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Graph Algebras

We consider some of the algebras we can attach to a graph.

30.1 The adjacency algebra

If R is a ring and A = A(X ), the ring R[A] of polynomials in A is an algebra

(in the moxt general sense). We restrict ourselves to the case where R is a

field. If X has diameter d , the dimension of F[A] is at least d + 1. If F = R

then dim(F[A]) is equal to the degree of the minimal polynomial of A; if

F=R and A = AT , this is the number of distinct eigenvalues of A.

We note that R[A1] and R[A2] are isomorphic if and only if X1 and X2 are

cospectral.

The automorphism group of X lies in the commutant of F[A].

One question is what we can say about when two adjacency algebras of

F are isomorphic? (The characteristic polynomial is not the right invariant).

Note that F[A] is not semisimple in general.

30.2 Extended adjacency algebras: A and J

We can extend an algebra by adding new elements. We focus on extensions

of the adjacency algebra R[A] of a graph. The key point is that if we add

a symmetric matrix M to this algebra, the extended algebra is still closed

under transpose and therefore is semisimple.

The first particular case is the algebra hA, Ji. Note that hA, Ji= hA(X ), Ji.
The automorphism group of X lies in the commutant of F[A].

If X is connected and regular, then J is a polynomial in A and our “exten-

sion” has not changed anything. On the other hand:

30.2.1 Theorem. Let X be a graph on n vertices. Then hA, Ji= Matn£n(R) if

and only if no eigenvector of X is orthogonal to 1.

If the stated eigenvector condition holds we say X is controllable . If X is

controllable, the matrices

Ai J A j , 0 ∑ i , j ∑ n °1
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are a basis for Matn£n(R).

An eigenvalue is a main eigenvalue if its eigenspace contains an eigen-

vector not orthogonal to 1. If m is the multiplicity of the eigenvalue µ, then

either the eigenspace of µ lies in 1
? or the subspace of eigenvectors or-

thogonal to 1 has codimension one, and µ is a main eigenvalue. Define

the reduced multiplicity of ∫(µ) to be dimension the intersection of the

µ-eigenspace with 1
?.

30.2.2 Lemma. Let X be a graph with ` distinct eigenvalues, and let µ be

the number of main eigenvalues of X . Then

dim(hA, Ji) =µ2 +`°µ.

We sketch a proof. The hA, Ji-module generated by 1 is irreducible 1; we 1 your problem

denote it by M . The direct sum decomposition

R
n = M ©M?

is invariant under hA, Ji. Note that M? is spanned by the eigenvectors

of A in 1
?. The restriction of hA, Ji to M is isomorphic to Matµ£µ(R); its

restriction to M? is commutative and has `°µ distinct eigenvalues.

30.2.3 Theorem (Johnson & Newman). Let X1 and X2 be graphs. Then X1

and X2 are cospectral with cospectral complements if and only if there is

an orthogonal matrix L such that

L°1 A1L = A2, L°1 JL = J .

So if X1 and X2 are controllable graphs on n vertices, then hA1, Ji and

hA2, Ji are isomorphic, but there is an algebra isomorphism L such that

L°1 A1L = A2 and L°1 JL = J if and only if X1 and X2 are cocospectral.2 2 cospectral with cospectral complements

If X1 and X2 are controllable, there are cocospectral if and only if

1
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for all nonnegartive integers k.

30.3 Extended adjacency algebras: A and ¢

Let ¢ denote the diagonal matrix of valencies of X . The algebra hA,¢i is

semisimple and the automorphism group of X lies in its commutant.

If X is connected, then J is a polynomial in A and ¢.3. We assume that X 3 Exercise!

is connected, and then hA, Ji ∑ hA,¢i.
We have very little to say about the algebra hA,¢i, but there is one result

of interest for trees.

30.3.1 Theorem (B. D. McKay). Let T1 and T2 be trees with respective adja-

cency matrices A1 and A2, and valency matrices ¢1 and ¢2. If T1 and T2 are

not isomorphic, there is a polynomial p(x, y) such that

¡(p(A1,¢1), t ) 6=¡(p(A2,¢2), t ).
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We point out that, in general, p(A,¢) is not symmetric.

If T1 and T2 are isomorphic, there is a permutation matrix P such that

P T A1P = A2, P T¢1P =¢2.

If T1 and T2 are not isomorphic, there is no invertible linear map L such

that

L°1 A1L = A2, L°1¢1L =¢2.

If T1 and T2 are controllable, hA1,¢1i and hA2,¢2i are isomorphic, be-

cause they are both equal to the full matrix algebra.

If L°1¢1L = ¢2, then L°1p(¢1)L = p(¢2) for any polynomial p.S This

implies that there is a permutation matrix P such that P T¢2P = ¢1; conse-

quently P T L°1¢1LP =¢1 and therefore LP is block diagonal.





31

Coherent Things

A coherent algebra C is a (finite-dimensional) matrix algebra over a sub-

field of C that is

(a) Contains J and is closed under Schur product.

(b) Is closed under transpose and complex conjugation.

From (a) we see that C is a commutative algebra relative to Schur multipli-

cation. (By default our rings and algebras must have an identity element.)

Condition (b) implies that C is a semisimple matrix algebra.

The Bose-Mesner algebra of an association scheme is a coherent alge-

bra.

Coherent algebras are also known as cellular algebras.

Weisfeiler and Leman introduced cellular algebras in 1968 and, in 1970,

a paper of Donald Higman introduced coherent algebras1 In 1980?, Hig- 1 definitions to come

man wrote about coherent algebras. In ??, Graham and Lehrer introduced

what they called cellular algebras (in the context of representation theory).

Because of this usage, my feeling is that coherent algebras is the better

term.

31.1 Coherent Configurations

We start with a simple but very useful result.

31.1.1 Theorem. If the vector space of matrices M is closed under Schur

product, it has a unique basis of 01-matrices.

Proof. If p is a polynomial

p(t ) = p0t k +·· ·+pk

and A is a matrix, we define the Schur polynomial p ± A to be

p0 A±k +·· ·+pk J .
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If ∏ is an entry of the matrix A, let p∏ be the polynomial that takes the value

1 on ∏ and 0 on all other entries of A. Then p ± A is a 01-matrix that lies in

M , and it follows that M is spanned by 01-matrices.

Therefore M has a basis of 01-matrices, which we must show is unique.

We say that a Schur idempotent is primitive if it is not zero and cannot

be expressed as a sum of two non-zero Schur idempotents. The primitive

Schur idempotents span M . The Schur product of two distinct primitive

Schur idempotents is zero and, given this, it is easy to show that the primi-

tive Schur idempotents form a basis.

Suppose Ø is a spanning set for M consisting of Schur idempotents.

Each element of Ø is a sum of primitive Schur idempotents and if one of

the sums is not trivial, then Ø is not a maximal independent subset, and so

it is not a basis.

Each Schur idempotent is the adjacency matrix of a directed graph,

possubly with loops. A set of directed graphs is a coherent configuration if

it is the set of primitive Schur idempotents of a coherent algebra.

As a coherent algebra contains I , we that I must be a sum of primitive

Schur idempotents; these are necessarily diagonal matrices, and determine

a partition of the vertices of the coherent configuration. The cells of this

partition are known as fibres. A coherent algebra (or configuration) is ho-

mogeneous if I is a primitive Schur idempotent. This leads to the following

exercise.

31.1.2 Theorem. A commutative coherent algebra is homogeneous.

Suppose C1 and C2 are coherent algebras of n £n matrices and and L

is an invertible matrix such that M ! L°1ML is an algebra isomorphism.

Then L must map the diagonal elements of the Schur basis of C1 to diago-

nal elements of C2.2. It follows that there is a permutation matrix P such 2 work out why

that LP is block diagonal, with blocks corresponding to the fibres of C1.

(The fibre partition is a refinement of the valency partition.)

31.2 Permutation Groups and Coherent Algebras

Coherent algebras play a significant role in the study of automorphism

groups of graphs, and this is the original motivation for the concept.

You should verify the following:

31.2.1 Lemma. Let A and B by m£n matrices. If P is an m£m permutation

matrix, then P (A ±B) = (PA)± (PB).

31.2.2 Corollary. If P is a set of n £n permutation matrices, the commu-

tant of P is a coherent algebra. The fibres of this coherent algebra are the

orbits of the permutation group generated by P .
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Proof. If A and B commute with a permutation matrix P , then

P (A ±B) = (PA)± (PB) = (AP )± (BP ) = (A ±B)P .

Since the commutant of a set of matrices is a matrix algebra, the commu-

tant of P is a coherent algebra.

We leave the statement about fibres as an exercise.

The coherent algebra generated by a set M of matrices is the smallest

coeherent algebra that contains M .

31.2.3 Lemma. If A is the adjacency matrix of the graph X , then Aut(X ) lies

in the commutant of the coherent algebra generated by A.

Thus if the coherent algebra generated by A is the full matrix algebra (for

example, if X is controllable) then Aut(X ) is trivial. (The coherent algebra

generated by A can be computed in polynomial time.)

We given an example of a coherent algebra that is not commutative and

is not the commutant of a permutation group. Let N be the vertex-block

incidence matrix of a 2-(v ,k,∏)-design with b blocks. Then the matrices
√

Iv 0

0 0

!
,

√
0 0

0 Ib

!
,

√
J ° Iv 0

0 0

!
,

√
0 0

0 J ° Ib

!
,

√
0 N

N T 0

!
,

√
0 J °N

J °N T 0

!

are Schur idempotents that sum to J . You may prove that they form a

coherent configuration if and only if the design is quasi-symmetric, that is,

there are constant a and b such that any two distinct blocks intersect in a

or b points.

A quantum permutation of index d is an n £n matrix whose entries are

d £d projections, such that the entries in each row and each column sum

to Id . The commutant of a set of quantum permutations is a Schur-closed,

and hence forms a coherent algebra.

31.3 Isomorphism

Now we get to the messy part. A homomorphism of algebras is a ring ho-

momorphism that commutes with scalar multiplication, and a invertible

homomorphism is an isomorphism. If C1 and C2 are coherent algebras,

it is obvious that an algebra homomorphism from C1 to C2 need not pre-

serve the Schur product; if it does we will call it a coherent homomor-

phism .

31.3.1 Theorem. Let M and N be coherent algebras and let ™ be an alge-

bra homomorphism from M to N . If ™ commutes with Schur product and

™(J ) 6= 0, then ™ is injective.

Proof. Let ™ : M ! N be an algebra homomorphism and assume K =
ker(™). The K is an ideal of M . If R 2M and S 2 K , then

™(R ±S) =™(R)±™(S) = 0.
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This shows that R ± S 2 K if S 2 K . It follows that K has a basis of Schur

idempotents. Suppose S a non-zero Schur idempotent in K . Then JS J 2 K ,

but

JS J = 1(1
T S1)1

T = 1
T S1J .

As 1
T S1 > 0 this implies that J 2 K .

31.3.2 Theorem. An algebra homomorphism from C1 to C2 commutes

with Schur product if and only if it maps the primitive Schur idempotents

of C1 to the primitive Schur idempotents of C2.

An automorphism of a matrix algebra is inner if it is given by a map

M 7! A°1M A. It is true that any automorphism of Matn£n(C) is inner,3 but 3 Noether-Skolem

this is not true for

Mat2£2(C)©Mat2£2(C).

To see this, note that the permutation

0
BBBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCCA

gives an automorphism that is not inner. I believe it is true that if C is a

semisimple matrix algebra and the commutant of C is commutative, all

automorphisms are inner.

An isomorphism between matrix algebras is combinatorial if it is given

by a map M 7! P T MP for some permutation matrix P . Combinatorial

isomorphisms are necessarily coherent.

31.4 Subalgebras

If C is a matrix algebra and E is an idempotent in C , then EC E is subspace

of C that is closed under matrix multiplication. It is not a subalgebra,

because it does not contain the identity of C . However the sum

EC E + (I °E)C (I °E)

is a subalgebra. If E is diagonal and 01 and C is coherent, then EC E is

Schur closed and the subalgebra just given is coherent.

Let C be the coherent algebra generated by A(X ). If ∞ 2 Aut(X ), then the

map

(u, v) 7! (u∞, v∞)

is a permutation of V (X )£V (X ), lies in the commutant of C ≠C . The

subsets

{(u,u) : u 2V }, {(u, v) : u ª v}, (u, v) : u 6= v ,u 6ª v
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are unions of orbits of this action of Aut(X ). (If X is complete, the third

orbit is empty.)

Define an n2 £n2 idempotent F0 by

(F0)(u,v),(u,v) =

8
<
:

1, if u = v ;

0, otherwise.

Note that F0 is diagonal. Define F1 to be the diagonal 01-idempotent with

(F1)(u,v),(u,v) = 1

whenever u ª v . Finally set F2 = I °F0 °F1. (We point out that we are not

using the automorphism group to define these idempotents.)

The coherent algebra generated by C ≠C and F0 is the 2-extension of

C .

31.5 Jaeger Algebras

Let M denote Matn£n(C). If A 2 End(V ), define operators X A , ¢A and YA

on V ≠ by

X A M = AM , De A(M) = A ±M , YA(M) = M AT .

If A is a subalgebra of M , define J3 to be the algebra generated by the

operators X A and ¢A for A in M . Define J4(A ) to be the algebra gener-

ated by J3(A ) and the operators YA for A in A . We say that J3 and J4 are

Jaeger algebras .

We need to explain the transpose in the definition of YA and the index-

ing. If Ai and Bi are n £n matrices (with i = 0,1), the map

M 7! AMB T

is an endomorphism of M and all endomorphisms of M are linear com-

binations of endomorphisms of this form. Thus we have a map from

End(V )≠End(V ) into End(M ). Further

A1 A2MB T
2 B1 = (A1 A2)M(B1B2)T

and therefore this map is a homomorphism. Consequently M is a module

over End(V )≠End(V ).

Indexing. Let V a vector space. We define some operators on V ≠r . As-

sume X A(i ) 2 End(V ) and define to be the product operator acting as A on

the i -th component and as I on the remaining components. If 1 ∑ i ∑ r °1,

let ¢A(i ) act as ¢A on the i -th and (i +1)-th components4 and as the iden- 4 identify V ≠V with End(V )

tity on the remaining components. Then the algebra generated by the

operators X A(1) for A in A is J2(A ) and the algebra generated by

{X A(1),¢A(1) : A 2A }

is J3(A ).5 5 the indexing is coming from the theory of
braid groups


