

Perturbing matrices

References
Karo: Perturbation Theory for Linear Operators. (Springer, 1980)
Lancaster Tismenetsky: The Theory of Matrices (Academic Press. 1985° and edition)

A matrix pencil is the set

$$
A+t H, \quad t \in \mathbb{R} .
$$

It is Hermitian if $A \& H$ are.

We want to understand the behaviour of the eigenvalues of $A+t H$ as 1 varies. Why?

Katol1980) Theorem There is an orthonormal basis pp 12t-122 of eigenvectors $z_{1}(\eta), \ldots, \xi_{n}(\eta)$ for $A+\eta H$ such that each vector is a holomorphic function of η.

Corollary for the eigenvalues $\theta_{r}(\eta)$, likewise,

Kato(1980) Theorem Let A and H be $n \times n$ Hermitian po ma ticies. Then there is an integer m such that, for all but finitely many values of t, the matrix Arty has exactly n distinct eigenvalues.

We refer to the "finitely many values of k " as the exceptional points of the pencil.

example: rank
(a) smanl changes
(b) $\operatorname{det}(A+\eta H)$

We distinguish three oases for pencils
(a) $A H=H A$
(b) $r k(H)=1$
(c) everything else
(a) $A H=H A$

$$
\mathbb{F}=\mathbb{C}(\operatorname{or} \mathbb{R})
$$

A matrix A is normal if $A A^{*}=A^{*} A$ e.g. any Hermitian matrix; any unitary matrix $16 L$ is unitary, D is diagonal \& $A=L^{x} D L$, then

$$
A A^{*}=L^{*} D L L^{*} \bar{D} L=L^{*} D \bar{D} L=L^{*} \bar{D} D L=A^{*} A
$$

So any matrix that is unitarily diagenalizable is normal.

Theorem If A \& B are hermitian and commute, they can be simultaneously, unitarily, diag onaliged Prot. Assume λ is an eigenvalue of A and $u=\operatorname{ker}(A-\lambda I)$. Then

$$
0=B 0<B(A-A I) U=(A-\lambda I) B U
$$

and therefore U is B-invariant.

Theorem If A is normal, if is unitarily diag onalizable.
Proof/ The matrices $B=\frac{1}{2}\left(A+A^{*}\right) \times C=\frac{i}{2}\left(A+A^{*}\right)$ are Hermitian. Since A is normal, they commute and

$$
A=B+i C, \quad A^{*}=B-i C
$$

Since $B_{A} C$ can be simultaneously unitarily diagonalized, A can be unitarily diagonalized. I Steric: $A_{\text {norman }}\left|\Leftrightarrow\left\langle A_{2} A_{x}\right\rangle=\left\langle A^{*} x, A^{*}\right\rangle\right\rangle t_{n}$ Cor. $16 x$ is elver for A, its an eigenvector for A^{*}

Perturbation: $A H=H A$
we can simultaneously diagonalize A \& H. If $Q_{1}, \cdots, \theta_{n}$ and $\lambda_{1}, \ldots, \lambda_{n}$ are respectively the eigenvalues of $A \& H$, eigenvalues of $A+\eta H$ are of the form

$$
\theta_{r}+\eta \lambda_{s} \text {, multiplicity } r k\left(\epsilon_{r} E_{s}\right)
$$

(b) $\quad \operatorname{rk}(H)=1$
rank-1 updates

$$
\begin{aligned}
& A=h h \\
& \left(A+3 h h^{*}\right) z(3)=\theta(\eta) z(3)
\end{aligned}
$$

differentiate

$$
\begin{gathered}
\rightarrow \quad h h^{*} z+\left(A+\eta h h^{*}\right) z^{\prime}=\theta^{\prime} z+\theta z \\
\left(h h^{*}-\theta^{\prime}\right) z=\left(\theta I-A-h h h^{*}\right) z^{\prime} \\
z^{*}\left(h h^{*}-\theta^{\prime}\right) z=0 \\
\Rightarrow \theta^{\prime}=\mid\left\langle h,\left.z^{\prime}\right|^{2} \geqslant 0 \quad\langle h, z\rangle^{2}=\operatorname{tr}\left(\epsilon_{r} h h^{\top} \epsilon_{r}\right)\right. \\
\text { Se } \theta^{\prime}=\left\langle E_{r}, H\right\rangle ; \theta^{\prime}=0 \text { if } \theta_{r} \text { not in } \operatorname{eshpp}(h) \\
\left(=\left(E_{r}\right)_{a, a} \text { where } H=e_{a} \varphi_{a}^{\top}\right.
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{det}(b I-A-n H) & =\operatorname{det}(t I-A) \operatorname{det}\left(I-(t I-A)^{-1} h h^{*}\right) \\
& =\operatorname{det}(t I-A)_{1}\left(1-h^{*}(t I-A)^{-1} h\right) \\
\frac{\phi(A+B H, b)}{\theta(A, b)} & =1-\eta \sum_{r} \frac{h^{*} E_{r} h}{t-\theta_{r}}
\end{aligned}
$$

General case:

$$
\begin{aligned}
& (A+\eta(t) E(\eta)=\theta(\eta) E(\eta) \\
& H E(\eta)+\left(A+\eta(H) E^{\prime}(\eta)=\theta^{\prime}(\eta) E(\eta)+\theta(\eta) E^{\prime}(\eta)\right. \\
& \left(H-\theta^{\prime}(\eta I) E(\eta)=(\theta(\eta) I-A-\eta H) E^{\prime}(\eta)\right.
\end{aligned}
$$

Now $E(\eta)(\theta(\eta) I-A-\xi H)=0$, so

$$
\begin{aligned}
& E(\eta)\left(H-\theta^{\prime}(\eta) I\right) E(\eta)=0 \\
& E(\eta) \| E(\eta)-\theta^{\prime}(\eta) E(\eta)=0
\end{aligned}
$$

$u n^{*} t u h^{*}$

$$
E(\eta)=U^{\prime n \times m}(\eta) U(\eta)^{*}, \quad U(n)^{*} U(\eta)=I_{m}
$$

Hence

$$
U(\eta)^{*} H U(\eta)-\theta^{\prime}(\eta) I=0
$$

and therefore θ^{\prime} is an eigenvalue of $U(\eta)^{*} H U(\eta)$.

The matrices
$U^{*} H U, \quad H M U^{*}=H E=H E E^{2}, \quad E H E$ have the same non-jero eigenvalues, same muts.

So it's the eigenvalues of

$$
\hat{H}=\sum_{r} \epsilon_{r} H E_{r}
$$

that determine the derivatives θ_{r}^{\prime}.

Adding edges

We consider pencils where $H=e_{i} e_{j}^{\top}+e_{j} e_{i}^{\top}$,
ire,

$$
H=\left[\begin{array}{ll|l}
0 & 1 & 0 \\
1 & 0 & 0 \\
\hline 0 & 0
\end{array}\right]
$$

So we want the eigenvalues of $E_{r} H E_{r}$.
The matrices $\epsilon_{r} H \epsilon_{r} \& H E_{r}^{2}=H \epsilon_{r}$ has the same nonzero eigenvalues, with the same multiplicities.

$$
\begin{aligned}
\text { If } E_{r} & =\left(\left.E_{i j}\right|_{i j=1} ^{n},\right. \text { then } \\
H G_{r} & =\left(\begin{array}{cc|c}
E_{21} & E_{22} & \epsilon_{23} \\
\cdots \\
\epsilon_{11} & E_{12} & \epsilon_{13} \\
\hline 0 & 0 & c \\
\vdots & & \cdots \\
0 & c & c
\end{array}\right)
\end{aligned}
$$

which has characteristic polynomial

$$
t^{2}-\left(E_{12}+E_{21}\right) t+F_{12} f_{21}-f_{11} E_{22}
$$

Note that $E_{1,2}=E_{21}$ and

$$
E_{i, j}=\left\langle E_{r} e_{i}, E_{r} e_{j}\right\rangle
$$

Consequently

$$
E_{12}^{1}-E_{11} E_{32}=\left\langle E_{1} e_{1}, E_{r_{2}}\right\rangle^{2}-\left\langle E_{r_{1}}, E_{2} p_{1}\right\rangle\left\langle E_{p_{1}}, \epsilon_{2} e_{2}\right)
$$

and by Gram-Schmidt, this is less than or equal to zero, with equality if 8 only if $E_{r} e_{1} \& E_{r} e_{2}$ are parallel.

Now there are three cases:
(a) $E_{12}^{2}-E_{11} E_{22}<0$, so $H E_{r}$ has one positive and one negative eigenvalue, their sum is $2 E_{1,2}$. (two new eigenvalues)
(b) $E_{r} e_{1} \& E_{r} e_{2}$ are parallel, the eigenvalues of $H \epsilon_{r}$ are C and $2 E_{12}$. (one new eigenvalue)
(c) $\epsilon_{1,1}=\epsilon_{2,2}=\epsilon_{1,2}=0$. (no change)
ie Ere,$E_{r} e_{2}$ both zero (and so they are parallel).

Theorem If A is positive semidefinite, there are vectors x_{1}, \ldots, x_{k} such that

$$
A=x_{1} x_{j}^{\top}+\cdots+x_{k} x_{k}^{\top}
$$

Proof If $A \geqslant 0$ and $A \neq 0$, there is x such that $x^{\top} A x>0$. Ser

$$
B:=A-\frac{1}{x^{\top} A x} A x x^{\top} A
$$

I claim that $B \geqslant 0$. We have

$$
y^{\top} B_{y}=y^{\top} A y-\frac{\left(y^{\top} A x\right)^{2}}{x^{\top} A x}
$$

By Gram-Schmidt applied to A_{x}^{1} \& $A^{1 / 3} y$, we have $\left(y^{\top} A y\right)\left(x^{\top} A x\right) \geqslant\left(y^{\top} A x\right)^{2}$.

So $A=B^{\rho^{p s a}}+\frac{1}{x^{\top} A x} A x x^{\top} A$
If $A_{z}=0$, then $B_{z}=0$. As $B_{x}=0$ \& $A_{x}=0$,
$\operatorname{rk}(B)<r k(A)$. Now induct.

Let $n^{+}(M)$ a $n^{-}(M)$ respectively denote the number of positive a negative eigenvalues of M (assumed Hermitian).
(emma if $M \geqslant 0$, then $n^{+}(A-M) \leq n^{+}(A)$ Proof If $\operatorname{rk}(M)=1$, this follows by rank -1 perturbation. Mare induction.

Lemma $n^{+}\left(\epsilon_{r} H E_{r}\right) \leqslant n^{+}(H) ; n^{-}\left(\epsilon_{r} H E_{r}\right) \leqslant n^{-}(H)$
Proof From spectral decomposition we have

$$
H=H_{0}-H_{1}
$$

where H_{0} a H_{1} are positive semidefinite.
$\rho_{e} \epsilon_{r} N \epsilon_{r}=\epsilon_{r} H_{b} \epsilon_{r}-\epsilon_{r} H_{1} \epsilon_{r}$ and from the previous lemma $n^{+}\left(E_{r} H E_{r}\right) \leqslant n^{+}\left(E_{r} H_{0} E_{n}\right)=n^{+}(H)$ Similarly $n^{-}\left(E, H G_{r}\right) \leqslant n^{-}(H)$.

