

Equitable partitions
partition π (of $V(x)$) characteristic matrix P

A: algebra of operators on $v(x)$

We say π is equitable relative to A if $\operatorname{col}(P)$

$$
\pi=\{(1,3,4,5,7,7\},\{3,6,6\}
$$

$$
P=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right]
$$

is A-muariant.
example:
$A=$ adjacency algebra $=\langle A\rangle$ partition π, char. matrix P
π equitable $\Leftrightarrow \operatorname{col}(P)$ is A-invariant.
\Leftrightarrow there are constants $B_{i, j}$ such that each vx in π_{i} has exactly $B_{i j}$ neighbours in π_{j}

Lemma if $G \leqslant \operatorname{Aut}(X)$. the orbits of G form an equitable partition.
$B=\left(B_{i j}\right)$ is the adjacency matrix of the quotient graph x / π.

$$
B=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Lemma $\quad A P=P B$

Corollary $\varnothing(B, t) \mid \varnothing(A, t)$
Proof. There exists Q, order $n \times(n-|\pi|)$, such that the columns of $[P G]$ are orthogonal. Hence $(\rho Q)^{\dagger}(P G]$ is diagonal. As col $(Q)=\operatorname{col}(P)^{\perp}$ we see that $A f=Q C$ and

$$
A[p Q]=(p q)\left[\begin{array}{ll}
B & 0 \\
0 & c
\end{array}\right] \text {. }
$$

Therefore A \& $\left[\begin{array}{ll}8 & 0 \\ 0 & c\end{array}\right]$ are similar.

$$
\text { If } \begin{aligned}
B_{z} & =\theta_{z}, \text { then } \\
O P_{z} & =P B_{z}=A P_{z}
\end{aligned}
$$

and so P_{3} is an eigenvector for A constant en the cells of π.

$$
\text { If } \begin{aligned}
y^{\top} A & =\lambda y^{\top} \text {, then } \\
y^{\top} P B & =y^{\top} A P=\lambda y^{\top} P
\end{aligned}
$$

and $y^{\top} P$ is a left eigenvector for B.
(Its entries are the sums of the entries of y over the cells of π.)

Symmetrizing
Set $D=P^{\top} P$. Then $D^{-1 / 2} P^{\top} P D^{-1 / 2}=I$
and thus the columns of $D^{-1 /} P$ are orthonormal.
We have

$$
A P D^{-k}=P \theta D^{-1 / 2}=P D^{-1 / 2} \cdot \underbrace{D^{\xi} \theta D^{-k}}_{\hat{B}} \text { - normalized char } \text { matrix }
$$

As $A \hat{P}=\hat{P} \hat{B} \& \hat{P}^{T} \hat{P}=I$, we see that

$$
\hat{B}=\hat{\rho}^{\top} A \hat{P}
$$

is symmetric. Consequently $\hat{B P}^{\top}=\hat{P}^{\top} A$ and

$$
A \hat{P} \hat{P}^{\top}=\hat{P} \hat{B} \hat{P}^{\top}=\hat{P} \hat{P}^{\top} A
$$

Therefore A \& $\hat{P} \hat{P}^{\top}$ commute projection onto
$\operatorname{col}(P)$

Function spaces
$16 P$ is the char. Matrix of π, then the vectors in col (P) are functions on $V(x)$ constant on cells of π. This space of functions is closed under multiplication; we denote it by $F(\pi)$.

Lemma if \mathcal{F} is a vector space of functions on $V(x)$ then $\mathcal{F}=F(\pi)$ for some partition π if \& only if f is closed under multiplication and contains 1 Lemma If $F(\pi)$ a $F(\sigma)$ are A-invariant, so are $F(\pi) \cap F(\sigma), \quad F(\pi)+F(\sigma)$

Directed graphs
we have two choices, If π is a partition of $V(D)$, then $F(\pi)$ can be invariant under
(a) $\langle A\rangle$ - the adjacency algebra
(b) $\left\langle A, A^{\top}\right\rangle$

The decision is up to you. Note that orbit partitions are equitable relative to $\left\langle A, A^{\top}\right\rangle$
(1) at least twa

For any partition π, we see that $F(\pi)$ is J-invariant, so we might as well add it to our orgebia.

Laplacian

$$
\begin{aligned}
& Q=\left(\begin{array}{cc}
\frac{1}{m_{1}} J_{m_{1}} & \\
& \ddots \\
& \ddots \frac{1}{m_{n}} J_{k}
\end{array}\right] \quad\left(\begin{array}{cc}
J_{1} & \\
0 & J_{1}
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \\
& A=\left(A_{i j}\right) \quad k \times k \text { blacks } \\
& \frac{1}{m_{j}} J_{m_{i}} \cdot A_{i j}=A_{i j j} \cdot \frac{1}{m_{j}} \sigma_{m ;}
\end{aligned}
$$

row \& column sums of each block are constant.
Since $L J=\sigma_{L}=0$, the partition with one cell $(=V(x))$ is equitable.
"almost equitable" partition D. Cardosos

Distance partitions
Assume X is connected. If $\rho \subseteq V(x)$, we have the distance partition $\partial_{\rho}(x)$. Its i th cell is the set of verbures at distance i from S.

The maximum distance of a vertex from S is the covering radius of S.

The subset S is empletely regular if $\partial_{\rho}(x)$ is equitable.

Lemma if S is completely regular, the vertices at maximum distance from S form a completely regular subset.

Theorem A graph x is distance-regular if it is regular and each vertex is a completely regular subset.

Godsil \& Shawe-Taylar

