

Resolvents
(Remark: we've following Kate, roughly)

A rational matrix is a matrix whose entries are rational functions aver some field \mathbb{F} A rational function P / q is proper if $\operatorname{deg}(p)<\operatorname{deg}(q)$.

Theorem Assume \mathbb{F} is algebraically closed and $p(t) / q(t)$ is a proper rational function over F. Assume $\theta_{1}, \ldots, \theta_{k}$ are the distinct zeros of $q(t)$, with respective multiplicities m_{1}, \ldots, m_{k}. Then there are polynomials $p_{1} \ldots p_{h}$ with $\operatorname{deg}\left(p_{i}\right)=m_{i}$, such that

$$
\frac{\rho(t)}{\rho(t)}=\sum_{r=1}^{k} \frac{p_{r}(t)}{\left(t-\theta_{r}\right)^{m_{r}}}
$$

partial fraction expansion

A rational matrix is proper if each entry is proper. Frown the theorem, if A is a proper rational matrix

$$
A=\sum_{r}\left(t-\theta_{r}\right)^{-m_{r}} P_{r}(t)
$$

Here the θ_{r} range over the poles of the eateries of A and $\operatorname{deg}(P,(\Delta))<m_{r}$. This is a partial fraction expansion of A.

If θ is a pole of order m, we also have A series expansion

$$
A=\sum_{k \geqslant-m} A_{k}(t-\theta)^{k}
$$

(for suitable matrices A_{k})

For an already familiar example of a partial fraction expansion:

$$
(b I-A)^{-1}=\sum_{r}\left(t-\theta_{r}\right)^{1} E_{r}
$$

If A is a square matrix, its resolvent $R(z)$ is $(z I-A)^{-1}$.

We seels a partial fraction expansion of $R(z)$, for general matrices.

Lemma $R(z)-R(w)=-(z-w) R(z) R(w)$
Proof

$$
\begin{aligned}
(z I-A)(R(g) & -R(w))(w I-A) \\
= & (w I-A)-(g I-A) \\
= & (w-z) I
\end{aligned}
$$

and so

$$
R(z) \cdot R(w)=-(z-w)(z I-A)^{-1}(w I-A)^{-1}
$$

Corollary: $\frac{d}{d z} R(z)=-R(z)^{2}$

We present one application.
Lemma $16 A$ is symmetric, all poles of $R(z)$ are simple. Proof Assume θ is an eigenvalue of A. If $A_{n}=\theta n$ then $(g I-A)^{-1} u=\frac{1}{3-\theta} u$ and therefore θ is a pele of $R(z)$. So

$$
R(z)=\sum_{r \geqslant-m} A_{r}(z-\theta)^{r}
$$

where $m \geqslant 1$, and we assume without loss that $A_{-m} \neq 0$.
Then $R(z)^{\top} R(z)$ is equal to $A_{m}^{\top} A_{-m}(z-\theta)^{-2 m}$, plus terms of higher eider. Ap A is symmetric, $R(g)^{\top}=R(z)$.

By the previonslemma, $R^{\prime}(z)=-R(g)^{2}$ and the lowest order term of $R^{\prime}(8)$ is $-m A_{-m}(z-0)^{-m-1}$.
Therefore $m+1=2 m$ \& $m=1$.
We derive information about the coefficients in the senses expansion of $R(z)$.

Lemma. if θ is an eigenvalue of A with multiplicity m \& $R(z)=\sum_{r \geq-m} A_{r}(z-\theta)^{r}$. then

$$
A_{r} A_{s}= \begin{cases}-A_{r+s+1}, & r, s \geqslant 0 ; \\ A_{r+s+1}, & r, s \leq-1, r+s \geqslant-m ; \\ 0, & \text { etherwise. }\end{cases}
$$

Proof Assume first that $\theta=0$. Since

$$
R(z)-R(w)=-(g-w) R(z) R(w)
$$

we have

$$
\sum_{r \geqslant-m} A_{r} \frac{z^{r}-w^{r}}{z-w}=-\sum_{r, s \geqslant-m} A_{r} A_{s} z^{r+s}
$$

Comparing coeflevients of $z^{i} w^{j}$ yields

$$
\begin{aligned}
& A_{i+j+1}=\left\{\begin{array}{cc}
-A_{i} A_{j}, & i, j \geqslant 0 \\
A_{i} A_{j}, & -m+1 \text { si +j; } \\
0, & \text { oherwwe. }
\end{array}\right. \\
& A_{r}=(\sim)^{r} A_{0}^{r+1} \Rightarrow A_{-1}^{2}=A_{-1} \cdot A_{-1} A_{r}=-A_{r} \quad(r 3 n) \\
& A_{-2} A_{2}=A_{-1-r} \Rightarrow A_{-s}=\left(A_{-2}\right)^{s-1}
\end{aligned}
$$

Te make this clearer, suppose $m=3$. Then $L H S$ is

$$
\begin{aligned}
& A_{-3} \frac{z^{-3}-w^{-3}}{z-w}+A_{-2} \frac{\delta^{-2}-w^{-2}}{j-w}+A_{-1} \frac{\delta^{-1}-w^{-1}}{j-w}+A_{1}+A_{2}(\jmath+\omega)+A_{3}\left(j^{3}+w z+w^{2}\right)+- \\
= & -\frac{z^{2}+w z+w^{2}}{j^{3} w^{3}} A_{-3}-\frac{z^{2}+w}{j^{3} w^{\prime}} A_{-2}-\frac{1}{j w} A_{-1}+A_{1}+A_{2}(\gamma+w)+\cdots
\end{aligned}
$$

The coefficient of $z^{i} w$ on the RHS is $-A_{i} A_{j}$.

Since

$$
A_{i+j+1}=\left\{\begin{array}{cl}
-A_{i} A_{j}, & i, j \geqslant 0 \\
A_{i} A_{j}, & -m+1 \leqslant i+j, i, j \leqslant-1 \\
0, & \text { otherwise. }
\end{array}\right.
$$

we get

$$
\begin{array}{ll}
A_{r}=(-1)^{r} A_{0}^{r+1} & (r \geqslant 0) \\
A_{-1} A_{-r}=A_{-r} & (r 31) \\
A_{-2} A_{-r}=A_{-r-1} & (r \geqslant 2)
\end{array} \quad \Rightarrow A_{-1}^{2}=A_{-1}
$$

Hence series is determined by $A_{0,} A_{-1} \& A_{-2}$.

Note that A_{-1} is idempotent \& A_{-2} is nilpotent. Set $E_{\theta}=A_{-1}, N_{\theta}=A_{-2}$.

Now

$$
\begin{aligned}
(t I-A) R(z) & =((t-z) I+z I-A) R(z) \\
& =(t-z) R(z)+I
\end{aligned}
$$

and setting $6=0$ yields

$$
\begin{aligned}
& \sum_{r \geqslant-m}(\theta \pm-A) A_{r}(z-\theta)^{r}=I-\sum_{r i-m} A_{r}(3-\theta)^{r+1} \\
& \Rightarrow\left\{\begin{array}{l}
(\theta F-A) A_{r}=A_{r-1} \quad(r \neq C) \\
(\theta I-A) A_{0}=-A_{-1}-I \\
(\theta L-A) A_{-m}=0
\end{array} \Rightarrow(\theta I-A) E_{\theta}=N_{\theta} \&\right.
\end{aligned}
$$

Principal parts
We define the principal part $P_{\theta}(z)$ of $R(z)$ by

$$
P_{0}(z)=\sum_{r=1}^{m} A_{-r}\left(\xi_{z}-0\right)^{-r}
$$

So

$$
\begin{aligned}
P_{\theta}(z) & =(3-\theta)^{-1} E_{\theta}+\sum_{r=1}^{m-1} N_{\theta}^{r}(z-\theta)^{-r-1} \\
& =(z-\theta)^{-r} \sum_{r=0}^{m-1}(\theta I-A)^{r} E_{\theta}(3-\theta)^{-r}
\end{aligned}
$$

We also have $E_{\theta} R(z)=P_{\theta}(z)$
Theorem $R(z)=\sum_{\theta} P_{q}(z)$

Proof The entries of $R(z)$ and $P_{\theta}(z)$ are proper rational functions, and therefore each entry of

$$
R(z)-\sum_{\theta} P_{\theta}(z)
$$

is a proper rational function. As each pole of $R(z)$ occurs at an eigenvalue of A, the above difference has ne poles. Therefore it is a polyomial bub, since $R(z) \Delta \sum_{1} P_{\theta}(z)$ go to zero as $\} \rightarrow \infty$, it is zero.

Lemma E_{θ} is a polynomial in $A ; \sum_{\theta} \epsilon_{\theta}=I$
Proof

1) $E_{\theta}=\int_{C}(z I-A)^{-1} d z$
2) $\int_{C}(z I-A)^{-1} d z$ is a limit of weighted sumer of matrices $\left(\delta_{r} I-A\right)^{-1}$
3) Any matrix that Commutes with A commutes with ϵ_{θ}
k) E_{θ} is a polynomial in A. (Theorem 4.8.1)

For the second claim,

$$
(z I-A)^{-1}=z^{-1}\left(I-z^{-1} A\right)
$$

and so

$$
\int_{l}(z F-A)^{-1} d z=I
$$

Order of poles of $R(z)$
Assume θ has multiplicity m, Then $A_{r}=0$ when $r<-m$, equivalently when $(\theta I-A)^{*} E_{g}=0$ So the order of the pole of $R(g)$ af θ ir at most m.
Theorem The order of the pole of $R(g)$ at θ equals the multiplicity of θ as a zorn of the minimum polynomial of A.

Corollary Any square matrix A is the sum of a diagonalijable matrix and a nilpotent matrix, each a polynomial in A

