

Inertia \& Cocliques
(in charaderstic zero)

Assume A is real \& symmetric, order $n \times n$.
The 1 -dimensional subspaces 〈 $x\rangle$ such that $x^{\top} A x=\sigma$ are the points of a projective quadric \mathbb{Q}_{A}.

We define x^{\perp} to be $\operatorname{ker}\left(x^{\top} A\right)$; this is a hyperplane. If W is a subset

$$
W^{\perp}:=\bigcap_{x \in W} x^{\perp}
$$

If W, \cdots, W_{d} is a basis for W then

$$
W^{\perp}=\operatorname{ker}\left(\left[\begin{array}{c}
w_{1}^{\top} A \\
\omega_{j} A
\end{array}\right]\right)
$$

Lemma if A is invertible, then

$$
\operatorname{dim}\left(W^{1}\right)=n-\operatorname{dim}(W)
$$

and $\left(W^{L}\right)^{+}=W$.

An isotropic subspace U is a subspace contained in Q_{A}.

If $S \subset V(x)$, we define $\langle S\rangle=\left\{e_{u}: u \in S\right\}$.
Lemma if $A=A(x)$ and $S \subseteq V(x)$, then
$\langle s\rangle$ is an isotropic subspace on α_{A} if a only if S is a cocligue

It follows that if A is invertible, $2 \alpha(x) \leqslant|v(x)|$. But there is a better bound.

If A is a real symmetric matrix, let n^{*}, n^{-}, n^{0} respectively denote the number of positive, negative and zero eigenvalues of A.

The triple $\left(n^{+}, n^{-}, n^{\circ}\right)$ ir called the inertia of A.
Theorem If A is $n \times n$, the maximum dimension of an isotropic subspace on Q_{A} is $\min \left\{n-n^{+}, n-n^{-}\right\}$.

Proof. Let U be an isotropic subspace of $\mathbb{R}^{V(X)}$ of dimension k. Let $W(+t)$ be the subspace of $\mathbb{R}^{V(X)}$ spanned by the eigenvectors with positive eigenvalue, define $\left.W^{(}-\right)$analogously.

If $w \in W(A)$, then $w^{\top} A w>0$, hence $U \cap W(t)=\langle 0\rangle$. Similarly $U \cap W(-)=\langle 0\rangle$ and there bore $k \leq \min E n-n^{+}, n-n^{-1}$).

Two matrixes $A \& B$ are emgruent if there is an invertible matrix M such that $B=M^{\top} A M$.

Remarks:
(a) congruence is an equivalence relation
(b) a real symmetric matrix is congruent to its diagonal matrix of eigenvalues
(c) If $A \& B$ are congruent, then the max. dimensions of the isotropic subspace on $Q_{A} \& Q_{B}$ are equal.

Theorem Two real symmetric matrices are congruent if and only if they have the same inertia.

Proof We show that if A \& B are congruent, they have the same inertia. Let $W(t)$ be a subspace of $\mathbb{T}^{V(x)}$ with maximum dimension such that $w^{\top} A w>0$ for all non-jero w in $\mathbb{R}^{v(x)}$ If $B=M^{\top} A M$, then $M^{-1} W(t)$ is a subspace of $\mathbb{R}^{V(x)}$ on which B is positive....

Corollary Let X be a graph on n vertices.
Then $\alpha(X) \leqslant \min \left\{n-n^{+}(A), n-n^{-}(A): A\right.$ who add $\left.m \neq\right\}$
examples
(a) K_{n}
(b) connected bipartite graphs
(c) Petersen graph: $3^{(1)}, 1^{(5)},(-2)^{(4)}$

Folded $(2 d+1)$-cubes
we construct a folded $(d+1)$-cube from the d cube by adding the edges of a perfect matching joining vertices at distance d. If d is odd, the folded ($d+1)$-cube is bipartite, and we are not interested. examples
(a) $Q_{3} / 2 \cong K_{4}$
(b) $G_{5} / 2 \cong$ Clebsch

Problem. What is the chromatic number et the folded $(2 d+1)$-cube?

It's at least three. We attempt to compute the maximum size of a 3-colonrable subgraph of $\theta_{d} / 2$.

Lemma The maximum size of a k-partite subgraph of X is $\alpha\left(X \sigma k_{k}\right)$.

We use the inertia bound. The eigenvalues of the folded ($2 r+1)$-aube are

If $r=5$, we get
val $11,7,3,-1,-5,-9$
mut $155330462165^{\circ 10}$

The eigenvalues of the Cartesian product of the folded 11 -cube with $-K_{3}$ are

So use $-1.1 k_{3} \longrightarrow \alpha_{3}(X) \leqslant 990$
For folded 13-cube, bound obtained is 4098 (vs 4096 vertices $\because \mapsto$)
$\alpha\left(L .\left(K_{5}\right)\right)=2$
inertia bound: 5??
$L\left(K_{5}\right)$ has a spanning subgraph isomorphic to $K_{4} \cup 2 K_{3}$:
(a) edges on 1
(b) edges on 2, not 1
(c) edges not on 1 or 2 ,

Let C be its adjacency matrix.

Consider

$$
\operatorname{det}(C+t(A-C)) .
$$

Inertia only changer when this is zero.
When - let 0.618 , we find that $C+t(A-C)$ has inertia $(2,13,0)$.

If x is the characteristic vector of a a subset S of $U(x)$, then $x^{\top} A_{x}=0$ if and only if S is a cocligne. Note that

$$
x^{\top} A_{x}=\operatorname{tr}\left(x^{\top} A_{x}\right)=\operatorname{tr}\left(A x \lambda^{\top}\right)=\operatorname{sum}\left(A \circ x x^{\top}\right)
$$

and it may be convenient to use $x x^{\top}$ (or $\frac{1}{|S|} m n^{T}$, a projection) to represent S.

A proper colouring of a graph is a partition π of $V(X)$ into cocliques, which we can represent by its characteristic matrix P.

The i-th cell of π is a coclique if \& only if $e_{i}^{\top} P^{\top} A P e_{i}=e$, hence π is a colouring if \& only if

$$
\operatorname{tr}\left(P^{\top} A P\right)=\sum_{i=1}^{1 \pi /} e_{i}^{\top} P^{\top} A P e_{i}=0
$$

Here

$$
\operatorname{tr}\left(P^{\top} A P\right)=\operatorname{tr}\left(A P P^{\top}\right)=\operatorname{sum}\left(A \circ P P^{\top}\right)
$$

and $P P^{\top}$ is block diagonal. So

$$
\operatorname{tr}\left(P^{\top} A P\right)=\sum_{i} A 0\left(P_{P_{i}}\left(P_{e}\right)^{\top}\right)
$$

Coclignes \& colourings

It might prove convenient to use \hat{P} in place of P. (Or other weightings.)

If p is the characteristic matrix of a proper colouring, the map

$$
u \in V(X) \longmapsto e_{u}^{r} P
$$

embeds $V(X)$ into the unit sphere in $\mathbb{R}^{|\pi|}$, taking adjacent vertices to orthogonal vectors. (An orthogonal representation.)

We can convert the columns of P into $n \times n$ diagonal matrices $Q_{1} \cdots, Q_{1 \pi 1}$.
These satisfy:

$$
Q_{i} Q_{j}=s_{i j} Q_{i} ; \quad \sum_{i} Q_{i}=I
$$

Thus they form a resolution of the identity.
Lemma Assume π is a partition of $V(X)$ with c cells, and that $Q_{1} \ldots Q_{c}$ is the corresponding resolution of the identity. Then π is a colouring if \& only $T \quad \sum_{i} Q_{i} A Q_{i}=0$

Theorem If X is a k-regular graph on n vertices with least eigenvalue τ, then

$$
\alpha(X) \leqslant \frac{n}{1-k / \tau}
$$

Proof The matrix

$$
A-I I-\frac{k-r}{n} \tau
$$

15 positive semidefinite (work ont its eigenvalues).
So if x is the characteristic vector of a coclighes

$$
\begin{aligned}
& 0 \leqslant x^{\top}\left(A-T I-\frac{k-\tau}{n} S\right)_{x} \\
& =x^{\top} A x-T r^{\top} x-\frac{k-\tau}{n} x^{\top} \geq 1^{\top} x
\end{aligned}
$$

We have

$$
x^{\top} A x=0, \quad x^{\top} x=|s|, \quad{\underset{2}{1}}^{\top} x=|s|
$$

Fond so

$$
\begin{aligned}
& 0 \leqslant-\tau|S|-\frac{k-\tau}{n}|S|^{2} \\
& \Rightarrow \quad|S| \leqslant \frac{n}{1-k / \tau} .
\end{aligned}
$$

If equality holds, $(S, W S)$ is an equitable partition.

