

Type-II Matrices

We work over \mathbb{C}. Denote the Schar-inuerje of a matrix M by $M^{(-)}$. We say M is a type -II matrix if M is $n \times n$ and

$$
M M^{(\lambda T}=n I
$$

Examples
(a) any Hadamard matrix.
(b) $\theta^{n}=1, \quad M_{i j}=\theta^{(i-1)(j-1)}$,
(e) If M \& N are type-It, so is $M \otimes N$.
(d) a flat unitary matrix.
(e) $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & t & -t \\ 1 & -1 & -t & t\end{array}\right], \quad 1 \in \mathbb{C} \backslash 0$
(f) "Polts model"

$$
\begin{aligned}
& W=(t-1) I+J, W^{(-)}=\left(t^{-1}-1\right) I+\Gamma \\
& W W^{(-)}=(t-1)\left(t^{-1}-1\right) L+\left(t+t^{-1}-2+n\right) J \\
& \text { If } t+t^{-1}+n-2=0 \text {, then }(b-1)\left(t^{-1}-1\right)=n \text {, So } W
\end{aligned}
$$

is type-It if

$$
t=\frac{1}{2}\left(-n+2 \pm \sqrt{n^{2}-4 n}\right)
$$

(9) Symmobric designs: $N N^{\top}={ }^{n} I+\lambda J$
N is $v \times v$, with $v=1+\frac{k^{2}-k}{2}$. If

$$
\begin{aligned}
& W=N+6(J-N) \\
& W^{(N)}=N+F^{-1}(J-N)
\end{aligned}
$$

then we find:

$$
\begin{aligned}
W W^{(-T)} & =((1-t) N+t J)\left(\left(1-t^{-1}\right) N^{\top}+t^{-1} J\right) \\
& =\left(2-t-t^{-1}\right) N N^{\top}+\left(t(1-t) J N^{\top}+(1-t) t^{-1} N J+n J\right) \\
& =\left(2-t-t^{-1}\right)(n I+\lambda J)+\left((1-t)\left(t+t^{-1}\right) k+n\right) J
\end{aligned}
$$

A monomial matrix is a product of a permutation matrix with an invertible diagonal matrix. If M is type-II and P, Q are monomial, then $P M P$ is type-亚.

We say $M \& P M Q$ are equivalent. if M is bype-II, so are $M^{\top} \& \bar{M}$, but these are not deemed to be equivalent. to M.

A trace characterization
Lemma $A_{n} n \not x n$ matrix invertible matrix W is type-II if and only if. for any two diagonal matrices $D_{1} \& D_{2}$,

$$
\left\langle D_{1}, W^{-1} D_{2} W\right\rangle=\frac{1}{n} \operatorname{tr}\left(D_{1}\right) \operatorname{tr}\left(D_{2}\right)
$$

Proof

$$
\begin{aligned}
\left\langle e_{i} e_{i}^{\top}, W_{j e j}^{\top} W\right\rangle=t_{r}\left(e_{i} e_{i}^{\top} W^{-1} e_{j} e^{\top} W\right) & =e_{i}^{\top} W^{-1} e_{j} e_{j}^{\top} W e_{i} \\
& =\left(W^{\top}\right)_{i, j} W_{j, i}
\end{aligned}
$$

and the lemma holds for $D_{1}=e_{i} e_{i}^{\top}$ and $D_{2}=e_{j} p_{j}^{\top}$
if \& only if

$$
\left(W^{-1}\right)_{i, j} W_{j, i}=\frac{1}{n} .
$$

This holds for all i \& j if \& only if $W^{-1}=\frac{1}{n} W^{-A T}$.
Corollary If W is $n \times n$ and type- \mathbb{I} and D is diagonal,

$$
\left(W^{-1} D W\right)_{i, i}=\frac{1}{n} \operatorname{tr}(D)
$$

Equivalently, $w^{-1} 0 \mathrm{w}$ has constant diagonal.

A resolution of the identity is a sequence of pairwise orthogonal projections that sum to I.

Exercise if $P_{1, \ldots, \rho_{k}}$ are projections and $\sum P_{i}$ is idempotent, then $P_{i} P_{j}=0$ when $i \neq j$.

Suppose $P_{1} \ldots, P_{k}$ is a resolution of the identity. If W is a kxk type-II matrix and we define

$$
u_{i}=\frac{1}{v n} \sum_{j} w_{i, j} p_{j}
$$

then U_{1}, \ldots, U_{k} are invertible and

$$
\sum_{i=1}^{k} P_{i} \otimes P_{i}=\sum_{i=1}^{k} u_{j} \otimes u_{i}^{\top}
$$

If W is unitary (equiv., flat), then $U_{1, \ldots,} U_{k}$ are unitary.

$$
\frac{V \otimes V^{*}=\operatorname{End}(V)}{M a b_{n \times n}(c)} \quad M \rightarrow \sum_{r} F_{r} M G_{r}^{*}
$$

Lemma If $\sum_{i} A_{i} \otimes B_{i}=\sum_{j} C_{j} \otimes D_{j}$, then for all M

$$
\sum_{i} A_{i} M B_{i}=\sum_{j} C_{j} M O_{j}
$$

Proof The span of $\left\{A \otimes B: A, B \in \operatorname{Mat}_{\text {n xn }}(C)\right\}$ is an algebra. Define an endomorphism $\tau_{A, B}$ of Mat $_{n \times n}$ (σ) by

$$
\tau_{A, B} ; h \rightarrow A M B^{*}
$$

Then $\tau_{A B}$ is a homomorphism from Manner (©) $巴 M_{h_{n \times n}}$ (a) to End (Mat hon C(1)).
If $\sum_{i} A_{i} \otimes B_{i}=\sum_{j} C_{j} \& D_{j}$, then $\sum_{i} T_{A_{i}, B_{i}}$ and $\sum_{j} T_{j} D_{j}$ agree on M.

Theorem for any graph x we have $x(x) \geqslant 1-\frac{\theta_{1}}{\theta_{n}}$. Proof Assume $c=x(X)$ and let $Q_{1, \ldots 0} Q_{p}$ be the resolution of the identity amine from the partiviten of $V(X)$ into colour classes. Let U_{2}, \ldots, U_{c} be the unitarymabrices anstructed from Q_{s}, \ldots, Q_{e} sining a flat unitary matrix. Then

$$
O=\sum_{i=1}^{c} Q_{i} A Q_{i}=\sum_{i=1}^{c} U_{i} A u_{i}^{\gamma}
$$

and accordingly

$$
A_{1}=-\sum_{i=2}^{c} u_{l}^{*} u_{i} A u_{i}^{*} u_{1}
$$

Choose an eigenvector z of A with eigenvalue θ_{1}. and set $y_{i}=u_{i}^{*} u_{1 z}$. Then

$$
\theta_{1}=z^{\top} A_{z}=-\sum_{j=2}^{c} y_{j}^{\tau} A y_{j} \leqslant(c-1)\left(-\theta_{n}\right)
$$

result due bo Hoffman, proof to Elphich \& Wacjan

Coherent algebras

A coherent algebra is a matrix algebra that is:
(a) closed under transpose a complex conjugation
(b) contains J
(c) is Schur-closed.

We will focus on the real case.

Base-Mesner algebras of association schemes provide one class of examples

Lemma The commutant of a set of permutation matrices is Schur-closed
Proof If P is a permutation matrix, then $P(A \circ B)=P A \circ P B$. If P commutes with A and B,

$$
P A \circ P B=A P \circ B P=(A \circ B) P
$$

It follows that the commutant of a permutation group is a coherent algebra.

Lemma if a subspace of \mathbb{R}^{N} is closed under Schur multiplication, it has a al-basis.
Proof If p is a polynomial and $v \in \mathbb{R}^{N}$, define

$$
\text { poo }=\left(p\left(v_{i}\right)\right)_{i=1}^{N}
$$

Choose p_{k} so $p\left(v_{k}\right)=1$ and $p_{k}\left(v_{j}\right)=0$ if $j \not t h_{h}$
Then p_{k} or is a ol-rector and if S is the set of entries of v, we have

$$
w=\sum_{v_{k} \in S} v_{k} P_{k}(v)
$$

Cordlary Any coherent algebra has a basis β of Otmatrices such that
(a) $\sum_{\text {mines }}^{T} M=J$
(b) I is a sum of elements of β
(c) β is transpose-closed.

The matrices in β form a coherent configwation (or the directed graphs they represent do).

The orbitals of a permutation group are a coherent configuration.

A coherent algebra is homogeneous if $I \in \beta$.

The commutant of a permutation group is homogeneous if \& only if the grope is transitive.

Lemma A commutative coherent algebra is is homogeneous.

