

A diagonalizable $\Leftrightarrow x_{A}$ has only simple zeros.

$$
\begin{aligned}
A & =A^{*} \\
A^{2} x & =0 \\
A^{*} A_{x} & =0 \\
\cos ^{*} A^{*} A_{x} & =0 \\
A x & =0 \Rightarrow \text { no root vectors for } 0 \text { with index } x>1 \\
(A-\lambda I)^{2} x & =0 \Rightarrow(A-\lambda I) x=0
\end{aligned}
$$

Companion matrices \& cyclic modules.
(weave working with $\mathbb{F}[A]$-modules)

A submodnle N of an R-module is cyclic if it is generated by a single element.
egg.
(a) any minimal nonzero submodule.
(b) $A \in \operatorname{End}(V), v \in V$ $\operatorname{span}\left\{A^{r} v: r \geq 0\right\}$. exercise: when is this simple?

$$
\langle v\rangle_{A}\langle v)_{F(A)}
$$

Problem: find cyclic modules with complements.

Assume $A \in \operatorname{frd}(V), v \in V, v \neq 0$

$$
U:=\operatorname{span}\left\{v, A v_{2} \cdots\right\}
$$

Claim U has a basis of the form $v_{1} A v_{,}, \ldots, A^{d-1} v$, where d is $\operatorname{deg}\left(\psi_{A, v}\right)$.

The matrix representing A relative to this basis is a companion maths. It is determined by ψ.

If $\left\{v, A_{v}, \ldots, A_{v}^{d-1}\right\}$ is linearly independent and $\left\{v, A v, \ldots, A^{d-1} v, A_{v}^{d}\right\}$ is not, then

$$
-A^{d} v=a_{1} A_{v}^{d-1}+\ldots+a_{d} v
$$

and

$$
\begin{aligned}
& \psi(t)=t^{d}+a_{1} t^{d-1}+\cdots+Q_{d} \\
& A_{z}=\lambda_{z} \\
&\left.\alpha=\psi(A) z=\psi()_{1}\right) z \\
& \Rightarrow \psi(x)=0
\end{aligned}
$$

The matrix C_{ψ} representing A is

$$
C_{\psi}:=\left[\begin{array}{cccc|c}
0 & 0 & \cdots & -a_{d} \\
1 & 0 & \cdots & - & -\alpha_{\alpha-1} \\
0 & \cdots & \cdots & -a_{\alpha-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 1 & -a_{1}
\end{array}\right] \quad \text { companion } \quad \text { matrix }
$$

16

$$
W=\left[v A_{v} \cdots A^{d_{1}} v\right],
$$

then

$$
\begin{aligned}
& A W=\left[\begin{array}{lll}
A_{v} & \cdots A_{v}^{d-1} & A^{d}{ }_{v}
\end{array}\right]=W C_{\psi} \\
& A W=W B \\
& \text { col (} 1 \text {) is Ain }
\end{aligned}
$$

Note:
(a) C_{ψ} is invertible $\Leftrightarrow a_{d} \neq 0$
(b) The eigenvalues of C are the zeros of ψ
(c) $r k\left(C_{\psi}-\lambda I\right) \geqslant d-1$ - any eigenvalue has geometric multiplicity equal to one

$$
\begin{aligned}
& \text { e.g. } A=A\left(P_{4}\right) \\
& A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad v=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{lllll}
1 & 0 & 1 & c & 2 \\
0 & 1 & A_{1} & 2 & 0
\end{array}\right]=3 A_{r}^{2}-v} \\
& {[\underbrace{v A_{v} \ldots A^{3} v}_{w} A^{4} v]=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]} \\
& A W=W\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \psi=t^{4}-3 t^{2}+1
\end{aligned}
$$

We will see that any square matrix over a field is similar to a block diagonal matrix

$$
\left[\begin{array}{llll}
C_{1} & & \\
& & & \\
& C_{2} & \\
& & & \\
& & & \\
k
\end{array}\right]
$$

where the diagonal block are companion matrices.

Transposes
We will prove that there is a symmetric matrix Q sit

$$
C_{\psi}^{\top}=Q^{-1} C_{\psi} Q
$$

For this we need a second basis for $\langle v\rangle_{A}$.

Define polynomials $\psi_{1}, \ldots, \psi_{d}$ by declaring $\psi_{i}(t)$ to be the polynomial part of $t^{-i} \psi(t)$.

So if $d=3$ \& $\psi=t^{3}+a b^{2}+b t+c$, then

$$
\psi_{1}=b^{2}+a t+b, \quad \psi_{2}=t+a, \quad \psi_{3}=1
$$

We have the recurrence

$$
\psi_{i-1}(t)=t \psi_{i}+a_{d+1-i}
$$

If

$$
y:=\left[\psi_{1}(A) v_{,}, \cdots, \psi_{d}(A) v\right], \quad \text { "control basis" }
$$

then

$$
A y=q C_{\psi}^{T}
$$

This shows that $C_{\psi} \& C_{\psi}^{\top}$ are similar.

Define

$$
\left.\begin{array}{l}
W:=\left[v, \ldots, A^{d-1}\right. \\
v
\end{array}\right] . \quad \begin{aligned}
& Q=\left(\begin{array}{ccccc}
a_{d-1} & a_{d-2} & \cdots & a_{1} & 1 \\
a_{d-2} & a_{d-3} & \cdots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
a_{1} & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right)
\end{aligned}
$$

and observe that

$$
y=W Q
$$

$$
C_{\psi} G=\varphi C_{\psi}^{\top}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & c & 0 & -d \\
1 & 0 & c & -c \\
0 & 1 & 0 & -b \\
0 & 0 & 1 & -a
\end{array}\right]\left[\begin{array}{cccc}
0 & b & a & 1 \\
b & a & 1 & 0 \\
a & 1 & 0 & 0 \\
1 & a & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & b & a & 1 \\
0 & a & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
c & b & a & 1 \\
b & a & 1 & 0 \\
a & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
c & 0 & 1 & p \\
0 & 0 & 0 & 1 \\
-d & -c & -b & -a
\end{array}\right]=\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & b & a & 1 \\
0 & a & 1 & 0 \\
d & 1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Now

$$
A W=W C_{\psi}
$$

and

$$
\begin{aligned}
A q & =\mathscr{Y}_{1} C_{\psi}^{\top} \\
\Rightarrow \quad A \tilde{W} \varphi & =\widetilde{W} Q C_{\psi}^{\top} \\
A W & =W \cdot Q C_{\psi}^{\top} Q^{-1}
\end{aligned}
$$

Hence $C_{\psi}=\varphi C_{\psi}^{r} Q^{-1}$ $\mathrm{C}_{4} \rho$ is symmetric

Frobenius normal form

A matrix C is in Frobenius normal form if
(a) it is black diagonal, with diagonal blocks $C_{1, \ldots, C_{m}}$
(b) C_{i} is the companion matrix of a (manic) polynomial ψ_{i}
(a) for $i=1, \ldots m$ we have ψ_{i+1} / ψ_{i} divide

Remarles:

1) The Frobenius normal form is determined by the polynomials $\psi_{1, \ldots,}, \psi_{m}$.
2) ψ_{1} is the minimal polynomial of C.
3) We with prove that every square matrix is similar to a matrix in Frobenius normal form, and this form is unique.

We aim to prove that if $A \in \operatorname{End}(v)$ then V is a direct sum of cyclic A-modules.

Lemma If U is a nonzero cyclic A-module of dimension k, then:
(a) It is contained in a cyclic A-module subspace with a complement
(b) If $\operatorname{dim}(U)$ is equal to the degree of H / A,
then U has a complement.

Proof. Assume $\operatorname{dim}\langle n\rangle_{A}=k$ and set

$$
U=\left[u A_{n} \ldots A^{k-1}{ }_{n}\right]
$$

We construct an A^{\top}-module of dimension $l \geqslant k$.
Find w (in \mathbb{F}^{n}) such that

$$
w^{\top} A^{k-i} u= \begin{cases}1, & c^{\prime}=1 \\ 0, & d / w\end{cases}
$$

and

$$
\left[\begin{array}{c}
w^{\top} A^{k-1} \\
w^{\top} A^{k-2} \\
\vdots \\
w^{\top}
\end{array}\right]\left[\begin{array}{llll}
n & A_{n} & \ldots & A^{k-1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x & \ldots & 1 \\
0 & 1 & \ldots \\
0 & & & \\
0 & \cdots & 0 & 1
\end{array}\right]
$$

Hence $\operatorname{dim}\langle\omega\rangle_{A^{\top}} \geqslant k$.
If $l>k, \operatorname{swap} A$ with A^{\top} and construct a new cyclic A-module with dimension at least l.

Compute the corresponding cyclic $A^{\top}-$ module.
Eventually the A^{\top}-module will have the same dimension as the A-module.

So $U=\left[U, \ldots, A_{n}^{h \cdots-1} u\right], \quad W=\left[\left(A^{T}\right)^{k-1} w \cdots w\right]$
$W^{\top} U$ is triangular, diagonal entries equal to 1 . hence W is inverbible.

Claims:
$\left.\begin{array}{l}\text { (a) } \operatorname{ker}\left(W^{\top}\right) \text { is } A \text {-invariant } \\ \text { (b) } \operatorname{col}(U) \cap \operatorname{ker}\left(W^{\top}\right)=\text { (a> }\end{array}\right\} \begin{aligned} & \operatorname{ken}\left(W^{\top}\right) \text { is cur } \\ & \text { complement }\end{aligned}$
(a) $A^{\top} W=W L$ and so $W^{\top} A=L^{\top} W^{\top}$. Hence if $W_{z}^{\top}=0$ then $W^{\top} A_{z}=0$
(b) $W^{\top} U$ is invertible.

To complete the proof, suppose

$$
\operatorname{dim}\left(\langle u\rangle_{A}\right)=\operatorname{deg}\left(\psi_{A}\right)=k
$$

Since $\psi_{A}=\psi_{A} \tau$, we get $k=l$ at step 1 and U has a complement.

Theorem Each matrix in $\operatorname{Mat}_{n \times n}(\mathbb{F})$ is similar to a matrix in Frobenius normal form.

Proof/ Assume ψ_{A} has degree k. As we saw, there is a vector u such that $\psi_{A, u}=\psi_{5}$ and so $\left.\operatorname{dim}(r u\rangle_{A}\right)=k$. There A is similar to a matrix

$$
\left(\begin{array}{ll}
C & O \\
O & A_{2}
\end{array}\right)
$$

where $C=C_{\chi}$.

As

$$
0=\psi\left(\begin{array}{cc}
C & 0 \\
0 & A_{2}
\end{array}\right)=\left(\begin{array}{cc}
\psi(C) & 0 \\
0 & \psi\left(A_{2}\right)
\end{array}\right)
$$

the minimal polynomial of A_{2} divides $\psi_{\text {. }}$
Now induct.

Lemma if two matrices in Froberins normal form are similar, they are equal.
Proof/ $\left(\begin{array}{ll}L_{1} & 0 \\ 0 & D_{1}\end{array}\right),\left(\begin{array}{ll}L_{2} & 0 \\ 0 & D_{2}\end{array}\right)$ in FNF
L_{1}, L_{2} companion $\Rightarrow L_{1}=L_{2}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
A_{0} \\
0 & B
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right) \\
& \text { similar } \begin{array}{l}
?
\end{array} b_{\alpha}\left(\begin{array}{l}
\text { smile }
\end{array}\right.
\end{aligned}
$$

Let ψ_{1} be minimal polynomial of D_{1}. Then

$$
\left(\begin{array}{cc}
\psi_{1}(L) & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
\psi_{1}(L) & 0 \\
0 & \psi_{1}\left(D_{2}\right)
\end{array}\right)
$$

are similar. So $\psi_{1}\left(D_{2}\right)=0$.

Now assume that

$$
\left[\begin{array}{ll}
L & O \\
O & D_{1}
\end{array}\right],\left[\begin{array}{ll}
L & C \\
0 & D_{2}
\end{array}\right]
$$

are in Frobenius normal form \& are similar. (L not necessarily a companion matrix.)

Use above argument to prove the leading block of $D_{1} \& D_{2}$ are equal...

If $\varphi \& \psi$ are polynomials,

$$
\varphi \vee \gamma:=\operatorname{lcm}(\varphi, \psi), \quad \varphi \wedge \psi:=\operatorname{gcd}(\varphi, \psi)
$$

Lemma The matrices

$$
\left(\begin{array}{cc}
C_{\varphi} & 0 \\
0 & C_{\psi}
\end{array}\right) \quad\left(\begin{array}{ccc}
C_{\varphi \sim \psi} & 0 \\
0 & C_{\varphi \wedge \psi}
\end{array}\right)
$$

are similar.

Question: if the matrices

$$
\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right] \quad\left[\begin{array}{ll}
A & 0 \\
0 & C
\end{array}\right]
$$

are similar, are $B \& C$ similar?

