scheme—since it is generated by A and A = AT, all matrices in (A)

are symmetric and so all orbitals of G are symmetric. Hence G is generously transitive. O
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11. Equitable Partitions

Let m be an equitable partition of X, and let D be the characteristic matrix of n. Let P
be defined by
P=DD"D)"'DT.

Then P is symmetric, P> = P and P and D have the same column space. Hence P is the
matrix representing orthogonal projection onto the column space of D, i.e., onto F(V, ).
Note that DT D is a diagonal matrix, with i-th diagonal entry equal to the size of the i-th
cell of 7, and that P is a block-diagonal matrix with each diagonal block a multiple of the
‘all-ones’ matrix. In particular, all entries of P are non-negative. Because 1 € F(V, ) it
follows that P1 = 1, which implies that each row of P sums to 1. Similarly each column

sums to 1 and therefore P is a doubly stochastic matrix.

11.1 Lemma. Let X be a graph and let w be a partition of V(X). Then 7 is equitable
if and only if the matrix P representing orthogonal projection onto F(V,7) lies in S(A).

Proof. The entries of P are non-negative, as we saw above. Because 1 € F(V, 7) it follows
that P1 = 1 and, because P is symmetric, it is therefore a doubly stochastic matrix. The
column space of P is F(V,n), which is A-invariant. Hence each column of AP lies in
F(V,n) and therefore PAP = AP. Accordingly

PA= (AP)" = (PAP)" = PAP = AP,

which proves that A and P commute and therefore P € S(A). Conversely, if P and A
commute then

AP = APP = PAP,

since P represents the orthogonal projection onto F(V,w), AP € F(V,n). As a result,
F(V,7) is A-invariant, and by Lemma 5.2, 7 is equitable. 0

11.2 Lemma. If X is a compact graph, each equitable partition is an orbit partition.

Proof. Let m be an equitable partition of the compact graph X, and let P be the matrix
representing orthogonal projection on F(V(X), 7). Then P € S(A(X)), and hence P is a
convex combination of automorphisms of X. Arguing as in the proof of Lemma 10.1, it

follows that the cells of 7w are the orbits of some group of automorphisms of X. 0
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One consequence of this is that the line graph of K,,, L(K,), is not compact when
n > 7—the spanning subgraph of K, formed by a 3-cycle and and (n — 3)-cycle, with its
complement, determines an equitable partition of L(K, ) with two cells that is not an orbit
partition.

But a stronger statement is true. Evdokimov, M. Karpinski and I. Ponomarenko [9]
have recently proved that the Johnson graph J(v, k) is compact if and only if £ = 1 or
v = 4 and k = 2. This answers a question raised in an earlier draft of this work, where we
asked whether the Petersen graph is compact. Their argument is based on the following

result.

11.3 Lemma. If X is a compact regular graph then Aut(X) contains automorphisms

that map each vertex of X to an adjacent vertex.

Proof. Suppose that X has valency k and adjacency matrix A. Then %A belongs to S(A),
hence is a convex combination of automorphisms. Each of these automorphisms maps any

vertex to and adjacent vertex. 0

It is a simple exercise using this to determine the compact Johnson graphs. Evdoko-

mov et al also show that the n-cube is compact if and only if n > 4.

We have shown that each equitable partition of X determines an element of S(A).
There is a converse to this. If M € S(A), let X, denote the directed graph with vertex
set V(X) and with arc from 4 to j if and only if M, ; # 0.

11.4 Theorem. Let X be a graph and suppose that M € S(A). Then the strong

components of X,, form an equitable partition of X.

Proof. Let Y denote X, and assume that C' is a subset of V(Y) such that there is no arc
(u,v) with u € C and v ¢ C. Then the sum of the entries of M in the rows corresponding
to C' is |C|, whence the sum of the entries in the submatrix of M with rows and columns
indexed by C is again |C|. But this implies that if v ¢ C and u € C then (M),, = 0, and

therefore there are no arcs in Y from a vertex not in C to a vertex in C. It follows that,

vU

as M is doubly stochastic, we may write in block-diagonal form as

M,

‘s
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where M, ..., M, are doubly stochastic matrices and the graphs X, are strongly con-
nected.

Let m be the partition whose cells are the vertex sets of the strong components of Y,
and let P be the matrix representing orthogonal projection on F(V(X), 7). We aim to
show that P is a polynomial in M since P is doubly stochastic it will follow that P € S(A).

Assume that Y is a strongly connected directed graph on m vertices with adjacency

matrix M,. Then the matrix %(Mz + I) is doubly stochastic and, for some s,

N = (%(M,; + 1)) > 0.

Choose 1 > ¢ > 0 maximal such that N — =J > 0. Now, we want to show by induction
that for all £ > 1,

N> (1—(1- c)k)%l

This is true when £ = 1. Suppose the inequality holds for all £ < ¢. Then

1 1 1
N-c—J)(N'-(1-(1=-e)H)—J)=NH —(1-(1-¢)ftH—J
(N = e J)(N' = (1= (1= ¢))=-J) (1—(1- o))
> 0.
Since 1 > ¢ > 0, we have

. t . i 1 1

lim N*> lim (1 — (1 —¢)")—J = —J.

t— o0 t— oo m m

Because N' is doubly stochastic for all ¢ > 0, we have lim, , N = %J. Consequently,
any matrices that commute with M; would commute with =J, that is, =J € C(C(M)).

2

In [28], Theorem 39.3 states that any matrix in C(C(M;)) = (M;); as - J € C(C(M;)) it

follows that J = ¢,(M;) for some polynomial g;.

Accordingly, for ¢ = 1,...,r there is a polynomial ¢; such that

1
w0 =

J;

It is now a straightforward exercise to show that, if ¢ := [], ¢;, then ¢(M) is the matrix
representing orthogonal projection P on F(V (Y), ). O

11.5 Corollary. The discrete partition is the only equitable partition of X if and only
if S(A) ={I}.

To complete this section, we comment further on the recent interesting work by Ev-

dokimov, M. Karpinski and I. Ponomarenko [9]. A cellular algebra is a matrix algebra
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which contains I and J and is closed under Schur multiplication. (Cellular algebras are
also known as coherent algebras, and Schur multiplication is often referred to as Hadamard
multiplication.) It is not too hard to show that an automorphism of a graph X commutes
with each elements of the cellular algebra generated by A(X). Evdokimov et al define a
graph X to be weakly compact if the cellular algebra generated by its adjacency matrix is
compact. Every compact graph must be weakly compact. However Evdokomov et al show
that if Aut(X) is a regular permutation group, or has an abelian regular subgroup of index
two, then X is weakly compact. Since the automorphism group of a compact regular graph
must be generously transitive, it follows that there are many weakly compact graphs that
are not compact. Their works indicates that the class of weakly compact graphs is at least
as nice as the class of compact graphs. In particular, they show that the automorphism
group of a weakly compact graph can be computed in polynomial time.

We can define a partition 7 of V(X) to be equitable relative to the cellular algebra C
generated by A(X) if F(V,r) is invariant under C. With this definition, Lemma 11.1 and

Theorem 11.4 can be extended without further work to weakly compact graphs.
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Distance Regular Graphs

The material in these last three sections follows the treatment from [11, Chapters 11 &

13]. (Fairly closely, which may not be a surprise.)

12. Definitions

We define a graph X to be distance regular if

(a) it is connected,
(b) for each vertex u, the distance partition 9, of X relative to u is equitable, and

(c) the quotient X/9,, is independent of u.

In fact condition (c) can be replaced by the assumption that X is regular, although this is
not trivial to prove. (See [18].) We consider one family of examples. The vertices of the
Johnson graph J(v, k) are the k-subsets of a fixed set of size k; two k-subsets are adjacent
if their intersection has size k — 1. The easiest way to see this graph is distance regular is
to show that the distance partition relative to a vertex u is also the orbit partition for the
stabilizer of u in Aut(J(v,k)).

A graph X is distance transitive if, given two ordered pairs (u,u’) and (v,v’) such
that

dist (u, u’) = dist(v,v’)

there is an automorphism a of X such that ua = v and v’a = v’. Every distance transitive
graph is distance regular, but the converse is far from true. We note one class of examples,
Latin square graphs. Let L be an n x n Latin square, which we view as a set of n? ordered
triples

(4,5, L; ), 1<14,j<n.

(Here L, ; denotes the ij-entry of L.) Let X (L) be the graph with these triples as vertices,
where two triples are adjacent if they agree in some coordinate. Note that the definition
of a Latin square implies that two triples can agree in at most one coordinate. The graph
X (L) has n? vertices, valency 3(n — 1) and diameter 2. It is distance regular, but we leave
the proof of this for the reader. There are examples of Latin squares L of order as low as
8 such that X (L) has trivial automorphism group. (For details, see [27].)

A Steiner triple system 1is a collection of 3-subsets, called blocks, of a v-set such that
every 2-subset of the v-set occurs in exactly one of the blocks. The line graph of a Steiner
triple system has the blocks being its vertices, and two blocks are adjacent if and only if

their intersection is non-empty. The line graphs of a Steiner triple system are distance
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regular with diameter two, which are also called the strongly regular graphs. Mendelsohn
has shown that every finite group is the automorphism group of a finite Steiner triple
system and a strongly regular graph, [23, 24].

If X is a connected graph, let X, denote the graph with the same vertex set as X,
but with two vertices adjacent in X, if and only if they are at distance r in X. Let A,
denote the adjacency matrix of X, and let A, denote the identity matrix. Let J denote the
matrix with all entries equal to 1. If X is connected with diameter d, then the following

conditions hold (as the reader may verify).

].. AOZI,

d
2. Y oA, =,
3. AT = A,.

Furthermore, the connected graph X is distance regular if and only if the following
holds [11],

4. A A, belongs to the real span of 4;,...,A,, for all r and s.

This shows that the matrices form an association scheme with d classes. For back-

ground on association schemes see, e.g., [8,2,4,11].

12.1 Theorem. Let X be a distance regular graph. Then the walk generating function
W, ;(X,t) is determined by the distance between i and j in X.

Proof. 1t follows from Axiom 4 above that A" lies in the span of A,..., A, for all non-
negative integers m. Hence the ij-entry of A" is determined by the distance between i

and j in X. 0

13. Cosines

Suppose X is a distance regular graph with diameter d and let u, be the representation
belonging to the eigenvalue 6 of A. As we noted at the end of the last section, the walk
generating function Wi7j(X,t) is determined by the distance between ¢ and 7 in X. One
consequence of this is that W, ;(X,t) is independent of the choice of the vertex i, and
therefore X is walk-regular, in the sense used at the end of Section 3. This means that all
vectors uy (i) have the same length, and hence that the geometry of the points wug(i), for

i in V(X), is determined by the inner products (ugy(i),uy(j)). Hence we define the cosine
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wy(7) to be the cosine of the angle between uy (i) and ugy(j), where i and j are two vertices
at distance r in X.

Let 0 be the distance partition of X relative to some vertex. As X is distance regular,
this partition is equitable. Let B denote the adjacency operator for the quotient X /0.

Then wy is a function on the vertices of X /9, with the following important property.

13.1 Theorem. Let 6 be an eigenvalue of the distance-regular graph X and let 0 be
the distance partition of X relative to some vertex. Then w, is an eigenvector for the

adjacency operator of X/0.

Proof. Assume 0 is the distance partition relative to the vertex 1 of X, with cells 9, ...,9,,
and let 7 be a vertex at distance r from 1. Let B, ; denote the number of vertices in 9,
adjacent to a given vertex in 9,; note that this is 0 if |r — s| > 1. Thus the matrix B with

rs-entry B, , is tridiagonal. Let u be the representation of X afforded by the eigenspace

r,s

belonging to #. Then

i
A neighbour of 7 is at distance r — 1, r or r 4+ 1 from 1. Hence, if we take the inner product

of each side of the equality with u(1) and then divide by the square of the length of u(1),
we find that

9’109(7‘) = Br,rfle(r - 1) + Br.,rwé' (T) + Br,r—|—1w0 (T + 1)

This proves our claim. O

One consequence of this theorem is that each eigenvalue of .A must be an eigenvalue
of B. (It follows from Theorem 6.2 that each eigenvalue of B is an eigenvalue of A.) This
implies in turn that the eigenvalues of A are determined by the quotient X /9. Since the
number of vertices in X /9 is usually much smaller than the number of vertices of X, this
is somewhat surprising. Theorem 13.1 also implies that the function on V(X) that maps
each vertex in 9, to wy(r) is an eigenvector for A contained in F'(V, ).

The cosines belonging to an eigenvalue of a distance regular graph satisfy a number

of useful identities. Assume that X has valency k. As

Bug(i) = D ug(j)

jri
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we have

and therefore
0
wy(1) = 7 < 1. (13.1)

14. Feasibility

Let u be the representation belonging to the eigenvalue 6 of the distance regular graph X,
and let E be the matrix representing orthogonal projection on the eigenspace belonging

to 6. If ¢ and j are vertices of X at distance r then

E; ;= (u(i),u(g)) = w(r)(u(i), u(d)).

Let m be the multiplicity of . As E? = E, each eigenvalue of E is 0 or 1, hence tr E is
equal to the rank of F, which is m. On the other hand

tr B = Z(u(i),u(i)).

But X is walk-regular, whence (u(i), (7)) is independent of i and therefore

m

(u(@), u(i)) = v

Consequently E; ; = w(r)m/|V|.
As E? = FE and E = E”, we have

Z(El,j)z =FEy (14.1)
JEV
Let v, denote the number of vertices at distance r from a fixed vertex in X. Then (14.1)

can be rewritten as )

Z w(r)?m m
V,——— = —,
V]2 14

r

from which it follows that

> vaw(r)® = 143 (14.2)

It can be shown that the integers v, are determined by the quotient of X with respect to
the distance partition of a vertex. Given this, (14.2) implies that the multiplicities of the

eigenvalues of X can be determined from this quotient.
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This leads to the most important feasibility condition for the existence of distance-
regular graphs. We do not discuss this here, but simply refer the reader to [4,11]. Instead
we consider a related result, which constrains the possible automorphisms of distance-
regular graphs. The result is due to G. Higman, although the first published account is in
Cameron [6]. (And our treatment follows Section 13.8 of [11].)

Let X be a distance-regular graph with diameter d. If a € Aut(X), let v,.(a) denote
the number of vertices ¢ of X such that ia is at distance r from 7. An algebraic integer is

a complex number that satisfies a monic polynomial with integer coefficients.

14.1 Theorem (G. Higman). Let X be a distance-regular graph with diameter d and

let 6 be an eigenvalue of X with multiplicity m. If a € Aut(X) then
d

v, (a)wy(r)

V(X)) =

is an algebraic integer.

Proof. Let u = uy be the representation belonging to 6. If a € Aut(X) then
a, = UJaU,.
Given that a and E, = U,U] commute, it is easy to show that
T T (aNT
(19 - U9 (a) U9
Now a™ = 1 for some integer m, whence ay’ = 1 and hence each eigenvalue of a4 is an
m-th root of unity, and an algebraic integer. Accordingly, tr(a,) is a sum of algebraic
integers, and so is itself an algebraic integer.
To complete the proof, we show that the sum in the statement of the theorem is just
the trace of a,. We have
tr(a,) = tr(UF aU,) = tr(U,UL &) = tr(Eya).
To compute the last trace, we compute the ii-entry of Eya. This is the i-th entry of Eyae,.
But
nglei — Ege,iafl
and therefore
~ . .1
(E9a)i,i = (Eo)i,mfl = (u(7), u(ia 7)).
This implies that
. .1
tr(ag) = > (u(i),u(ia™")) = Zm(a)mwe(r),
7 T

from which the theorem follows. O
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Following G. Higman, Cameron [6] uses Theorem 14.1 to show that the Moore graph
on 3250 vertices cannot be vertex-transitive, if it exists.

Theorem 14.1 can also be used to that show there is no automorphism of the line
graph of K, that maps each vertex to a distinct, non-adjacent vertex. Suppose such an
automorphism a exists, that is vy(a) = v;(a) = 0 and vy(a) = |V(L(K,,))|. It is sufficient
to show that mywy(2) is not an algebraic integer for some eigenvalue 6 of L(K,). The
graph L(K,)) is a strongly regular graph, from [11: Chapter 5], the eigenvalues of L(K,,) are
k=2(n-—2), #=(n—4) and 7 = —2 with multiplicities 1, n — 1 and w
We have

respectively.

0 n—4
wg(l):E:m.

The complement of L(K,,) is also strongly regular, therefore,

-0 -1 —2

w6(2):v—1—k: (n—2)’
and o(n—1)
mywe(2) = NCEDR

which is not an algebraic integer when n > 4.
A similar argument shows that the block graph of a Steiner triple system cannot have

an automorphism that maps each vertex to a distinct and non-adjacent vertex.
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