

Type-II matrices ctd

Suppose W is a Sehur-investible matrix Define vectors $W_{i s}$ by

$$
\left(W_{i / j}\right)_{k}=\frac{W_{k i}}{W_{k j}} \quad\left(\begin{array}{c}
\text { ratio of } \\
\text { columns) }
\end{array}\right.
$$

If we use $\partial_{\text {; }}$ to denote the diagonal matrix formed using the entries of Wei, then ∂_{i} is invertible and

$$
W_{i j j}=\partial_{j}^{-1} W e_{i}
$$

The Nomura algebra N_{W} of a Schur-invertible matrix W is the set of matrices for which each vector $W_{i / j}$ is an eigenvector. Clearly $I \in W_{W}$.

Lemma If W_{1} \& W_{2} are Schur invertible and equivalent, then $W_{W_{1}} \cong N_{W_{2}}$.
lemma $N_{W_{1} \& W_{2}} \cong N_{W_{1}} \otimes N_{W_{2}}$

Lemma Assume W is square and Schur invertible. Then W is a type-II matrix if and only if $J \in \mathcal{N}_{W}$.

Lemma $W_{k / i}^{\top} W_{i j}=n \delta_{j k}$
Proof

$$
\begin{aligned}
& W_{h i}^{\top} W_{v_{j}}=\sum_{c} \frac{W_{s, t}}{W_{f, i}} \frac{W_{b, i}}{W_{r, j}}=\sum_{F} W_{r, k}\left(W_{r, j}^{-1}\right) \\
& =\left(W^{(i)} e_{j}\right)^{+} W_{e_{k}} \\
& =\left(W^{(-1)} W\right)_{j, h} \\
& =\delta_{j, k} n
\end{aligned}
$$

Suppose u_{1}, \ldots, n_{n} are linearly independent eigenvectors for A. Set $U=\left[u_{1, \ldots}, u_{n}\right]$. Then there is a diagonal matrix \triangle such that $A U=U \Delta$, and then

$$
U^{-1} A=\Delta U^{-1}
$$

and the rows of U^{-1} are left eigenvectors for A.
Assume $\left(U^{-1}\right)^{\top}=\left[v_{1}, \ldots, v_{n}\right]$. As

$$
\left[\begin{array}{l}
y_{1}^{\top} \\
i_{n}^{\top}
\end{array}\right]\left(u_{1}, \ldots, v_{n}\right)=I,
$$

also

$$
I=\left[u_{1}-u_{n}\right]\left[\begin{array}{c}
v_{1}^{\top} \\
\vdots \\
v_{n}^{\top}
\end{array}\right]=\sum_{i} u_{i} \cdot v_{i}^{\top}
$$

This is almost a spectral decomposition of A - the matrices $n_{i} v_{i}^{r}$ sum to I, are idempotent \& pairwise orthogonal. (But they are not symmetric)

Lemma If W is type-II, then N_{W} is commutative.
Proof The vectors $W_{1 i j}, \ldots, w_{n} j$ are a basis of [in. As all matrices in N_{W} are diagonalized by bris bass, it is commutative,

If W is an $n+n$ type-II matrix

$$
Y_{i, j}:=\frac{1}{n} W_{i j} W_{j / i}^{\tau}
$$

Let $\partial_{i}(W)$ be the $n \times n$ diagonal matrix given by

$$
\partial_{i}\left(W_{v, r}=W_{r, i}\right.
$$

We abbreviate $\partial_{i}(W)$ to ∂_{i}.
we note that $Y_{i, i}=\frac{1}{n} J$ and $Y_{i, j}^{\top}=y_{j, i}$
Remark if W is flat, $Y_{i j}$ is Hermitian
$\operatorname{Lemma} \sum_{i=1}^{n} y_{i j}=I, \quad \sum_{i=1}^{n} y_{j i}=I$
Proof

$$
\sum_{i=1}^{n} Y_{i j}=\left[W_{i j} \cdots W_{n / j}\right]\left[\begin{array}{c}
W_{j / 1}^{\top} \\
\vdots \\
W_{j / h}^{\top}
\end{array}\right]=\partial_{j}^{-1} W W^{(-) T} \partial_{j}=n I .
$$

We defoe Y_{w} to be the $n \times n$ matrix over $M_{a_{n \times n}}(\mathbb{C})$ with $\left(Q_{w}\right)_{i, j}=Y_{i j j}$. It is the matrix of idempotents of W.

If W is flat, \mathscr{H} is unitary and its entries are projections.

Theorem TFAE:
(a) $M \in N_{W}$
(b) the vectors Wir, are eigenvectors for M
(e) the vectors $w_{j / i}^{\top}$ are left eigenvectorr for M
(d) M eommuter with $Y_{i j}$, for all is j

Proot
(a) $\Rightarrow(b)$: definition of N_{W}
$(b) \Rightarrow(c)$: page 6
$(b),(c) \Rightarrow(d)\} \quad A x y^{\top}=x y^{\top} A$ luok at cow \& collmn parces (d) \Rightarrow (a)

Corollary if W is type-II, then N_{W} is transpose-closed.
Proof. If $M Y_{i, j}=Y_{i, j} M$ then

$$
y_{i, j}^{\top} M^{\top}=M^{\top} Y_{i j}^{\top}
$$

and, since $Y_{i, j}^{\top}=Y_{j, j}$, we have $M^{\top} \in N_{W}$.

Quantum permutations \& Colourings

A quantum permutation is an $n \times n$ matrix over the ring Mated (C) such that:
(a) each entry is a projection
(b) each row sums to I_{d}
(c) each column sums to I_{d} examples:
(a) any permutation matrix
(b) the matrix of idempotents of a type-II matrix.

Lemma If $P_{1, \ldots,} P_{m}$ are $d x d$ projections and $\widehat{Q}=\sum_{i} P_{i}$ is a projection. then $P_{i} P_{j}=\delta_{i j}, P_{1}$, Proof Assume U_{1}, \ldots, U_{m} are matrices such that

$$
\begin{gathered}
u_{i}^{*} u_{i}=I \text { \& } u_{i} u_{i}^{*}=P_{i} . \text { Then } \\
Q=\left[\begin{array}{lll}
u_{1} & \ldots, h_{n}
\end{array}\right]\left[\begin{array}{c}
u_{1}^{*} \\
\vdots \\
u_{m}^{*}
\end{array}\right]
\end{gathered}
$$

and therefore
is also a projection. As its diagonal is I, it is equal to I.

Corollary The projections in a row or column of a quantum permutation form a resolution of the identity. Consequently a quantum permutation is a unitary matrix.

$$
(|7-1|-21)
$$

Quantum colourings

If P_{1}, \ldots, P_{m} and Q_{1}, \ldots, Q_{m} are resolutions of I_{d}, we say they are orthogonal if $P_{i} Q_{i}=e$ for $i=1, \ldots, m$.
$\left\langle\Leftrightarrow ; \Gamma P_{i}=0\right)$
$n\left(e_{i} a_{i}\right)=0$
example: any two distinct rows of a quantum permutation.

A guantunn m-colouring of a graph x on n vertices is an $n \times n$ matrix of $d \times d$ projections such that each row is a resolution of the identity and rears corresponding to adjacent vertices are orthogonal.

The characteristic matrix of a classical colouring is a quantum colenring (with $d=1$).

Lemma A quantum n-colonring of K_{n} is a quantum permutation.
Proof We need to show the each column of the quantum colouring sums to I_{d}. Since distinct entries in the same column are orthogenal, each column sum is a projection.

Assume M is the quantum n-colouring and

$$
Q_{j}=\sum_{i=1}^{n} M_{i j} .
$$

Then β_{j} represents orthogonal projection onto a subspace of \mathbb{C}^{n}, whence $\operatorname{tr}\left(Q_{j}\right) \leq d$ Now $\sum_{j} \operatorname{tr}\left(P_{i j}\right)=\operatorname{tr}\left(I_{d}\right)=d$ and hence

$$
\sum_{i, j} k_{1}\left(p_{i, j}\right)=n d
$$

As $\sum_{i, j} P_{i, j}=\sum_{j} Q_{j}$, we have

$$
n d=\sum_{j} \operatorname{tr}\left(\phi_{j}\right) \leq n d .
$$

Hence $\operatorname{tr}\left(\psi_{j}\right)=d$ for all j \& our quantum colouring is a quantum permutation.

We saw that a classical m-colouning gave rise to a resolution of the identity with m terms, We can do the same thing for quantum colourings.

If $p=\left(P_{1, j}\right)$ is the matrix of a quantum colouring, we can form a diagonal matrix $P_{c^{\prime}}$ from the i th column of P;

$$
\left[\begin{array}{c}
p_{1 j} \\
\vdots \\
p_{n j}
\end{array}\right] \rightarrow\left[\begin{array}{llll}
p_{1 j} & & \\
& & \\
& & \\
& p_{i j}
\end{array}\right]=: p_{j}
$$

Herp θ_{i} is a projection.

Further $P_{i} P_{j}=0$ if $i \neq j$ and

$$
\sum_{i} \cdot P_{i}=I
$$

so we have a resolution of the identity.
Theorem P is a quantum c-colouring of X if \& only if

$$
\sum_{i=1}^{c} \theta_{i}\left(A(x) \otimes I_{d}\right) P_{i}=0 .
$$

Exercise

So there are unitary matrices M_{1}, \ldots, M_{c} such that

$$
\sum_{i=1}^{c} Q_{i} \otimes P_{i}=\sum_{i=1}^{c} U_{i} \otimes U_{i}^{*}
$$

and hence

$$
\sum_{i=1}^{c} u_{i}(A \not I) u_{i}^{*}=0
$$

It follows that $c \geqslant 1-\frac{\theta_{1}}{\theta_{n}}$.

