

Problems:

1. Fisher's inequality
2. Number of isomorphism classes of graphs on ell versus e edges
3. Edge reconstruction

Fisher's in equality

$$
2 \cdot(v, b, r, k, \lambda) \text { design }
$$

incidence structure, incidence matrix N

$$
N N^{T}=(r-\lambda) I+J
$$

Claim: If $r>\lambda$, then $b \geqslant v$.

$$
r(h-1)=(v-1) 7
$$

Claim: $r k(N)=v$
Proof: $\quad N N^{\top}=(r-\lambda) I+\lambda J$ is invertible:
(a) eigenualues: $r-\lambda+\lambda v=r+\lambda(u-1)=r+r(k-1)=r k \& r-\lambda{ }^{\rho(-1)}$

$$
r_{r}^{x_{r}^{r}[x} \underbrace{x^{r} \Gamma x}_{r i r}
$$

(b)

$$
\begin{aligned}
x^{\top} N N^{\top} x=(r-\lambda) x_{x}+b x^{\top} \frac{1}{\lambda} 1_{\lambda}^{\top}= & (v-\lambda) x_{x}^{\top}+\lambda\left(1_{y}^{\top}\right)^{2} \\
& p \delta d+p d e l=p d e f
\end{aligned}
$$

(c)

$$
\begin{aligned}
& N \underline{1}=r \frac{1}{\lambda}, N J_{v \times b}^{\Gamma}=r J_{V \times b}^{\tau} \\
& N\left(N-\frac{\lambda}{r} J_{v \times b}\right)^{\top}=(r-\lambda) I+\lambda \Gamma-\lambda J=(r-\lambda) I
\end{aligned}
$$

N has a right inverse

Bunting graphs
$g(n, e):=$ number of isomorphism classes of graphs on n vertices with e edges
(lain If Res $\binom{n}{2}$, then $g(n, e-1) \leq g(n, e)$

Tool: induced partitions
W : $m \times n$ matrix
ρ : partition of rows, characteristic matrix R
ρ^{*} : partition of columns of $R^{T} W$, by equality
often an orbit partition

Lemma if the rows of W are linearly independent, $|\rho| \leqslant\left|\rho^{*}\right|$.

Proof. (a) Suppose $z^{T} R^{\top} W=0$. As rows of W are linearly independent, $\delta^{r} R^{r}=0 . \quad\left[\begin{array}{ll}1,1\end{array}\right)$ But rows of R^{5} are linearly independent, so $z=0$,

Therefore $r k\left(R^{T} W\right)=\rho$.
(b) ck($\left.\mathbb{R}^{\top} W\right) \leqslant$ distinct columnar of $R W$

$$
=\left|p^{*}\right|
$$

Magic matrix $w_{t, k}(v)-\binom{v}{t} \times\binom{ v}{t}$
incidence matrix for t-subsets of a vaset $\{1, \ldots, v\}$ vs. the k-subsets

Claim If $2 k \leq u$ and $t \leqslant k$, then rfc $\left(W_{t, k}(v)\right)=\binom{v}{t}$.

Claim If $w_{t, k z}=0$ and $z \neq 0$, then

$$
|\operatorname{supp}(z)| \geqslant 2^{t+1} .
$$

Set $N=\binom{n}{2}$, work with $W_{e-1, e}(N)$ ($\left.2 e \leqslant N\right)$

$$
\begin{aligned}
& \text { graphs on } \begin{array}{l}
\text { We-1e } \\
\text { el edger }
\end{array}
\end{aligned}
$$

graphs on
p edges
Sym (n) acts on (e-1)-subsets and e-subsets-and orbits are isomorphism classes of graphs.

Lemma Let W be the incidence matrix of an incidence structure y of points a blocks. If G is a group of automorphisms of g and ρ is the orbit partition on pts, then the orbit partition on blocks is a refinement of ρ^{*}.

Proof.
(a) β-column of $R^{\top} W$ gives, for each i, the number of points of β in i th cell p_{i} of ρ.
(b) $x \in \rho_{i} \& x \in \beta, \gamma \in G \Rightarrow x^{\gamma} \in \beta^{\gamma} \Rightarrow \beta \& \beta^{\gamma}$ columns ${ }_{\text {in } \rho_{i}}$ of R^{\top} ware equal.

Corollary If rows of W are linearly in dependent, \# pt-orbits * \#block-orbits.

$$
\Rightarrow g(n, e-1) \geqslant g(n, e)
$$

Edge reconstruction
Graph onnuxs is a subset of $E\left(k_{n}\right)$
Let X be a graph on $n v \times s$.
If Y is a graph, define $\mu_{x}(Y)$ to be the number of subgraphs of X is omorphic to Y.

Assume $|V(x)|=n$ \& $|\in(X)|=e$. Is x determined by the values $\mu_{X}(y)$, as Y runs over the graphs on ers edges?

$$
(X-e) \underline{ }-y, \beta(e)
$$

Answer No!

What if $e \geqslant 4$? Yes, if:
(a) $2|E(x)| \geqslant\binom{ n}{2}+1 \quad$ Lováss
(b) $2^{|E(x)|-1}>n!$

Müller

Define v_{x}, a function on graphs on e edges by

$$
\nu_{x}(y)= \begin{cases}1, & \text { if } y \cong x ; \\ 0, & \text { otherwise } .\end{cases}
$$

(We view it as a column vector.)
Define a function μ_{x} on graph er on eel edges, whose value on F is the number of edge-deleted subographs of X isomorphic to F. AIM Prove that if $\mu_{x}=\mu_{y}$, then $x \cong y$.

Lemma $W_{\text {erge }} \cdot \mid \operatorname{Aut}(X)_{\nu_{x}}=M_{x}$
Proaf. The F-entry of $W_{e-1, e}{ }^{2} x$ is $|\{y: y \cong x, F \subseteq y\}|$
So F-entry of $\left(\operatorname{Aut}(x) \mid W_{\text {elie }} \nu_{x}\right.$ (i)

$$
\begin{aligned}
&\left|\left\{\alpha \in S_{y m}(n): F \subseteq X^{\alpha}\right\}\right|=\left|\left\{\alpha \in S_{y m}(n): F^{\alpha-1} \subseteq X\right\}\right|=\mu_{x}(F) \\
& \text { Set } z=w_{e-1, e}\left(|\operatorname{Aur}(x)|_{x}-\left|A_{n t}(y)\right| \nu_{y}\right)
\end{aligned}
$$

Corollary If $\mu_{x}=\mu_{y}$, then $W_{\text {e-ies }}=0$

Now columns of $W_{e-b e}$ are linearly independent if $2 e-1 \geqslant\binom{ n}{2}$ then $z=0$.
Size of support of ν_{x} is $\frac{n!}{\left|A_{\text {ut }}(x)\right| \text {. Hence }}$ $|\operatorname{supp}(z)| \leqslant 2 n!$ |f $z \neq C$, it is a null (e-re)-design and $|\operatorname{supp}(z)| \geqslant 2^{e}$.

$$
2^{e}>2 h!
$$

k-hamogeneons groups
Lemma. If $k \geqslant 2$, a k-homogeneens group is (k-y-homogeneous.

Lemma Suppose X is connected and not bipartite. If X is edge-transitive, it is vertex-transitive.

Key: incidence matrix β $\operatorname{vc}(B)=v$ - \#bipartite components

Working with $W_{t, k}(v)$
Lemma $w_{s, t} w_{t, k}=\binom{h-s}{t-s} w_{s, k}$

$$
\left(W_{S_{1},} W_{t, l}\right)_{\alpha, \beta}
$$

$$
\Rightarrow \operatorname{row}\left(W_{s k}\right) \leqslant \operatorname{row}\left(W_{t k}\right)
$$

Define

$$
\left(\bar{w}_{t, k}\right)_{\alpha, \beta}= \begin{cases}1 . & \alpha n \beta=\phi: \\ c, & \text { otherwise. }\end{cases}
$$

Lemma $\bar{W}_{t, k}=\sum_{i}(-1)^{i} W_{i, t}^{\top} W_{i, k}$

Proof (of $2^{\text {nd }}$ lemma). Suppose $|\alpha|=t,|\beta|=k$ We have

- B

$$
\left(W_{i, t}^{\top} W_{i, k}\right)_{\alpha, \beta}=\binom{|\operatorname{|on} \beta|}{i} \quad\left(\sum_{i}^{\top}(-1)^{i} W_{i, t}^{\top} W_{i, k}\right)_{\alpha, \beta}
$$

and so the (α, β)-entry in the sum is

$$
\sum_{i}(-1)^{i}\binom{|\alpha \cap \beta|}{i}= \begin{cases}1, & \alpha \cap \beta=\varnothing \\ 0, & \text { otherwise. }\end{cases}
$$

This gives the lemma.

Next steps:

1. $\operatorname{raw}\left(W_{t, k}\right)=\operatorname{row}(\bar{W}(t, k))$.
2. $W(t, v-t)$ is invertible.
3. rows of $W t k$ are linearly independent if $k+t \leqslant v$.
row space claim
We have $w_{i, k}=\binom{k-i}{t-i}^{-1} w_{i, t} w_{t, k}$ and hence

$$
\begin{gathered}
\left.\left.\bar{W}_{t, k}=\sum_{i}(-1)^{i} W_{i, t}^{\top} W_{i, k}\right)=\left(\sum_{i}(-1)^{i}(k-i) W_{i, t}^{\top} W_{i, t}\right) W_{t, k}\right) \\
\Rightarrow \operatorname{row}\left(\bar{W}_{t, k}\right) \leqslant \operatorname{vow}\left(W_{t, k}\right)
\end{gathered}
$$

Next

$$
W_{i j t} \bar{W}_{s k}=\binom{v-k-i}{t-i} \bar{W}_{i, k}^{t \text {-rets digoint }} \begin{aligned}
& \text { from } k \text {-set, an } \\
& i \text {-set }
\end{aligned}
$$

and so

$$
\begin{gathered}
\left.w_{t, k}=\sum_{i}^{\top}(-1)\right)^{i} w_{i, k}^{\top} \bar{w}_{i, k}=\left(\sum_{i}(-1)^{i}(v-k-i-i)^{-1} w_{i, t}^{\top} w_{i, t}\right) \bar{w}_{t, k} \\
\Rightarrow \operatorname{row}\left(w_{t, k}\right) \leqslant \operatorname{vow}\left(\overline{w_{t, k}}\right)
\end{gathered}
$$

$w_{t, v-t}$ is invertible

- $W_{t, v-t} \& \vec{W}_{t, v-t}$ are square, $\operatorname{arder}\binom{v}{t} \times\binom{ v}{t}$
- $\bar{w}_{t, v t}$ is a permutation mabrix, thus invertible
- $\operatorname{row}\left(W_{t, v-t}\right)=\operatorname{row}\left(\bar{W}_{t, v-t}\right)$

Independent rows

$$
w_{t, h} w_{h, v-t}=\binom{v-2 t}{h-t} w_{t, v-t}
$$

Since $R H S$ is invertible, rows of $w_{t_{j} k}$ are linearly independent.

Null designs
If $f \neq 0$ and $w_{t, k}(f)=0$ we call f a null (t.k)-design. If $\left.W_{t, k} / v\right) f=0$, we have:

$$
\left(\begin{array}{cc}
w_{t, 1, k-1}(v-1) & 0 \\
w_{t . k-1}(v-1) & w_{t k}(v-1)
\end{array}\right)\binom{f_{1}}{f_{2}}=0
$$

We call $f_{1} \& f_{2}$ the derived and residual design of f

Lemma If f ir a null (t.k)-design with derived design f_{2} \& residual design f_{2}, then
(a) f_{1} is a null) $(t-1, k-1)$-design.
(b) f_{2} is a null $(t-1, k)$-design.

Proof. (a) is immediate. As f is also a null ($(=1, k)$-design

$$
\begin{aligned}
& w_{t-1, k-1} f_{1}+w_{t-1, k} f_{2}=0 \\
& =0
\end{aligned}
$$

Hence $W_{t-1, t} f_{2}=0$.

Supports of null designs

$$
\operatorname{supp}(f)=\operatorname{supp}\left(f_{1}\right) \cup \operatorname{supp}\left(f_{2}\right)
$$

By induction

$$
\begin{aligned}
& \left|\operatorname{supp}\left(f_{1}\right)\right| \geqslant 2^{t}, \quad\left|\operatorname{supp}\left(f_{2}\right)\right| \geqslant 2^{6} \\
\Rightarrow & |\operatorname{supp}(f)| \geqslant 2^{t+1}
\end{aligned}
$$

Exercises:

1. Use Vandermonde identity to prove that

$$
W_{t, k} W_{t, k}^{\top}=\sum_{i=0}^{t}\binom{v-2 t}{v-k-i} w_{i, t}^{\top} w_{i, t}
$$

2. Show that the RHS is positive definite and deduce that the rows of $W_{t j k}$ are linearly independent
3. Given that $\left(\begin{array}{cc} \pm & -A \\ 0 & I\end{array}\right)\left(\begin{array}{cc}A B & 0 \\ B & B C\end{array}\right)\left(\begin{array}{cc}I & -C \\ 0 & I\end{array}\right)=\left(\begin{array}{cc}0 & -A B C \\ B & 0\end{array}\right)$,

$$
r k\left(\begin{array}{cc}
A B & 0 \\
B & B C
\end{array}\right)=r k(B)+r k(A B C)
$$

Starting from

$$
W_{t, k}(v)=\left(\begin{array}{cc}
W_{t-1, k-1}(v-1) & 0 \\
W_{t, k}(v-1) & W_{t, k}(v-1)
\end{array}\right)
$$

deduce that $\operatorname{rk}\left(W_{t, k}(v)\right)=\binom{v}{t}$
4. A set of k-subsets of a v-set is an of its characteristre vector lips in row $\left(W_{[j k}\right)$; the least possible value of t is its strength. Show that \mathcal{D} is a 1 -design and \mathcal{N}^{*} is an antidesigh with strength at most t, then

$$
|\infty|\left|\infty^{*}\right| \geqslant\left|D_{n} D^{*}\right|\binom{v}{k}
$$

5. Let V be the vector space of dimension v over $\operatorname{GF}(g)$. Let $W_{t, k}(V)$ be the incidence matrix for t-subspaces of V versus k-subspaces. Prove that W has full rank.

$$
\begin{gathered}
? \\
z^{T} W=C \\
3, \neq 0
\end{gathered}
$$

