Problems

Krystal Guo

Problem 1

Prove that the point graph of a generalized quadrangle of order (s, t) is strongly regular and give its parameters and eigenvalues in terms of s and t.

Problem 2

We consider a simple graph X (with no loops or parallel edges) on n vertices. Show the following:
(i) The adjacency matrix of X has exactly 1 distinct eigenvalues if and only if X has no edges.
(ii) The adjacency matrix of X has exactly 2 distinct eigenvalues if and only if X is a complete graph.
(iii) If X is vertex-transitive and has n distinct eigenvalues, then X is isomorphic to K_{1} or K_{2}.
(iv) If X is regular with exactly three distinct eigenvalues, then X is strongly regular.

Problem 3

The folded cube is obtained from the cube by identifying antipodal vertices.
Show that the folded cube is distance-regular and find the intersection array.

Problem 4

The Petersen graph is a strongly regular graph with parameters $(10,3,0,1)$.
Show that if Y is also a strongly regular graph with parameters $(10,3,0,1)$, then Y is isomorphic to X.

Problem 5

Recently, Gritsenko found strongly regular graphs with parameters $(65,32,15,16)$, a parameter class that was previously open. Show that any such that is not vertex-transitive. (Hint 1: consider the Sylow 5- and 13-subgroups of the automorphism group and the orbit partition of the graph induced by the action of these Sylow p-subgroups. Hint 2: some computation is required to compute the proof).

Problem 6

Let W and W^{\prime} be two cellular algebras. Suppose $\phi: W \rightarrow W^{\prime}$ respecting addition, multiplication, scalar multiplication and Schur multiplication; that is, for $A, B \in W$ and $c \in \mathbb{R}$,
(a) $\phi(A B)=\phi(A) \phi(B)$,
(b) $\phi(A \circ B)=\phi(A) \circ \phi(B)$,
(c) $\phi(A+B)=\phi(A)+\phi(B)$,
(d) $\phi(c A)=c \phi(A)$.

Show that ϕ is a weak isomorphism from W to W^{\prime}.

Problem 7

Let X be a bipartite graph with bipartite colour classes V_{0} and V_{1}. A halved graph of X is a graph whose vertices are one of the bipartite colour classes, and two vertices are adjacent if they are at distance 2 in X. Show that if X is a bipartite distance-regular graph and Y is a halved graph of X, then Y is distance-regular.

