

Matrices over $\mathbb{Z}, \mathbb{F}[t]$

We work with matrices over a ling R. We assnone R is commutative (which means we can use determinants.

Matures A \& B over R are equivalent if there are invertible matrices P and Q such that

$$
B=P A \Theta .
$$

This us an equivalence relation.

Theorem Let \mathbb{F} be a field. Two $n \times n$ matrices oven F are similar if \& only if $E I-A$ and $t I-B$ are equivalent over $\mathbb{F}[t]$.

We don't prove this now.
One reason it hobs is that $F[t]$ is a principal ideal domain.

Transfer matrices
Consider a dynamical system
(1)

$$
\begin{aligned}
x_{n+1} & =A x_{n}+B n_{n} \\
y_{n} & =C x_{n}+D u_{n}
\end{aligned}
$$

An xn B $n \times k$

We are given x_{0}, A, B, P, D. The sequence $u_{n}(n \geqslant 0)$ gives the inputs, the y_{n} are the outputs. We use generating functions to determine the relation between $\left(u_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq 0}$.

Self $X(z)=\sum^{T} x_{n} z^{-n}, u(z)=\sum_{n} u_{n} z^{-n}, \quad y(z)=\sum_{n}^{\top} y_{n} z^{-n}$ Multiply the first equation in (1) by ρ^{-n-1} and sum:

$$
\begin{aligned}
& X\left(z^{-1}\right)-x_{0}=z^{-1} A X(z)+z^{-1} B U(z) \\
& \rightarrow\left(I-z^{-1} A\right) X\left(z^{-1}\right)=x_{0}+z^{-1} B U(z) \\
& X(A)=x_{0}\left(I-z^{-1} A\right)^{-1}+z^{-1}\left(I-z^{-1} A\right)^{-1} B U(z)
\end{aligned}
$$

Multiplying the second equation by t^{n} and summing yields:

$$
\begin{aligned}
Y(z) & =C X(z)+D U(z) \\
& =x_{6} C\left(I-z^{-1} A\right)^{-1}+z^{-1} C\left(I-\xi^{-1} A\right)^{-1} B U(z)+D U(z)
\end{aligned}
$$

Assume $x_{a}=0$. Then

$$
Y(z)=(C(z I-A) B+D) U(z)
$$

It's traditional to refer to

$$
C(3 I-A)^{-1} B+D
$$

control theory convalutional code as the transfer function of our system

Equivalence

We start with equivalence of 2×1 vectors over a ring R.

$$
\left(\begin{array}{cc}
a & b \\
-y & x
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{0}
$$

Here $a x+$ by l lies in the ideal (x, y) generated by x a y. If R is a principal ideal domain, then $\langle x, y\rangle=d$, and we may choose a, b so that $a x+b y=d$. Then, since $d \mid x \& d / y$

$$
\left(\begin{array}{cc}
a & b \\
-y / d & x / d
\end{array}\right)\binom{x}{y}=\binom{d}{d}
$$

As

$$
\operatorname{det}\left(\begin{array}{cc}
a & b \\
-y / d & \frac{x}{d}
\end{array}\right)=1
$$

we see that the vectors

$$
\binom{n}{y}, \quad\binom{d}{0}
$$

are equivalent e
Lemma Assume \mathbb{R} is a principal ideal domain.
If $y=\binom{x_{1}}{i_{m}} \in R^{m}$, then y is equivalent to $\operatorname{gcd}\left\{x_{1}, \ldots, x_{m}\right\} e_{1}$

Lemma Assume R is a principal ideal domain.
Then A is equivalent to a matrix of
the form

$$
\left[\begin{array}{ccc}
8 & 0 & \cdots \\
c & 0 \\
\vdots & & A_{1} \\
0 & &
\end{array}\right]
$$

Proof Using the previous lemma, A is equivalent to

$$
\left[\begin{array}{ll}
d_{1} & y_{1} \\
0 & \theta_{1} \\
\dot{0} &
\end{array}\right]
$$

Each entry of this matrix lies in the ideal generated by the elements of A; assume this ideal is generated by δ.

Applying the row version of the previous lemma, we bring the proviens matrix to the form

$$
\left[\begin{array}{c|ccc}
d_{2} & 0 & \cdots \\
\hline s_{2} & B_{2}
\end{array}\right]
$$

where $d_{2} \mid d_{1}$. If $d_{2}=d_{1}$, then $3_{1}=0$.
So we continue; at each step lither the (1,1)-entry decreases, or were done.

We say an $m \times n$ matrix D is diagonal if $D_{i, j}=0$ when $i \neq j$.

Existence of Smith normal form:
Theorem Any matrix over a principal ideal domains is equivalent to a diagonal matrix D such that $D_{i, i} / D_{i+1, i+1}$ for each i.

Proof Only the divisibility is in question We have

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \xrightarrow[{\left[\begin{array}{ll}
1 & 0
\end{array}\right]_{l}}]{ }\left(\begin{array}{ll}
a & 0 \\
x & x
\end{array}\right. \\
b
\end{array}\right) \xrightarrow[{\left[\begin{array}{ll}
10
\end{array}\right]_{r}}]{y i} \begin{array}{ll}
a & 0 \\
x a+y b & b
\end{array}\right)
$$

We are left with uniqueness,

Fitting ideals

Binet-Cauchy
Assume A \& B ave $k \times n$ matrices $k \leqslant n$. If C is $k \times n$ and S is a k-subset of $\{h \ldots, n\}$, define $\rho_{\rho}(C)$ to be the determinant of the $k x k$ matrix formed by the columns of C indexed by S.

Theorem

$$
\operatorname{det}\left(A B^{\top}\right)=\sum_{\substack{s \leq[\operatorname{limn}] \\|S|=k}} P_{\rho}(A) \rho_{S}(B)
$$

The cases $k=1$ \& $k=n$ are familiar.
Proof/ Recall that

$$
\operatorname{det}\left(t I+B^{\top} A\right)=t^{n-k} \operatorname{det}\left(t I+A B^{\top}\right)
$$

and consider the coefficient of t^{n-k}. O_{n} the right, it's $\operatorname{det}\left(A^{\top}\right)$. On the left, we find the sum of the principal $k \times k$ minors of $B^{\top} A$. Now if $|S|=k \& S=\{1, \ldots, n\}$, the (S, S)-minor of $B^{\top} A$ is $\rho_{\rho}(B) \rho(A)$.
B^{\top} A Tao, va wikipedia

The Fitting ideal $F_{k}(A)$ of a matrix A is the ideal generated by the $(k \times k)$-minors of A.
It is defined orel any commutative ring R. Over a principal ideal domain, there are elements f_{k} of R such that $F_{k}=\left(f_{k}\right)$

Theorem If A and B are equivalent matrices, $F_{k}(A)=F_{k}(B)$ for all k.

Proof Assume P is invertible. By Binet-Cauchy, each $r \times r$ miner of $P B$ lies in $F_{r}(B)$. Hence

$$
F_{r}\left(P_{B}\right) \leqslant F_{r}(B) .
$$

Since the entries of P^{-1} lie in R

$$
F_{r}(B)=F_{r}\left(P^{-1}(P B)\right) \leqslant F_{r}(P B] \text {. }
$$

Finally, if D is a diagonal matrix \& $D_{i, j} \mid D_{i+1, i t i}$ for each i, then $F_{r}(D)=D_{r, r}$

The terms $D_{i j}$ are the invariant factors of A.
The invariant factors of $t I-A$ are referred to as its elementary divisors. The product
$\pi D_{i j}$ of the elementary divisor is $\phi(A, t)$; further $D_{n, n}$ is the minimal polynomial of A.

Division

We want to divide $F(t)=\sum_{k=0}^{r}{ }_{k}^{r} k^{k}$ by tI-A. We have

$$
(t I-A)^{-1}=t^{-1} \sum_{i \geqslant 0} A^{i} t^{-i}
$$

and hence the coefficient of t^{-1-j} in

$$
\begin{aligned}
& F(t)(+I-A)^{-1} \text { ir } \\
& \quad F_{0} A^{j}+F_{1} A^{j+1}+\ldots+F_{r} A^{j+r}=\left(F_{0}+F_{1} A \tau+F_{r} A^{r}\right) A^{j}
\end{aligned}
$$

Therefore

$$
F(t)(t I-A)^{-1}=Q^{Q(t)} \underbrace{F(A)}_{\text {polynomial }}(t I A)^{-1}
$$

and

$$
F(t)=Q(t)(I-H)+F(A)
$$

$$
\begin{gathered}
(t I-A) \operatorname{adj}(t I-A)=\phi(t) I \\
\phi(b) I=Q(t)(t I-A)+\phi(A) \\
((t I-A)-\theta(t))(t I-A)=\phi(A) \\
\Rightarrow \phi(A)=0
\end{gathered}
$$

Cabley-Hamilton
Equivalence \& Similarity

We redeem a debt by proving:
Theorem Let \mathbb{F} be a field. Two $n \times n$ matrices oven F are similar if \& only if $E I-A$ and tI-B are equivalent over $\mathbb{F}[t]$.

Proof You may prove that if A and B are similar, $F-A$ and $A E-B$ are equivalent over $F[t]$. So assume we have invertible matrices $P(x) \& Q(t)$ such that

$$
P(t)(t I-A)=(t I-B) Q(t)
$$

Then we may write

$$
\begin{aligned}
& P(t)=(t I-B) P_{0}(t)+P_{1} \\
& P(t)=Q_{0}(t)(t I-A)+Q_{1}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
0 & =\left((t I-B) P_{0}\left(t+P_{1}\right)(t I-A)-(t I-B)\left(Q_{0}(t)(t I-A)+Q_{1}\right)\right. \\
& =\underbrace{(t I-B)\left(P_{0}(t)-Q_{0}(t)\right)(t I-A)}_{\text {degree } \geqslant 2}+\underbrace{P_{1}(t I-A)-(t I-B) Q_{1}}_{\text {degree } r 1}
\end{aligned}
$$

So $P_{0}(b)-Q_{0}(t)$ and

$$
P_{1}(t I-A)=(I F-B) Q_{1}
$$

We see that $P_{1}=Q_{1}$ and similarity follows if we prove Q, is invertible. We may assume that

$$
\begin{aligned}
Q(t)^{-1} & =R_{0}(t)(t I-B)+R_{1} \\
\left(R_{\text {ea }} I\right): Q(t) & \left.=Q_{0}(t)(t I-A)+Q_{1}\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
I & =\left(R_{0}(t I-B)+R_{1}\right)\left(Q_{0}(+I-A)+Q_{1}\right)=P_{1}(t I-A) \\
& =R_{0}(t I-B) R_{1}(t I-A)+R_{1} \beta_{e}(t I-A)+R_{0}(\overbrace{(I-B) Q_{1}}+R_{1} Q_{1} \\
& =\underbrace{\left(R_{0}(t I-B) R_{1}+R_{1} Q_{0}+R_{0} P_{1}\right)(t I-A)}_{\text {degree }}+\underbrace{R_{1} Q_{1}}_{\text {constant }}
\end{aligned}
$$

Therefore $R_{1} Q_{1}=I$ \& $Q_{1}\left(\right.$ and $\left.P_{1}\right)$ are invertible.

