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Definitions

Schur Product

Definition

If A and B are m× n matrices, their Schur product A ◦B is the
m× n matrix given by

(A ◦B)i,j = Ai,jBi,j .

Chris Godsil

Type-II Matrices



Matrices Link Invariants Association Schemes

Definitions

Inverses

The matrix J with all entries equal to 1 is the identity for
Schur multiplication.

If no entry of A is zero, there is a unique matrix A(−) such
that

A ◦A(−) = J ;

we call A(−) the Schur inverse of A.
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Definitions

Type II

Definition

A v × v complex matrix W is a type-II matrix if

WW (−)T = vI.

So if W is a type-II matrix then

W−1 =
1
v
W (−)T .
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Examples: Unitary

The Cyclic Spin Model

Example

Choose θ so that θ2 is a primitive complex v-th root of 1, and let
W be the v × v matrix given by

Wi,j := θ(i−j)2 , 0 ≤ i, j < v.

spin
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Examples: Unitary

Check:

(WW (−)T )i,j =
∑

r

θ(i−r)2−(j−r)2

= θi2−j2
∑

r

θ2(j−i)r

= vδi,j .
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Examples: Unitary

Flat Matrices

Definition

A complex matrix M is flat if its entries all have the same absolute
value.
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Examples: Unitary

Two Thirds

Theorem

If W is a v × v matrix over C, then any two of the following
statements imply the third:

(a) W is type II.

(b) W is flat.

(c) W is unitary.
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Examples: Unitary

Quantum Physics

Definition

Two orthogonal bases x1, . . . , xv and y1, . . . , yv of Cv are unbiased
if all inner products 〈xi, yj〉 have the same absolute value. Two
unitary matrices X and Y are unbiased if X∗Y is flat.
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Examples: Unitary

continued

If X and Y are unitary matrices, then X∗Y is unitary. So X
are Y are unbiased if and only if X∗Y is a flat type-II matrix.

Unitary matrices X and Y are unbiased if and only if the
(unitary) matrices I and X∗Y are unbiased.

Hence each flat type-II matrix determines an unbiased pair of
bases.
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Examples: Unitary

continued

If X and Y are unitary matrices, then X∗Y is unitary. So X
are Y are unbiased if and only if X∗Y is a flat type-II matrix.

Unitary matrices X and Y are unbiased if and only if the
(unitary) matrices I and X∗Y are unbiased.

Hence each flat type-II matrix determines an unbiased pair of
bases.
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Examples: Unitary

A Problem

A Question

What is the maximum size of a set of mutually unbiased bases in
Cv?
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Examples: Unitary

What We Know

(a) The maximum is at most v + 1.

(b) This bound can be realized if v is a prime power.

(c) In general, the best we can do is three. :-(

Chris Godsil

Type-II Matrices



Matrices Link Invariants Association Schemes

Examples: Unitary

What We Know

(a) The maximum is at most v + 1.

(b) This bound can be realized if v is a prime power.

(c) In general, the best we can do is three. :-(

Chris Godsil

Type-II Matrices



Matrices Link Invariants Association Schemes

Examples: Unitary

What We Know

(a) The maximum is at most v + 1.

(b) This bound can be realized if v is a prime power.

(c) In general, the best we can do is three. :-(

Chris Godsil

Type-II Matrices



Matrices Link Invariants Association Schemes

Examples: Combinatorial

Outline

1 Matrices
Definitions
Examples: Unitary
Examples: Combinatorial
Examples: Geometric

2 Link Invariants
Algebra
Braids

3 Association Schemes
DFT
Schemes
Questions

Chris Godsil

Type-II Matrices



Matrices Link Invariants Association Schemes

Examples: Combinatorial

The Potts Model

Let J be the v × v matrix with all entries equal to 1 and set

W := (γ − 1)I + J.

Then J2 = vJ and so

WW (−)T = (2− γ − γ−1)I + (v − 2 + γ + γ−1)J.

Hence W is type II if and only if

γ2 + (v − 2)γ + 1 = 0.

spin
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Examples: Combinatorial

Symmetric Designs

Definition

For today’s purposes, a symmetric design is given by a v × v
01-matrix N such that, for suitable integers k and λ,

NJ = NT J = kJ, NNT = (k − λ)I + λJ.
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Examples: Combinatorial

The Fano Plane

Example

N =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
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Examples: Combinatorial

Generalized Potts

If
W := (γ − 1)N + J

then

WW (−)T = (2− γ − γ−1)(k − λ)I + (k(γ + γ−1 − 2) + v)J

and therefore W is type II if and only if

(k − λ)(γ − 1)2 + v(γ − 1) + v = 0.
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Examples: Geometric

Equiangular Lines

Definition

Let x1, . . . , xn be a set of unit vectors in Cd. The lines spanned by
these vectors are equiangular if there is a scalar a such that if
i 6= j, then

|〈xi, xj〉|2 = a.
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Examples: Geometric

A Bound

Lemma

Suppose the lines spanned by x1, . . . , xn are equiangular and the
matrices Xi are defined by Xi = xix

∗
i . Then the matrices Xi are

linearly independent elements of the space of Hermitian matrices.

Corollary

n ≤ d2.
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Lemma

Suppose the lines spanned by x1, . . . , xn are equiangular and the
matrices Xi are defined by Xi = xix

∗
i . Then the matrices Xi are

linearly independent elements of the space of Hermitian matrices.

Corollary

n ≤ d2.
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Examples: Geometric

The Construction

Theorem

Suppose n = d2 and x1, . . . , xn spans a set of equiangular lines in
Cd. Let G be the Gram matrix of this set of vectors. Then
G2 = dG and if

γ2 + (d + 2)γ + a2 = 0,

then (γ − 1)I + G is a type-II matrix.
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Algebra

The Nomura Algebra

Let W be a complex v × v Schur invertible matrix. Then Wi/j is
the vector in Cv given by:

(Wi/j)r :=
Wr,i

Wr,j
.

Definition

The Nomura Algebra NW of a Schur-invertible matrix is the set of
complex matrices M such that each vector Wi/j is an eigenvector
for M .
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Algebra

An Example

Consider the cyclic spin model:

Wi,j = θ(i−j)2

(where θ2 is a primitive complex v-th root of 1). Then

(Wi/j)r = θi2−j2
θ2(i−j)r

and so the vectors Wi/j are (essentially) the columns of a
Vandermonde matrix.
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Algebra

Equivalence

If W is type II and P1, P2 are permutation matrices and D1, D2

are invertible diagonal matrices, then

P1D1WD2P2

is type II. We say that it is equivalent to W .

Theorem

If W and W ′ are equivalent type-II matrices, there is a
permutation matrix P such that

NW ′ = P TNW P.

Chris Godsil
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Algebra

Nontriviality

I ∈ NW

J ∈ NW if and only if W is a type-II matrix.
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Algebra

Spin Models

Definition

A type-II matrix is a spin model if W ∈ NW .

Each spin model determines a link invariant.
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A type-II matrix is a spin model if W ∈ NW .
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Algebra

Examples

The cyclic spin model. cyclic

The Potts model. potts
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Braids

One Braid

σ1 σ2 σ32 -1
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Braids

Two Braids

σ1σ2σ2σ1σ2σ1
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Braids

Generators and Relations

Definition

The braid group Bn on n strands is generated by elements
σ1, . . . , σn−1 and their inverses, subject to the relations:

If |i− j| > 1, then σiσj = σjσi.

σiσi+1σi = σi+1σiσi+1.

Chris Godsil
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Braids

Links

β
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Braids

Markov Moves

Suppose α and β are braids on n strands. Then the following
operations do not change the isotopy class of the closure of β:

Markov I: β → α−1βα,

Markov II: β → βσn,
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Braids

Markov II

β
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Braids

Link Invariants

Two braids give same link if and only if they are Markov
equivalent.

Given the first Markov move, we see that for a braid invariant
to give us a link invariant, it must be constant on conjugacy
classes in the braid group.

Chris Godsil
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equivalent.
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Braids

Trace

Let V be a complex vector space of finite dimension and choose
invertible elements X and Y in End(V) such that XY X = Y XY .
Then we have a homomorphism, ρ say, from B3 into End(V ) such
that

ρ(σ1) = X, ρ(σ2) = Y.
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Braids

A Markov Trace

If β ∈ B3, then tr(ρ(β)) only depends on the conjugacy class of β.
If we are lucky, this will be a link invariant.
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Braids

Spin Models

Suppose W is a spin model of order v × v. Let V = Matd×d(C)
and if M ∈ V , define

X(M) =
1√
v
WM, Y (M) = W (−) ◦M.

Then XY X = Y XY , and we are lucky.
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DFT

A Transform

Suppose W is a v × v type-II matrix. If M ∈ NW , let Θ(M) be
the v × v matrix such that Θ(M)i,j is the eigenvalue of M on
Wi/j . If M,N ∈ NW then:

Θ(MN) = Θ(M) ◦Θ(N).
Θ(M) ∈ NW T .

Θ2(M) = vMT .
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DFT

Schur Closure

Theorem (Jaeger, Nomura)

If W is a type-II matrix then NW is Schur-closed.
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Schemes

Axioms

Hence NW has a basis of 01-matrices A = {A0, . . . , Ad} such
that:

A0 = I.∑
Ai = J .

AT
i ∈ A, for all i.

AiAj ∈ span(A).
AiAj = AjAi, for all i and j.
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Schemes

Discreteness

There are only finitely many association schemes on v vertices.
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Questions

A Question

If A is an association scheme, can C[A] contain infinitely many
type-II matrices? (If the dimension of the scheme is three, then it
contains at most six.)
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Questions

Examples

We have the following classes of spin models:

Cyclic models.

Potts models.

Higman-Sims—the Nomura algebra is the Bose-Mesner
algebra of the Higman-Sims graph. (Found by Jaeger.)

A class of examples with Nomura algebra equal to the
Bose-Mesner algebra of distance-regular antipodal double
cover of a complete bipartite graph. (Found by Nomura.)

Products of the above.
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Examples
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Higman-Sims—the Nomura algebra is the Bose-Mesner
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Questions

Problem

Find new non-trivial examples of type-II matrices W such that
dim(NW ) ≥ 3.

We do not have any examples that are not spin models!
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