

Modules?
What is a module?
What can we do to one?

Examples

1) Vector spaces
2) A-invaricant subspaces: modules over $\mathbb{F}[A], 1 . g$.
(a) walk modules: $\operatorname{span}\left\{A^{r} x: r \geqslant 0\right\}=:\langle x\rangle_{A}$
(b) equitable partitions

$$
\begin{aligned}
& \text { 3) } \operatorname{Mat}_{d x d} \text { (F); } R=\operatorname{Mab}_{d x d}(\mathbb{F}) \\
& M \in M_{a}^{t}{ }_{d x d}(\mathbb{F}) ; \quad A, B \in \operatorname{Mat}_{d+d}(F) \\
& L_{A}: M \longmapsto A M ; \quad R_{B}: M \longrightarrow M B \\
& L_{A} L_{B}: M=A(B M)=(A B) M=L_{A B}(M) \quad L_{A} L_{B} D L_{A B} \\
& R_{A} R_{B}(\eta)=M \theta A=R_{B A}(M) \text { apposite ling } \\
& \text { redefine } R \\
& R_{A}(M)=M A^{*}, \quad R_{A} R_{B}(M)=M B^{*} A^{*}=M(A B)^{*}
\end{aligned}
$$

Operations

1) submodules
2) sums, direct sums, $M \oplus N$
3) quotients: M / N
4) homomorphisms: $\psi: M \rightarrow N$

$$
\psi(r m)=r \psi(m), r \in R
$$

Module example: control theory
We have a system of $n+1$ bodies arranged in a line. At time r, the temperature of the (-th body is $\left.i_{i}(r) \operatorname{Cr} \in \mathbb{Z}\right)$. Assumptions:
(a) we control the temperature of the $0-t h$ body; at time r it is $u(r)$.
(b) $t_{n}(r)=0$ for all r.
fo t_{1}
(c) If $0<i<n$, then

$$
t_{i}(r+1)=\frac{1}{4} t_{i-1}(r)+\frac{1}{2} t_{i}(r)+\frac{1}{4} t_{i+1}(r)
$$

Assume $t=\left(t_{0}, \ldots, t_{n}\right)^{T}$. Then

$$
\begin{aligned}
& t(r+1)=A t(r)+u(r) b . \\
& \text { If } n=4 \\
& A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{0}{4} & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 0 & 0 & e
\end{array}\right) \quad b=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

By choosing different sequences $u(0), u(1), \ldots, u(n)$ we can reach a variety of different temperabure distributions. Which ones?

Assume $t(0)=0$. Then

$$
\begin{aligned}
& t(1)=u \cos b \\
& t(2)=u(1) b+u(0) A b \\
& t(3)=u(2) b+u(1) A b+u(0) A^{2} b
\end{aligned}
$$

and if

$$
W_{r}=\left(b A b \cdots A^{c-1} b\right)
$$

then

$$
t(r+1)=W_{r}\left[\begin{array}{c}
u(s) \\
\vdots \\
u(r)
\end{array}\right]
$$

Conclusion We can reach a state $t(r+1)$ if 8 only if it lies in the A-module $\langle b\rangle_{A}$.

Problem Suppose we start in some (non-jers) state $t(0)$ and the system state at timer is $t(r)=A^{r} t(0)$. If we are given the average values $\frac{1}{n+1} \sum_{i=0}^{n} t_{i}(r)$ ab each time, can we deduce the initial state?
controllable

$$
\begin{aligned}
& (b\rangle_{A}=R^{n+1} \\
& \left\langle\left\rangle_{A}^{T}=R^{n+1}\right.\right.
\end{aligned}
$$

Complements \leftrightarrow Sums \leftrightarrow Idempotent s

Complements \rightarrow direst sums
If $M_{1}, M_{2} \leqslant V$, their sum $M_{1}+M_{2}$ is

$$
\left\{u_{1}+u_{2}: u_{1} \in M_{1}, u_{2} \in M_{2}\right\}
$$

If $M_{1} \cap M_{2}=\langle 0\rangle$ and $M_{1}+M_{2}=V$, then M_{2} is a complement to M_{1}.

If M_{1} has a complement M_{2}, then V is isomaphic to the direst sum of $M_{1} \& M_{?}$ We may write this as $M_{1} \oplus M_{2}$.

Assume $M_{, \ldots,} M_{h} \leqslant V$. Define $M_{i}^{\prime}=\sum_{r \neq i}^{T} M_{r}$
Then V is the direct sum of $M_{1}, \ldots M_{k}$ $\left(V \cong M \oplus-\subseteq M_{h}\right)$ if V is the direct sum of $M_{i} \& M_{i}^{\prime}$, for each i.

Sums \rightarrow idempotents
If $\quad V=M_{1}+M_{2}$ and $w \in V$, then $v=v_{1}+v_{2}$ ($\left.v_{i} \in M_{i}\right)$. If also $v=v_{1}^{\prime}+v_{i}^{\prime}\left(v_{i}^{\prime} \in M_{j}\right)$, then

$$
v_{1}-v_{1}^{\prime}=v_{2}^{\prime}-v_{2}
$$

and sc $v_{1}-v_{1}^{\prime}, v_{2}^{\prime}-v_{2} \in M_{1}+M_{2}$. Hence if $M_{1} \cap M_{2}=\{0\rangle$, the decomposition of v is unique and the map $\pi_{1}: V \rightarrow v$ given by

$$
\pi_{1}(v)=v_{1}
$$

$$
\pi_{1}^{\prime}=\pi_{1}
$$

is an idempotent. $\left(1-\pi_{1}\right)^{2}<\left(1-\pi_{1}\right)$

If $r \in R$, then $r w=r w_{1}+r w_{2}$
and $\pi_{1}(r w)=r \pi_{1}(w)$.

Maral Direct sum decompositions ablian grans correspond to idempatents in End (M) that commute with R, ire in End $R(M)$.

Given such π, decomposition is

$$
V=\pi(V)+(1-\pi) V
$$

Lemma Assume $V=U_{1} \oplus U_{2}$ and π is the projection onto U_{1}. Then an endomorphism A fixes $U_{1} \& M_{2}$ if and only if $A_{\pi}=\pi A$.

If P is the matrix representing π, then

$$
A=P A P+(I-P) A(I-P)
$$

(A is block diagonal)

Remark. $x_{1, \cdots, x_{d}}$ is a basis for V if a

$$
\text { only, f } V=\langle x,\rangle \oplus \cdots \oplus\left\langle x_{i}\right\rangle
$$

Primary Decomposition
(decomposing modules for $\mathbb{F}[A]$)

Minimal polynomials

- ψ_{A} manic polynomial ψ of least degree such that $\psi(A)=0$. (Existence uses the fact that $\mathbb{F}[b]$ is a principal ideal domain.)
$\psi_{A_{j} x}$ manic polynomial of least degree such that $\psi(A) x=0$.

Clearly $\psi_{A, x}$ divides ψ_{A}. Also $\psi_{A, x}$ is minimal polynomial of restriction of A to span $\left\{A^{r} x: r \geqslant 0\right\}$

$$
\text { Lempa: } \mathbb{F}[A] \cong \mathbb{F}[t] /\left(\psi_{A}(t)\right)
$$

Hence an $\mathbb{F}[A]$-module is an $F(B]$-modale.

Lemma Any polynomial $\psi(t)$ in $\mathbb{F}(6)$ admits a factorization $W(t)=\prod_{i=1}^{m} \psi_{i}(t)$ where $\psi_{i}(t) \in \mathbb{F}$ and $\psi_{i}(t)$ is a power of an irreducible.

If $\psi_{i}^{\prime}:=\psi / \psi_{i}$, then:

$$
\mathbb{F}[t] /(\psi(t)) \cong \bigoplus_{i=1}^{m} \mathbb{F}[t] / \psi_{i}^{\prime}(t)
$$

Theorem Assume wat) has primary factorization $\psi=\prod_{i=1}^{i} \psi_{i}$. Set $\psi_{i}^{\prime}=\psi / \psi_{i}$. Then there are polynomials $a_{i}(t)$ such that

$$
\sum_{i} a_{i} \psi_{i}^{\prime}=1
$$

Seb $E_{i}=a_{i}(A) \psi_{i}^{\prime}(A)$. Then

$$
E_{i}^{2}=\epsilon_{i}, \quad \epsilon_{i} \epsilon_{j}=0(1+j), \quad Z^{\prime} \epsilon_{i}=I
$$

The minimal polynomial of $A P i m\left(\epsilon_{i}\right)$ is ψ_{i}.

Degree of $\psi_{A}(t)$?
Lemma If $T \in E$ and (V), there is a vector x in V such that $\psi_{T_{, x}}=\psi_{T}$.

Proof. Assume first that $x_{T}=p(t)^{m}$, where p ir irreducible. Then $p(T)^{m}=0$ and $p(T)^{m-1} \neq 0$.
Choose x so that $p(T)^{m-1} x \neq 0$.
Suppose φ is manic and $\varphi(T)_{x}=0$. Set $\gamma(t)=\operatorname{gcd}\left(\rho^{m}, \varphi\right)$. Then $\gamma=p^{m}$ or γ / p^{m-1}. As $n(\mathcal{T})^{m-1} x \rho$, we have $r=p^{n}$ and ψ_{T} / φ. So $\psi_{T}=\psi_{T, x}$.

Assume ψ_{T} has coprime factorization $\psi_{T}=\psi_{1} \psi_{2}$ and U_{1}, U_{2} are the direct summands corresponding to $\psi_{1} \& \psi_{2}$. Let $\epsilon_{1} \& E_{2}$ be the associated idempoterts. Choose $x_{i} \in U_{i}$ so that the minimal polynomial of T_{i} on U_{i} is ψ_{i}.

If φ is manic $\& \varphi(T)\left(x_{1}+x_{2}\right)=0$, then φ / ψ_{T}. Now

$$
0=E_{1} \varphi(T)\left(x_{1}+x_{2}\right)=\varphi(T) E_{1}\left(x_{1}+x_{2}\right)=\varphi(T) x_{1}
$$

and so $\psi_{1} \mid \varphi$. Similarly $W_{2} \mid \varphi$ and hence ψ_{T} / φ.

Root spaces

$$
\begin{aligned}
& T \in \operatorname{End}(N) \\
& \psi_{T}=\frac{k}{i=1}\left(t-\theta_{i}\right)^{m_{i}}
\end{aligned}
$$

Than $V=\bigoplus_{i=1}^{k} \operatorname{ker}\left(\left(T-\theta_{i}\right)^{m_{i}}\right)$. We say
$\operatorname{ker}\left(\left(T-\theta_{i} I\right)^{m_{i}}\right)$ is a root space. If
$\left(T-\theta_{i} I\right)^{r} v=0$ for some r then v is a root vector: the least value of r is its index.

The a-rector is a root vector of index 0 (the only ane).
A root vector of index one is an eigenvector.
Theorem If $T \in$ End (V), then V has a basis consisting of cob vectors for F.

Lemma $16 v_{1}, \ldots, v_{m}$ are non-zero root vectors with distinct eigenvalues $0_{1}, \ldots . \nu_{m}$, they are linearly independent.

Examples
(a) Suppose V has basis e_{1}, \ldots, e_{n}. Define T in End (v) by

$$
T e_{i}= \begin{cases}e_{i}+1, & i<n: \\ 0, & i=0 .\end{cases}
$$

Then the minimal polynomial of T is t^{n}, and V is a roob space for T

$$
\mathbb{F}[t] /\left(t^{n}\right)
$$

(b) $V=C^{\infty}(\mathbb{R}), \quad D$ is differentiation.

Define an operator M_{λ} on V by

$$
M_{\lambda}(f)=e^{\lambda t f}
$$

Claim $M_{\lambda} D M_{-\lambda}=D-\lambda I$

Claim $\operatorname{ker}(D-\lambda I)^{r}=\left\{e^{-\lambda t} p: \rho \in \mathbb{R} \cos , \operatorname{deg}(p)<r\right\}$
(c) $V=\mathbb{C}^{\mathbb{N}}, \quad S$ is left shift

$$
\rho:\left(a_{0}, a_{1}, \ldots\right) \rightarrow\left(a_{1}, a_{2}, \ldots n\right)
$$

Define M M_{λ} by

$$
M_{\lambda}\left(a_{0}, a_{1}, \cdots\right)=\left(a_{0}, \lambda a_{1}, \lambda^{3} a_{2}, \ldots\right)
$$

Claims:

$$
\begin{aligned}
& S-\lambda I=M_{\lambda}(S-I)_{-\lambda} \\
& \operatorname{ker}(S-\lambda I)^{n}=\left\{\left(p(0), \lambda p(1), \lambda^{\prime} \rho(2), \ldots\right): \operatorname{deg}(p)<r\right\}
\end{aligned}
$$

Example: solving linear recurrences
Consider

$$
f_{n+1}=f_{n}+f_{n-1}
$$

(why be originals)

If $f=\left(f_{0}, h_{1}, \ldots\right)$, then f satisfies this recurrence if \& only if $\left(S^{2}-S-I\right) f=0$, ie. $f \in \operatorname{ker}\left(S^{2}-S-I\right)$.

Set $K=\operatorname{ker}\left(S^{2}-S-I\right)$. Then
(a) K is S-invariant
(b) $\operatorname{dim}(K)=2$.
(c) minimal polynomial S on K is $t^{2}-t-1$.

Therefore K has a basis of root vectors.
The zero of ψ_{s} are

$$
\frac{1}{2}(1 \pm N 5)^{-0, \tau}
$$

Since zeros of ψ are simple, all non-zero roobvecters are eigenvectors. Therefor

$$
\left.f=A\left(1, \theta, 0^{2}, \ldots\right)+B(1, \tau, \tau\} \cdots\right)
$$

$$
\begin{aligned}
& f_{n+1}=3 f_{n-1}-f_{n-2} \\
& \left(S^{3}-3 \rho+2\right) f=0 \\
& t^{3}-3 t+2=(t-1)^{2}(t+2) \\
& \quad \begin{array}{c}
\mid(1,-2,4,-8, \cdots) \\
\quad(p(d), p(1), \cdots)) \quad \operatorname{deg}(p)=0,1 \\
f_{n}= \\
A+n B+\left((-2)^{n}\right.
\end{array}
\end{aligned}
$$

Diagonalizabity
A matrix is diagonalijable if it is similar to a diagonal matrix

What is the minimal polynomial of $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 10 & 0 & 1\end{array}\right)$?

Theorem Let A be an $n \times n$ matrix over an algebraically closed field \mathbb{F}. The following are equivalent:
(a) A is diagonalizable
(b) \mathbb{F}^{n} has a basis that consists of eigenvectors of A
(c) The minimal polynomial ψ of A has no repeated factors
(a) \neq (c) If two matrices are similar. they have the same minimal polynomial. The minimal poly of a diagonal matrix has no repeated factors. So (a) \Rightarrow (c)
(c) \Rightarrow (b) If ψ has no repeated factors, all non-pero root vectors are eigenvectors. Hence (c) $\Rightarrow(b)$.
(s) \Rightarrow (a) Let the columns of L be eigenvectors. Then $A L=L$ where D is diagonal.

So we have a useful criterion for deciding if A is similar to a diagonal matrix.
What about a condition for deciding if matrices $A \& B$ are similar?

$$
\begin{aligned}
& A=A^{*} \\
& A^{2} x=0 \\
& A^{*} A x=0 \\
& x^{*} A^{*} A x=0 \\
& A x=0 \quad \Rightarrow \text { no root vectors for } 0 \text { with index }>2 \\
& (A-\lambda I)^{2} x=0 \Rightarrow(A-\lambda I) x=0
\end{aligned}
$$

