

Algebras

What algebras have we met:
(a) \mathbb{F}
(b) $\mathbb{F}(t)$,
(c) adjacency algebra: $\mathbb{F}[A] \cong \mathbb{F}[t] /\left(\psi_{A}(t)\right)$
(d) normal matrices: $\left\{A, A^{*}\right\rangle$
(e) commentants, coherent algebras
(f) $\left\langle A, 33^{*}\right\rangle$ (with A Hermitian)

These are all *-closed (except (r), for directed graphs

Burnside's theorem

Burnside
Theorem Assume A is a subalgebra of Mat $_{n \times n}$ ($\underbrace{\text { (). If } A \text { does not fox a non-zero }}$ proper subspace, then $\mathcal{A}=\operatorname{Mat}_{n \times n}$ ($\left.\mathbb{C}\right)$.

The proof requires a number of steps. we say on algebrad acting on a vector space V is transitive if, given non-zero $n \sim$ in V, there is an element A in e A such that $A u=v$

Claim An algebra acting on V is transitive if \& only if it has no proper non-zero invariant subspace.
Proof Suppose $0<U<V$ and U is A-invariant. If $u \in U l e$ and $v \neq W, U$, no element of A maps u to v. decomposable \Rightarrow not transitive
Conversely, assume no proper non-jere invariant subspace. Choose $u \neq 0$ in V. Then the A-modnle generated by n is af -invariant, hence equals V.

If the action of A on V is indecomposable, so is the action of A^{*} on V^{*}.

If A fixes U, then A^{*} fixes U^{\prime}. The rest is an exercise.

If the action of A is in decomposable, then A contains a rank-1 matrix.
Proof. Choose T in eA with minimal rank. Assume by way of contradiction that $r k(T) \geqslant 2$. Then there are vectors $u \& v$ such that $T_{u} \& T_{v}$ are linearly independent.

By transitivity, there is A in A such that $A T_{u}=v$. Accordingly $T_{A} T_{u}=T_{r}$ \& T_{n} are linearly independent

Next, in (T) is invariant under $T A$ and therefore is an eigenvalue λ of TA (acting on $\operatorname{im} G$). Hence $r k(T A-\lambda I) \leqslant \operatorname{dim}(T A) \leqslant \operatorname{dim}(T)=r k(T)$. Since W_{p} chase T with minimal rank, $T A T-A T=0$. Then $T_{v}=T A T_{u}=\lambda T_{u}$ so $T_{u} \& T_{v}$ are linearly independent -a contradiction.

We complete the proof by showing that A contains all rank-1 matrices.
Assume $x y$ * $e A$. Then $A_{x y}{ }^{*} B \in C$ for all A, B in A. By transitivity, if $u, v \in W 0$, we can find A, B so $A_{x}=u, \quad v^{*} B=y^{*}$.

We other one application. A flag in the vector space V is a sequence of subspaces:

$$
U_{0}<U_{1}<\cdots<U_{k} .
$$

A maximal flag has length $k=\operatorname{dim}(v)$. Zach maximal flag corresponds to an ordered basis $u_{1}, \ldots, u_{k} \ldots u_{r}:=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$.

Claim Let $\beta=\left(u_{1}, \ldots, v_{n}\right)$ be an ordered basis. L in $\operatorname{sn} A(V)$ fixes each subspace in the maximal flag determined by the basis if a only if the matrix representing L is triangular.

Theorem if A is a commutative subalgebrs of $\operatorname{Mat}_{n \times n}(\mathbb{C})$, then $\mathbb{C} f$ fixes a maximal flag.

Proof Assume $n=\operatorname{dim}(V)$. If $n=1$, there is nothing to prove. If $n \geqslant 2$, then $E_{n d}(V)$ is not commutaivive and therefore of fixes a proper nen-zero subspace, U say. If $\operatorname{dim}(U)$ is minimal then $d o l u \simeq$ End (U). As A is commutative, $\operatorname{dim}(U)=1$.

Now A acts on V / U and we can use induction to claim that A fixes a maximal flag in V / U.

Corollary. Anymatris in Mat nan $^{(\mathbb{C}) \text { is }}$ similar to a triangular matrix.

