DUALITY

Chris Godsil

July 2008

CHRIS GODSIL DUALITY

<ロト <個 > < 国 > < 国 > 、

æ

OUTLINE

1 FORMAL DUALITY AND DUALITY

- Theory
- An Application

2 NOMURA ALGEBRAS

- Type-II Matrices
- Spin Models

.≣ ≯

OUTLINE

1 FORMAL DUALITY AND DUALITY Theory An Application

- Type-II Matrices Spin Models

TITLE

DEFINITION

Two association schemes are formally dual if the matrix of eigenvalues of one is the complex conjugate of the matrix dual eigenvalues of the other.

A SCHEME ON 512 VERTICES

Let *V* be a vector space of dimension three over GF(8). The 1-dimensional subspaces of *V* form a copy of PG(2,8), which has 73 points. Let Ω be a hyperoval in PG(2,8)—10 points with no three collinear, 45 lines meet Ω in two points, 28 in zero.

A SCHEME ON 512 VERTICES

Let *V* be a vector space of dimension three over GF(8). The 1-dimensional subspaces of *V* form a copy of PG(2,8), which has 73 points. Let Ω be a hyperoval in PG(2,8)—10 points with no three collinear, 45 lines meet Ω in two points, 28 in zero.

Construct a graph with vertex set *V* where two vectors are adjacent if and only if the 2-dimensional subspace they span lies in a parallel class corresponding to a point in Ω .

A SCHEME ON 512 VERTICES

Let V be a vector space of dimension three over GF(8). The 1-dimensional subspaces of V form a copy of PG(2, 8), which has 73 points. Let Ω be a hyperoval in PG(2, 8)—10 points with no three collinear, 45 lines meet Ω in two points, 28 in zero.

Construct a graph with vertex set V where two vectors are adjacent if and only if the 2-dimensional subspace they span lies in a parallel class corresponding to a point in Ω .

This graph and its complement form an association scheme with two classes

A DUAL SCHEME

The hyperoval determines a partition of the lines PG(2,8) into sets of size 28 and 45. Repeat the above construction using the dual plane and with one of these sets in place of Ω .

A DUAL SCHEME

The hyperoval determines a partition of the lines PG(2,8) into sets of size 28 and 45. Repeat the above construction using the dual plane and with one of these sets in place of Ω . This scheme is dual to the first.

DUALITY MAPS

Suppose $\mathcal A$ and $\mathcal A'$ are a formally dual pair of schemes, with

 $P_{\mathcal{A}}=\overline{Q}_{\mathcal{A}'}.$

We define a map Θ from $\mathbb{C}[\mathcal{A}]$ to $\mathbb{C}[\mathcal{A}']$ by decreeing that

$$\Theta(A_i) = \sum_j p_i(j) A'_j.$$

FORMAL DUALITY AND DUALITY NOMURA ALGEBRAS

THEORY AN APPLICATION

(日)

PROPERTIES OF DUALITY MAPS

$$\Theta(A_i) = v\overline{E_i}$$

(日)

PROPERTIES OF DUALITY MAPS

•
$$\Theta(A_i) = v\overline{E_i}.$$

• $\Theta(MN) = \Theta(M) \circ \Theta(N).$

・ロト ・聞 ト ・ 国 ト ・ 国 ト

æ

PROPERTIES OF DUALITY MAPS

•
$$\Theta(A_i) = \nu \overline{E_i}.$$

• $\Theta(MN) = \Theta(M) \circ \Theta(N).$
• $\Theta(M \circ N) = \frac{1}{\nu} \Theta(M) \Theta(N).$

PROPERTIES OF DUALITY MAPS

- $\bullet \Theta(A_i) = v\overline{E_i}.$
- $\ \ \, \Theta(MN)=\Theta(M)\circ\Theta(N).$

$$\Theta(M \circ N) = \frac{1}{\nu} \Theta(M) \Theta(N).$$

■ The matrix representing ⊖ relative to the bases provided by the Schur idempotents is *P*.

SELF-DUAL SCHEMES

A scheme is formally self-dual if $P = \overline{Q}$. De Caen observed that if A and A' are formally dual, then

 $\mathcal{A}\otimes\mathcal{A}'$

is formally self-dual.

SELF-DUAL SCHEMES

A scheme is formally self-dual if $P = \overline{Q}$. De Caen observed that if A and A' are formally dual, then

 $\mathcal{A}\otimes\mathcal{A}'$

is formally self-dual.

If \mathcal{A} is formally self-dual with a duality map Θ and \mathcal{B} is a subscheme of \mathcal{A} , then $\Theta(\mathcal{B})$ is formally dual to \mathcal{B} .

'문▶' ★ 문▶

OUTLINE

FORMAL DUALITY AND DUALITY Theory An Application

2 NOMURA ALGEBRAS
 Type-II Matrices
 Spin Models

Let *V* be the vector space \mathbb{Z}_2^d . We view *V* as a group of $2^d \times 2^d$ matrices A_u , for $u \in V$. Thus

$$A_u A_v = A_{u+v}$$

and so $A_u^2 = I$ and $A_0 = I$. These matrices form an association scheme with 2^d classes, its matrix of eigenvalues *P* satisfies $P^2 = vI$, and so it is formally selfdual.

If $C \subseteq V$, we use A_C to denote the sum

$$\sum_{u\in C} A_u$$

・ロン・雪と・雪と・ ヨン・

æ.

CODES

LEMMA

If $C \leq V$, then $\Theta(A_C) = |C|A_{C^{\perp}}$.

ヘロト 人間 とくほとくほとう

2

CODES

LEMMA

If
$$C \leq V$$
, then $\Theta(A_C) = |C|A_{C^{\perp}}$.

LEMMA

$$\Theta\left(\sum_{u} x^{d-\operatorname{wt}(u)} y^{\operatorname{wt}(u)} A_{u}\right) = \sum_{u} (x+y)^{d-\operatorname{wt}(u)} (x-y)^{\operatorname{wt}(u)} A_{u}.$$

Image: A matrix and a matrix

≣ →

MACWILLIAMS THEOREM

DEFINITION

If C is a linear code, its weight enumerator is the polynomial

$$W_C(x,y) := \sum_{u \in C} x^{n - \operatorname{wt}(u)} y^{\operatorname{wt}(u)}.$$

THEOREM

If C is a binary linear code of length n, then

$$W_{C^{\perp}}(x,y) = \frac{1}{|C|} W_C(x+y,x-y).$$

< • • • **•**

≣⇒

A PROOF OF MACWILLIAMS THEOREM

Let
$$S = \sum_{u} x^{n - \operatorname{wt}(u)} y^{\operatorname{wt}(u)} A_{u}$$
. Then

$$\operatorname{tr}(A_{C^{\perp}}S) = 2^{-n} \operatorname{tr}(\Theta^{2}(A_{C^{\perp}}S))$$

$$= 2^{-n} \operatorname{sum}(\Theta(A_{C^{\perp}}) \circ \theta(S))$$

$$= 2^{-n} \operatorname{sum}(\Theta(A_{C^{\perp}}) \circ \theta(S))$$

$$= |C|^{-1} \operatorname{sum}(A_{C} \circ \Theta(S)).$$

Image: Image:

2

OUTLINE

FORMAL DUALITY AND DUALITY Theory

An Application

2 NOMURA ALGEBRAS

- Type-II Matrices
- Spin Models

DEFINITION OF A TYPE-II MATRIX

We use $M \circ N$ to denote the Schur product of matrices M and N, and we use $M^{(-)}$ to denote the Schur inverse of M.

DEFINITION

A $v \times v$ complex matrix *W* is a *type-II matrix* if $WW^{(-)T} = vI$.

Hadamard matrices, character tables of abelian groups.

- Hadamard matrices, character tables of abelian groups.
- For any value of *t*:

$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & t & -t \\ 1 & -1 & -t & t \end{pmatrix}$$

- Hadamard matrices, character tables of abelian groups.
- For any value of *t*:

$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & t & -t \\ 1 & -1 & -t & t \end{pmatrix}$$

If $a := \frac{1}{2}(\sqrt{v^2 - 4v} - v + 2)$, then (a - 1)I + J is type-II. (Potts model.)

- Hadamard matrices, character tables of abelian groups.
- For any value of *t*:

$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & t & -t \\ 1 & -1 & -t & t \end{pmatrix}$$

- If $a := \frac{1}{2}(\sqrt{v^2 4v} v + 2)$, then (a 1)I + J is type-II. (Potts model.)
- Kronecker products of the above.

Nomura Algebras

DEFINITION

If W is a Schur invertible matrix, we define vectors $W_{i/i}$ by

$$W_{i/j} = (We_i) \circ (We_j)^{(-)}.$$

The Nomura algebra \mathcal{N}_W of *W* consists of the matrices for which all the vectors $W_{i/i}$ are eigenvectors.

FORMAL DUALITY AND DUALITY NOMURA ALGEBRAS

TYPE-II MATRICES SPIN MODELS

.≣. ⊁

PROPERTIES OF NOMURA ALGEBRAS

\blacksquare $I \in \mathcal{N}_W$.

CHRIS GODSIL DUALITY

FORMAL DUALITY AND DUALITY NOMURA ALGEBRAS

PROPERTIES OF NOMURA ALGEBRAS

■ $I \in \mathcal{N}_W$. ■ $J \in \mathcal{N}_W$ if and only if *W* is a type-II matrix.

PROPERTIES OF NOMURA ALGEBRAS

I ∈ N_W. *J* ∈ N_W if and only if *W* is a type-II matrix.
N_W is a matrix algebra.

A TRANSFORM

DEFINITION

Suppose *W* is a type-II matrix of order $v \times v$. If $M \in \mathcal{N}_W$, let $\Theta_W(M)$ be the $v \times v$ matrix such that

$$MW_{i/j} = (\Theta_W(M))_{i,j} W_{i/j}.$$

Thus if $M, N \in \mathcal{N}_W$, then

$$\Theta(MN) = \Theta(M) \circ \Theta(N).$$

We also see that $\Theta(I) = J$ and $\Theta(J) = vI$.

Image: Image:

ъ

DUALITY

THEOREM

If *W* is a type-II matrix and $M, N \in \mathcal{N}_W$, then $\Theta_W(M) \in \mathcal{N}_{W^T}$ and $\Theta_W(M \circ N) = \frac{1}{v} \Theta_W(M) \Theta_W(N)$.

DUALITY

THEOREM

If *W* is a type-II matrix and $M, N \in \mathcal{N}_W$, then $\Theta_W(M) \in \mathcal{N}_{W^T}$ and $\Theta_W(M \circ N) = \frac{1}{v} \Theta_W(M) \Theta_W(N)$.

COROLLARY

If W is a type-II matrix, then \mathcal{N}_W is the Bose-Mesner algebra of an association scheme, and \mathcal{N}_{W^T} is the Bose-Mesner algebra of a scheme dual to \mathcal{N}_W .

Image: Image:

2

OUTLINE

1 FORMAL DUALITY AND DUALITY Theory

An Application

2 NOMURA ALGEBRAS Type-II Matrices Spin Models

・ロン・雪と・雪と・ ヨン・

æ

SOME ACTION

If $A, B \in \operatorname{Mat}_{v imes v}(\mathbb{C})$, we define linear maps X_A and Δ_B by

 $X_A(M) := AM, \quad \Delta_B(M) := B \circ M.$

SOME ACTION

If $A, B \in Mat_{v \times v}(\mathbb{C})$, we define linear maps X_A and Δ_B by

$$X_A(M) := AM, \quad \Delta_B(M) := B \circ M.$$

If $\ensuremath{\mathcal{A}}$ is an association scheme then the algebra generated by the matrices

$$X_M, \Delta_M, M \in \mathbb{C}[\mathcal{A}]$$

is essentially the Terwilliger algebra of A.

ANOTHER VIEW OF THE NOMURA ALGEBRA

THEOREM

If W is a type-II matrix then the following are equivalent:

- $\blacksquare R \in \mathcal{N}_W.$
- There is a matrix *S* such that $X_R \Delta_{W^{(-)T}} X_W = \Delta_{W^{(-)T}} X_W \Delta_S$.
- $X_R \Delta_{W^{(-)T}} X_W = \Delta_{W^{(-)T}} X_W \Delta_S$ and $S = \Theta_W(R)$.

FORMAL DUALITY AND DUALITY NOMURA ALGEBRAS

< □ > < 同 >

DUALITY AS AN ENDOMORPHISM OF $Mat_{v \times v}(\mathbb{C})$

COROLLARY

If *W* is type-II and $R \in \mathcal{N}_W$, then

$$\Theta_W(R) = W^{-1}(W \circ (R(W^{(-)} \circ (WJ)))).$$

CHRIS GODSIL DUALITY

< <>>

≣⇒

SPIN MODELS

DEFINITION

A type-II matrix *W* is a spin model if $W \in \mathcal{N}_W$.

If *W* is a spin model, then $\mathcal{N}_W = \mathcal{N}_{W^T}$.

LEMMA

If W is a spin model then

$$X_W \Delta_{W^{(-)}} X_W = \Delta_{W^{(-)}} X_W \Delta_{W^{(-)}}.$$

・ロン・雪と・雪と・ ヨン・

æ.

EXAMPLES OF SPIN MODELS

CYCLIC Let θ be a primitive 2*v*-th root of unity, and define the $v \times v$ matrix *W* by

$$W_{i,j} := \theta^{(i-j)^2}.$$

Then W is a spin model.

EXAMPLES OF SPIN MODELS

CYCLIC Let θ be a primitive 2*v*-th root of unity, and define the $v \times v$ matrix *W* by

$$W_{i,j} := \theta^{(i-j)^2}.$$

Then W is a spin model.

JAEGER Let *A* be the adjacency matrix of the Higman-Sims graph. There are scalars *s* and *t* such that

$$I + sA + t(J - I - A)$$

is a spin model.

EXAMPLES OF SPIN MODELS

CYCLIC Let θ be a primitive 2*v*-th root of unity, and define the $v \times v$ matrix *W* by

$$W_{i,j} := \theta^{(i-j)^2}.$$

Then W is a spin model.

JAEGER Let *A* be the adjacency matrix of the Higman-Sims graph. There are scalars *s* and *t* such that

$$I + sA + t(J - I - A)$$

is a spin model.

NOMURA The Bose-Mesner algebra of a distance-regular double cover of $K_{n,n}$ with index two contains a spin model.

THE BRAID GROUP

The braid group on three strands is generated by elements σ and τ subject to the relation

 $\sigma \tau \sigma = \tau \sigma \tau$.

It follows that

$$(\sigma\tau\sigma)^2 = (\sigma\tau)^3$$

and therefore $(\sigma \tau \sigma)^2$ is central.

SPIN AND BRAIDS

If W is a spin model then the assignments

$$\sigma \mapsto X_W, \quad \tau \mapsto \Delta_{W^{(-)}}$$

give a representation of the braid group B_3 (and its trace gives rise to a link invariant).

CONJUGATION AND DUALITY

THEOREM (GODSIL AND CHAN)

If W is a spin model, then

$$X_{W^T}\Delta_{W^{(-)}}X_W = \Delta_{W^{(-)}}X_W\Delta_{W^{(-)T}}.$$

If Λ denotes either side of this identity and $R \in \mathcal{N}_W$, then

$$\Lambda^{-1}X_R\Lambda = \Delta_{\Theta_W(R)}.$$

Conjugation by Λ^2 is the transpose map, and Λ^4 is central.

REMARKS AND PROBLEMS

- Type-II matrices occur widely in combinatorics: symmetric designs, equiangular lines, strongly regular graphs.
- We have no examples of a type-II matrix *W* where *N_W* is interesting and *W* is not a spin model.