


Type-I matrices ctd



Suppose W is a Sehnr- invertible matrix
Define vectors Wig by

( ratio ofMilik = WII
;

columns)

If we use Oi to denote the diagonal matrix
formed using the entries of Wei , then

% is invertible and

Wilj = Oj
'

Wei



The Nomura algebra Ww of a Schur. invertible
matrix W is the set of matrices for

which each vector wig is an eigenvector.

Clearly I eww .

Lemma If W
,
& We are Schur invertible and

equivalent , then Ww
,

⇐ Wwa .

lemma NW
, @Wy

⇐ Ww
,
Nwz



lemma Assume. W is square and Schur invertible .

Then W is a type -11 matrix if and only if

J c- Nw .

Lemma www.yj-ndj.h

Proof

Whiiwii : § Wrw÷. Ww÷; =§ wr.nkh.IT
= (W"eÑ Wen

= µ
""
W) i. h

= Jj.hn



Suppose um . . .mn are linearly independent eigenvectors
for A. $et Us cnn.mn] .

Then there is a diagonal

matrix D such that All = UD , and then

4-
'A- =Ali

'

and the rows of U
"

are left eigenvectors for A.

Assume µ'T = him .vn] .
As '

4¥, / H " 'm )
= I

,

also

⇐ him = ? airi



This is almost a spectral decomposition

of A - the matrices a i sum to I,

are idempotent & pairwise orthogonal ,
CBut they are not symmetric)

lemma H W is type.LI , then Nw is
commutative .

Proof The vectors Wiij, -→ Wn,; are a basis of

in
.
As all matrices in Nw are diagonalized

by this basis , it is commutative,



If he is an nxn type-11 matrix

✗i.j :
= 1- Wig. Wjii

Let srilw) be the nxn diagonal mabrii given by

7- (wt
,r
= Wrii

We abbreviate a;(W) to Sri .

We note that Yi
,
i
' n'-J and Y

,
= Yj;

Remark If W is flat
, Yi, is Hermitian



Lemma É Yi
,;
= I

, §
,
Yj
,
i
=I

e 's 1

Proof

É Yi
,;
= ( Wuji -Wn;)µ÷%y= JIWW

" 't
;
= nI

.

I-- I

win

we define Ryu to be the . nxn matrix over
Matron's with Dfw),;; = Yi,; .

It is the

matrix of idempotent of W .

If W is flat, Mf is unitary .

and its entries are

projections .



Theorem TFAE :

(a) Me WW

(b) the vectors Wig are eigenvectors for M

(e) the vectors wjj. are left eigenvectors for M

(d) M commutes with Yi;j ,
for all e.

'

&j
Proof

(a) ⇒ (b) : definition of NW

(b) ⇒ (c) : page 6

(b)
,
(c) ⇒ (d)

(d) ⇒ , a , }
A "Y" "5A : look at row & column spaces



Corollary If W is type-11, then Ww is transpose- closed.
Proof

.

If MY;j
= Yi

,; M then

Yi!; M
'
= N'Yiij

and
,
since Yi,j=Yj,i , we have Mie Nw .



Quantum permutations &

colouring s



A quantum permutation is an nxn matrix

over the ring Matan. (f) such that :

(a) each entry is a projection
(b) each row sums to Id

(e) each column sums to Id

examples: flat
(g) any permutation matrix ✓
(b) the matrix of idempotent of a type-I
matrix .



lemma If R
.
.

, Pm are dxd projections and

A. = § Pi is a projection . then Pi Pj - Ji;D, .
Proof Assume U, , . . . Um are matrices such that

Ufa; -I & Will! =P, ' . Then

9=14 .→hm.ly:7in:|
and therefore

µ:*Yui
-- um ] --

Yiu,Uni
'

'

' ungual
is also a projection . As its diagonal is I ,
it is equal to I .



Corollary The projections in a row or column
of a quantum permutation form a resolution

of the identity. Consequently a quantum
permutation is a unitary matrix ,



(17-11-21)

Quantum colouring s



If P
, ,→ Pm and fi , . .> 9m are resolutions

of Id , we say they are orthogonal it
PiGi = e for i =L, -→M . f# §Pic: ← a)

tr PiAit - O

example : any two distinct rows of a quantum
permutation .

A quantum m- colouring of a graph ✗ on n vertices

is an nxn matrix of dxd projections such
that each row is a resolution of the identity
and rows corresponding to adjacent vertices
are orthogonal .



The characteristic matrix of a classical colouring
is a quantum colouring (with d=D.

Lemma A quantum n- colouring of kn is a
quantum permutation .

Proof We need to show the each column of the

quantum colouring sums to Id .

Since distinct

entries in the same column are orthogonal, each

column sum is a projection .
Assume M is the quantum n-colouring and

Q; = :&
.
Mij .



Then Qj represents orthogonal projection
onto a subspace of En , whence 1-v19;) sd

Now § t.IR;) = tr IId)=D and hence

E kr (Pi;) = nd
i.j

As §. Pi;
= §Qj , we have

nd = E tr CQ;) End .

i

Hence tray;) =D for an j & our quantum
colouring is a quantum permutation . ☐



We saw that a classical m -colouring gave
rise to a resolution of the identity with

m terms. We can do the same thing for

quantum colonrings.
If D= Cpi

.;) is the matrix of a quantum
colouring, we can form a diagonal matrix

Po from the i. th column of P ;

I ⇒ '

'

pin;) = :P;

Pn; J

Here Pi is a projection
.



Further Pip; = 0 if i#j and

EP,- =I
i

so we have a resolution of the identity .

Theorem P is a quantum c-colouring of ✗
if I only if

É Pi CAH ④ Id )Pi=o .
Exercise

E- I



So there are unitary matrices M
, ,

-Me such that

{ A- ④ Pi = & Mi ☒ ME
and hence

"" ios

& hilt# 1) MY = 0
.

I=L

It follows that e > 1- % .


