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Preface

These notes are meant to provide a working knowledge of linear algebra, as

might be applied to problems in combinatorics. I assume the reader has

had a first course in linear algebra, and is familiar with determinants.
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Part I

Modules





1

Spaces and Subspaces

We review the basic results on vector spaces.

1.1 Vector Spaces

We assume familiarity with the basic terminology of vector spaces—linear

combinations, subspaces, linear dependence and independence, span,

spanning sets, and bases. We present a proof of the existence of bases (in

vector spaces with a finite spanning set).

We define a circuit in a vector space V to be a minimal dependent

set. Thus if C is a circuit and x is any element of C then C \ x is linearly

independent. Hence C \x and C have the same span.

1.1.1 Lemma. If the vector v lies in the span of a set S, then there is a circuit

in S ∪ v that contains v .

Proof. Suppose that v is a linear combination of the vectors x1, . . . , xk from

S, and that v is not a linear combination of any subset of S with fewer

than k elements. Then x1, . . . , xk is linearly independent, for otherwise it

contains a circuit and by deleting an element of this circuit, we obtain a set

of k −1 vectors whose span still contains v . It follows that if for some i , the

set

{v , x1, . . . , xk }\xi

is linearly dependent, then v is a linear combination of at most k − 1 ele-

ments of S. Therefore this set is linearly independent for each i , and so we

conclude that {v , x1, . . . , xk } is a circuit.

A basis, we recall, is a linearly independent spanning set. We show they

exist if V has a finite spanning set S. If S is linearly independent, there

is nothing to prove. Otherwise S contains a circuit C ; if x ∈ C then C \ x

and C have the same span, and consequently S \ x and S have the span.

Therefore, by deleting a finite number of elements from S, we obtain a

linearly independent set S1 with the same span as S, and so S1 is our basis.

Now we show that all finite bases have the same size. To do this we

prove the following:
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1.1.2 Lemma. Let V be a vector space. If S is a finite linearly independent

subset of V and T is a spanning set, then |S| ≤ |T |.

Proof. We prove the result by induction on |S \T |. Set k equal to |S \T |; if

k = 0 the result is immediate, so suppose k > 0. Choose a vector u from

S \T .

Since T is a spanning set, u is a linear combination of elements of T ,

and therefore by the lemma above there is a circuit C in T ∪u that contains

u. Since S is linearly independent, C is not contained in S and therefore

there is an element v in C that does not lie in S. Now v lies in the span of

C \v , and

C \v ⊆ (T \v)∪u.

Therefore v belongs to the span of (T \v)∪u. Since this span contains T \v ,

it contains T .

We conclude that (T \v)∪u is a spanning set in V that meets S in k +1

elements.

It follows from this that any two finite linearly independent spanning

subsets of V have the same size, which we define to be the dimension of

V . A vector space has finite dimension if and only if it has a finite basis.

If V has dimension n then any independent set of size n is a basis, as is

spanning set of size n. Each independent set is contained in a basis and, as

we already knew, each spanning set contains a basis.

If α = (v1, . . . , vn) is an ordered basis for the vector space V and w ∈ V

then there are unique scalars a1, . . . , an such that

w =
n∑

i=1
ai vi .

The coordinate vector [w]α of w with respect to α is the n ×1 matrix with

entries a1, . . . , an . The function that maps w to [w]α is an injective map

from V to Fn . We can also show that

[w +x]α = [w]α+ [x]α, [cw]α = c[w]α.

This shows that the coordinate map is an example of a linear mapping.

1.2 Subspaces

The intersection of any two subspaces (indeed, of any collection of sub-

spaces) is a subspace. The union of two subspaces is rarely a subspace—in

particular no vector space over an infinite field can be expressed as the

union of a finite set of proper subspaces. There is a replacement for union

though: the sum U +V of two subspaces U and V . We define this by

U +V := {u + v : u ∈U , v ∈V }.
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We see that U +V is the span of U ∪V and therefore it is a subspace and it

is contained in any subspace that contains U and V . Consequently it is the

intersection of all subspaces that contained U and V and it follows that the

subspaces of a vector space, with the operations of intersection and sum,

forms a lattice. If U ∩V = {0}, we say that U +V is the direct sum of U and

V .

Here we are concerned with the dimension of U +V . For this we need

some preliminaries. Suppose U is a subspace of W . We say that a subspace

V of W is a complement to U if U ∩V = {0} and U +V = W . We construct

examples as follows. Suppose S is a basis of W and (S1,S2) is a partition of

S into two parts. Let Ui denote the span of Si . Then U1+U2 contains S, and

hence it is equal to V . It is also not hard to show that U1 ∩U2 = {0}. Hence

U2 is a complement to U1 (and vice versa).

1.2.1 Lemma. Let W be a vector space with finite dimension. Then any

subspace of W has a complement.

Proof. Let U be a subspace of W and let S be a basis for U . Then there is a

basis T for W that contains S, let V be the span of T \S.

1.2.2 Theorem. If U and V are finite-dimensional subspaces of V , then

dim(U +V ) = dim(U )+dim(V )−dim(U ∩V ).

Proof. We first establish a special case of the theorem: if U1 and U2 are

subspaces and U1 ∩U2 = {0}, then

dim(U1 +U2) = dim(U1)+dim(U2).

To derive this, we note that if Si is an independent subset of Ui (i = 1,2)

and U1 ∩U2 = {0} then S1 ∪S2 is linearly independent. Hence the union of a

basis of U1 and a basis of U2 is a basis for U1 +U2.

Now we consider the general case. Let V1 be a complement to U ∩V in

V . Then by what we have just proved,

dim(V1) = dim(V )−dim(U ∩V ).

We show that V1 is a complement to U in U +V . First

U +V1 =U + ((U ∩V )+V1) =U +V .

Second, U ∩V1 ⊆U ∩V and U ∩V1 ⊆V1, so

U ∩V1 ⊆ (U ∩V )∩V1 = {0}.

Therefore V1 is a complement to U in U +V and consequently

dim(V1) = dim(U +V )−dim(U ).

The two expressions for dim(V1) imply the result.
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1.3 Linear Mappings

Let V and W be vector spaces over the same field. A function T with do-

main U and codomain V is a linear mapping from U to V if, for all vectors

u1 and u2 in U ,

T (u1 +u2) = T (u1)+T (u2)

and if, for all scalars c and all vectors u in U ,

T (cu) = cT (u).

To specify a linear mapping, we must explicitly give its codomain. (This

matters most when we consider adjoints.)

A bijective linear mapping is called an isomorphism . All this should be

familiar. The image and kernel of a linear mapping T are subspaces. The

dimension of im(T ) is its rank and the dimension of ker(T ) is its corank .

The following important relation between these parameters is sometimes

called the “dimension theorem” for linear mappings.

1.3.1 Theorem. If T is a linear mapping with domain V then

rk(T )+cork(T ) = dim(V ).

Proof. Choose a basis v1, . . . , vn for V such that v1, . . . , vk is a basis for

ker(T ). Let U be the span of vk+1, . . . , vn . If u ∈U and Tu = 0, then

u ∈U ∩ker(T ) = {0}.

Hence the set T (vk+1), . . . ,T (vn) is linearly independent, and consequently

it is a basis for im(T ).

This is perhaps the most useful formula in linear algebra. An important

consequence is that, if T maps V to itself, then it is onto if and only if it is

one-to-one.

The coordinate map with respect to a basis is an important example of a

linear mapping.

If A is an m ×n matrix over F then the function that sends x ∈ Fm to

Ax in Fm is a linear mapping, often denoted TA . This gives an even more

important class of examples. Note that ker(TA) is the null space of A and

im(TA) is the column space of A, so the dimension theorem yields that

rk(A)+cork(A) = n.

As an application, we rederive the formula for the dimension of the sum

of two subspaces. If U and V are vector spaces over the same field, their

external direct sum is the vector space with vectors

{(u, v) : u ∈V , v ∈V },
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where

(u1, v1)+ (u2, v2) = (u1 +u2, v1 + v2)

and

c(u, v) = (cu,cv).

We denote this by U ⊕V , and claim that

dim(U ⊕V ) = dimU +dimV .

Now suppose that U and V are subspaces of W . Then we can define a

linear map S from U ⊕V to W by

S : (u, v) 7→ u − v .

Note that S is a linear map from U ⊕V to the subspace U +V of W . It

is easy to see that S is onto, and that its kernel consists of the vectors (x, x),

where x ∈U ∩V . Hence

dim(U +V ) = rk(S) = dim(U )+dim(V )−dim(U ∩V ).

Define

(U ,0) := {(u,0) : u ∈U }

and define (0,V ) similarly. Then (U ,0) and (0,V ) are subspaces of U ⊕V

having zero intersection and

U ⊕V = (U ,0)+ (0,V ).

Thus an external direct sum is a direct sum of subspaces, as in the previous

section.

The term “external direct sum” is somewhat confusing. It may help to

view this as follows. We have a simple construction of a vector space W

from two vector spaces U and V over a field F. The space W is the direct

sum, in our original sense, of subspaces isomorphic to U and V .

1.4 Duals and Adjoints

Since we can add linear transformations from V to W and multiply them

by scalars, the set L (V ,W ) of all linear transformations from V to W forms

a vector space. Hence:

1.4.1 Theorem. If V and W are vector spaces over F, then L (V ,W ) is a

vector space with dimension dim(V )dim(W ).

Proof. We present you a set of linear mappings, and invite you to prove

they form a basis.

Let v1, . . . , vn be a basis for V and w1, . . . , wm be a basis for W . Let Ei , j be

the element of L (V ,W ) given by

Ei , j (vr ) =
w j , if r = i ;

0, otherwise.
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(We use the fact that a linear transformation can be defined by specifying

its values on a basis.) This set of dim(V )dim(W ) operators is the subset we

promised.

Here we will be most interested in the dual space L (V ,F), which we

denote by V ∗. We consider some examples.

Suppose V is the space of all polynomials over F. If ψ ∈ V ∗, then ψ is

determined by its values on a basis, and hence determined by its values on

the powers of x. If we denote ψ(xn) by ψn , then we find that

ψ :
m∑

i=0
pi xi →

m∑
i=0

piψi .

Thus each sequence (ψn)n≥0 determines an element of V ∗. It follows that

we can identify V ∗ with the space of all formal power series in x.

Each element v of V gives rise to a map from V ∗ to F, that sends ψ in

V ∗ to ψ(v) in F. This map is linear and injective, and allows us to identify V

with a subspace of (V ∗)∗. The previous example shows that this map need

not be an isomorphism in general, but it is an isomorphism when dim(V )

is finite. (This follows from the observation that V , V ∗ and V ∗∗ all have the

same dimension.)

If V = Fn , then the map that sends an element v to its i -th coordinate is

linear, and so belongs to V ∗. In this case V ∗ ∼=V .

If V = Matn×n(F), then the trace function is an element of V ∗.

We cannot resist remarking on one special property of V ∗. There is a

natural product on it: if f , g ∈V ∗ then f g is defined by ( f g )(u) = f (u)g (u).

Let T be a linear map from V to W . If g ∈ W ∗, then the composition

g ◦T is a linear mapping from V to F; hence it is an element of V ∗. Thus we

have a mapping that takes an element g of W ∗ to an element g ◦T in V ∗.

This map is linear (prove it!), and is called the adjoint of T . We denote it by

T ∗.

(1) Prove that T ∗ is linear.

(2) Prove that T is one-to-one if and only if T ∗ is onto, and that T is onto if

and only if T ∗ is one-to-one.

(3) Prove that T ∗∗ = T .

(4) Prove that V is isomorphic to a subspace of V ∗∗.

1.5 Bilinear Forms

Suppose Φ is a linear mapping from V to V ∗. If u, v ∈V , then the map

(u, v) 7→Φ(u)(v)

is linear in each variable. Such a map is called a bilinear form . The simplest

example arises if we take V to be the space of n ×1 matrices over F. Then
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we can identify V ∗ with the space of 1×n matrices. If vT ∈ V ∗ and u ∈ V ,

then the value of vT on u is vT u. So we may take Φ to be the transpose

map, and then the bilinear form takes (u, v) to uT v . We generally denote

the value of a bilinear form by 〈u, v〉.
If u ∈ V and Φ(u)(v) = 0 for all v then Φ(u) must be the zero vector, and

so u ∈ kerΦ. If Φ(u)(v) = 0 for all u, then imΦ lies in the subspace of V ∗

formed by the elements f such that f (v) = 0. If V is finite dimensional,

then V and V ∗ have the same dimension and kerΦ is the zero subspace if

and only if imΦ = V ∗. We say that a bilinear form is non-degenerate if Φ

is invertible; in this case Φ is an isomorphism and we have the following

description of V ∗:

1.5.1 Lemma. Let V be a finite-dimensional vector space with a non-

degenerate bilinear form. If f ∈ V ∗, then there is a vector v in V such

that f (x) = 〈v , x〉.

A bilinear form is symmetric if

〈u, v〉 = 〈v ,u〉

for all u and v . It is alternating if

〈u, v〉 =−〈v ,u〉

and 〈u,u〉 = 0 for all u. (The first condition implies the second unless we

are working over a field of characteristic two.)

We describe one simple construction of bilinear forms. Let A be an n ×n

matrix over F. If u and v belong to Fn , define

〈u, v〉 := uT Av .

It is easy to verify this is bilinear. It is non-degenerate if and only if A is

invertible. It is symmetric if and only if A = AT and alternating if and only if

both AT =−A and all diagonal entries of A are zero.

If S is a subset of V then we define S⊥ to be the set of vectors v such that

〈v , x〉 = 0 for all x in S. (In practice, S will usually be a subspace or a vector.)

It is true that if U is a subspace of V , then

dimU⊥ = dimV −dimU ;

but we leave you to prove this. (See the exercises at the end of this section.)

(1) If U is a subspace of V , show that V =U +U⊥ if and only if U ∩U⊥ = {0}.

(2) Given that dim(U⊥) = dim(V )−dim(U ), prove that U⊥⊥ =U .
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1.6 Counting

We count bases and subspaces in vector spaces over GF (q). Throughout

this section we assume that F has order q . Let V = Fn . Then V contains

exactly qn elements.

We begin by counting the number of subspaces of dimension 1. First we

note that two distinct subspaces of dimension 1 have only the zero vector

in common, and that a subspace of dimension 1 contains exactly q −1 non-

zero vectors. It follows that there are exactly (qn −1)/(q −1) 1-dimensional

subspaces of V . This number plays quite a role in what follows, so we

define

[n] := qn −1

q −1
.

(We will write [n]q if we need to make the order of F explicit.) Note that

[1] = 1 and [2] = q +1.

We next determine the number of ordered k-tuples (v1, . . . , vk ) of vectors

from V such that v1, . . . , vk is linearly independent. Suppose we have such

a (k − 1)-tuple. We can extend it to a k-tuple by choosing vector not in

the (k −1)-dimensional subspace spanned by the (k −1)-tuple. There are

qn − qk−1 such factors, and now a simple induction argument yields that

the number of ordered k-tuples of linearly independent vectors is

(qn −1) · · · (qn −qk−1) = q
(k

2

)
(q −1)k [n][n −1] · · · [n −k +1].

Since each k-tuple of linearly independent vectors spans a unique sub-

space of dimension k, and since each subspace of dimension k gives rise to

exactly

q
(k

2

)
(q −1)k k[k −1] · · · [1]

k-tuples of linearly independent vectors, we find that the number of sub-

spaces of dimension k is

q
(k

2

)
(q −1)k [n][n −1] · · · [n −k +1]

q
(k

2

) (q −1)k k[k −1] · · · [1]

= [n][n −1] · · · [n −k +1]

[k][k −1] · · · [1]
. (1.6.1)

This suggests the use of the following notation. We define

[n]! := [n][n −1] · · · [1]

and [
n

k

]
:= [n]!

[k]![n −k]!
. (1.6.2)

The right side of (1.6.2) is known as the Gaussian binomial coefficient .

Using it, we have:

1.6.1 Theorem. The number of subspaces of dimension k in a vector space

of dimension n over a field of order q is ł
[n

k

]
.
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We note another consequence. An ordered basis for Fn is the same thing

as an invertible n ×n matrix. Hence:

1.6.2 Lemma. The number of invertible n ×n matrices over a field of order

q is q
(n

2

)
(q −1)n[n]!.

Although it may not be immediately apparent, the Gaussian binomial

coefficient is a polynomial in q .

(1) Derive two recurrences for the Gaussian binomial, analagous to(
n

k

)
=

(
n −1

k

)
=

(
n −1

k −1

)
.

(2) Show that the coefficent of t m in
[k+`

k

]
is the number of partitions of n

with at most k parts, each of size at most `.

(3) Let U be a fixed subspace of Fn with dimension k. Compute the num-

ber of `-dimensional subspaces V of Fn such that V ∩U = {0}.

(4) Let U and V be subspaces of Fn such that dim(U ) = k, dim(V ) = n −k

and U ∩V = {0}, where 2k ≤ n. Compute the number of subspaces W

with dimension k such that

W ∩U =W ∩V = {0}.





2

Incidence Matrices and Rank

We consider examples of rank arguments in Combinatorics. The basic

problem is to derive an upper bound on the size of some set of objects. The

solution strategy is to encode the objects as vectors, and then argue that

the resulting set of vectors is linearly independent and hence its size is

bounded by the dimension of the ambient vector space. It is often natural

to present the set of vectors we get as the rows of a matrix, in which case

our conceren is the rank of the matrix.

2.1 Fisher’s Inequality

A design is a collection of k-subsets (called blocks) of a point set V of size v ;

it is a t-design if there is a constant λt such that any subset T of V with size

t lies in exactly λt . The number of blocks is denote by b. Lacking warnings

to the contrary, we assume t ≥ 2. (A 1-design is a semi-regular bipartite

graph.) If D is a t-design, and s ≤ t , then a simple counting argument

yields that

b

(
k

s

)
=

(
v

s

)
λs .

Hence a t-design is an s-design if s ≤ t . We note that λ0 = b and that λ1 (the

number of blocks on a point) is denoted by r .

The incidence matrix N of a t-design is the v ×b 01-matrix with rows

indexed by points, columns by blocks and with Nv ,β = 1 if v ∈β.

2.1.1 Lemma. If N is the incidence matrix of a 2-design,

N N T = (r −λ2)I +λ2 J .

Since N Jb,v = r Jb,v , the lemma yields that

N

(
N T − λ2

r
Jb,v

)
= (r −λ2)I .

Therefore N has a right inverse and so its rows are linearly independent.

This implies the number of columns of N is at least v and this yields

Fisher’s inequality: for any 2-design, b ≥ v .
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One view of what we have done is that we have encoded each point of

the design as the characteristic vector of the blocks that contain it, and

then verified that these vectors are linearly independent.

2.2 Subset Incidence Matrices

We define Wt ,k (v) to be the incidence matrix of t-subsets versus k-subsets

of a set V of size v . Thus (Wt ,k (v))α,be = 1 if α is a t-subset, β a k-subset of

V and α ⊆ β (and (Wt ,k (v))α,be = 0 otherwise). When v is clear from the

context, we will write Wt ,k .

Although there is no apparent need, we also define a second 01-matrix

W t ,k (v), with rows indexed by t-subsets, columns by k-subsets of V such

that (
W t ,k (v)

)
α,β

= 1

if and only if α∩β = ;. Again we will abbreviate this to W t ,k when conve-

nient.

To completely define these matrices we should specify an ordering of

t-sets and k-sets, but we leave this choice to the reader. As an exercise you

might prove that there is a permutation matrix P such that

W t ,k =Wt ,v−k P .

The fundamental result is that if t ≤ k, then Wt ,k has full rank. In par-

ticular if t ≤ k and 2k ≤ v , the rows of Wt ,k are linearly independent. Note

that

W1,kW T
1,k =

((
v −1

k −1

)
−

(
v −2

k −2

))
I +

(
v −2

k −2

)
J ,

Since the right side here is the sum of a positive definite matrix and posi-

tive semidefinite matrix, it is positive definite and therefore it is invertible,

from which we deduce that the rows of W1,k are linearly independent. As

W2,k is the incidence matrix of a 2-design, its rows are linearly independent

too. Proving that, in general, Wt ,k has full rank requires more preparation.

2.2.1 Lemma. We have:

(a) Wi ,t Wt ,k = (k−i
t−i

)
Wi ,k .

(b) W i ,kW T
t ,k = (v−t−i

k−t

)
W i ,t .

(c) Wi ,kW
T
t ,k = (v−t−i

k−i

)
W i ,t .

We will make a lot of use of the first of these three identities.

2.2.2 Lemma. We have:

(a) W t ,k =∑
i (−1)i W T

i ,t Wi ,k
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(b) Wt ,k =∑
i (−1)i W T

i ,t W i ,k

Proof. We prove (a) and leave (b) as an exercise. Suppose α is a t-subset of

V snd β is a k-subset. Then
(
W t ,k

)
α,β

= 1 if β lies in the complement of α,

and is 0 otherwise.

Now (
W T

i ,t Wi ,k

)
α,β

=
(
|α∩β|

i

)
and therefore the (α,β) entry of the sum in (a) is equal to

∑
i

(−1)i

(
|α∩β|

i

)
=

1, if α∩β=;;

0, otherwise.

The lemma follows.

The next lemma provides the main step in proving that Wt ,k has full

rank.

2.2.3 Lemma. If t ≤ k ≤ v − t , the matrices Wt ,k and W t ,k have the same

row space.

Proof. From Lemma 2.2.1(a) we have

Wi ,k =
(

k − i

t − i

)−1

Wi ,t Wt ,k

and hence Lemma 2.2.2(a) implies that

W t ,k =
(∑

i
(−1)i

(
k − i

t − i

)−1

W T
i ,t Wi ,t

)
Wt ,k .

Therefore each row of W t ,k is a linear combination of rows of Wt ,k .

It is easy to verify that

Wi ,t W t ,k =
(

v −k − i

t − i

)
W i ,k

whence Lemma 2.2.2(b) implies that

Wt ,k =
(∑

i
(−1)i

(
v −k − i

t − i

)−1

W T
i ,t Wi ,t

)
W t ,k .

and therefire each row of Wt ,k is a linear combination of rows of W t ,k .

Now the main result of this section.

2.2.4 Theorem. If t ≤ k ≤ v − t , the rows of Wt ,k are linearly independent.

Proof. We first consider the case where v = t +k. Then Wt ,v−t and W t ,v−t

are square of the same order. As W t ,v−t is a permutation matrix, it is invert-

ible and since W t ,v−t and Wt ,v−t have the same row space, they have the

same rank and therefore Wt ,v−t is invertible.
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Now if t ≤ h ≤ v − t then

Wt ,hWh,v−t =
(

v −2t

h − t

)
Wt ,v−t .

Since the matrix on the right of this equation is invertible, it follows that the

rows of Wt ,h are linearly independent.

The observation that this theorem follows from the fact that Wt ,v−t is

invertible seems to have appeared first in Graver and Jurkat 1. 1

2.3 Equitable Partitions

We develop a version of equitable partitions for m ×n matrices.

Let ρ be a partition of the rows of the matrix2 N and let σ be a partition 2 usually an incidence matrix

of its columns. Let R and S respectively be the characteristic matrices of

ρ and σ. If π is partition, let ]pii denote its i -th cell We say that the pair

of partitions (ρ,σ) is equitable if for each i and j the submatrix of N with

rows indexed by ρi and columns indexed by the σ j has constant row and

column sums.

Examples. If N is the incidence matrix of an incidence structure I , the

automorphisms of I are given by permutation matrices P and Q such

that P NQT = N . (Note that Q may not be determined by P , for example,

if there are blocks with the same point set.) If ρ is the orbit partition of the

automorphism group on points and σ is the orbit partition on blocks, then

(ρ,σ) is equitable. To make this more concrete, consider Wt ,k , and let S

be a subset of V with size s. We take ρ to be the partition of the t-sets a

according to the size of α∩S. Similarly we take σ to be the partition of the

k-subsets β according to the value of β∩S. Then (ρ,σ) is equitable, with

|ρ| = |σ| = s +1.

You might verify that ρ and σ are orbit partitions, corresponding the sub-

group of Sym(V ) that fixes the set S.

The matrix N gives rise to a bipartite graph X with weighted adjacency

matrix

A =
(

0 N

N T 0

)
.

If N is an incidence matrix, the cells of ρ and σ form a partition of the

vertices of this graph that refines the partition into colour classes, denote it

by ρ∪σ. Then (ρ, sg ) is equitable (as defined above) if and only if ρ∪σ is

an equitable partition in our usual sense.

We may refer to the bipartite graph with weighted adjacency matrix(
0 N T

N 0

)

as the dual of X . It might be isomorphic to X .3 3 and it might not
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2.3.1 Theorem. Let W be a matrix and let ρ and σ respectively be partitions

of the rows and columns of W , with characteristic matrices R and S. Then

(ρ,σ) is equitable if and only if there are matrices Φ and Ψ such that W S =
RΦ and RT W =ΨST .

Proof. Let Wi , j denote the submatrix of W with rows indexed by the entries

of ρi and columns indexed by the entries of σ j .

We have (
0 W

W T 0

)(
R 0

0 S

)
=

(
0 W S

W T R 0

)
and (

0 RΦ

SΨ 0

)
=

(
R 0

0 S

)(
0 Φ

Ψ 0

)
.

Therefore (
0 W S

W T R 0

)
=

(
0 RΦ

SΨ 0

)
if and only if (

0 W

W T 0

)(
R 0

0 S

)
=

(
R 0

0 S

)(
0 Φ

Ψ 0

)
.

We see that

A =
(

0 W

W T 0

)
is symmetric, n ×n say, and that

Q =
(

R 0

0 S

)

is the characteristic matrix of the partition ρ∪σ of {1, . . . ,n}. Let Q̂ be the

normalized characteristic matrix of this partition. Then A fixes col(Q) if

and only if A commutes with the projection

Q̂(Q̂T Q̂)−1Q̂T ,

But this projection is block-diagonal with diagonal blocks of the form 1
k Jk ,

and the projection commutes with A if and only if (ρ,σ) is equitable.

Our equations yield that

ΨST S = RT W S = RT RΦ

where ST S and RT R are diagonal with entries equal to the sizes of the

corresponding cells and therefore

Φ= (RT R)−1RT W S, Ψ= RT W S(ST S)−1.

This shows that Φ and Ψ are determined by R, S and W .

Now R(RT R)−1RT represents orthogonal projection onto the space of

functions on points that are constant on the cells of ρ, and hence RΦ=W S
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if and only if R(RT R)−1RT W S = W S, that is, if and only if the columns of

W S are constant on the cells of ρ. Similarly RT W =ΨST if and only if the

rows of RT W are constant on the cells of σ.

We also note that if RT W =ΨST and zTΨ= 0, then (Rz)T W = 0. There-

fore if the rows of W are linearly independent, we have that z = 0. This

shows that, if the rows of W are linearly independent, so are the rows of Ψ.

2.4 Induced Partitions

Let ρ be a partition of the rows of W with characteristic matrix R. Equality

is an equivalence relation on the columns of RT W we define this partition

of the columns to be the partition induced by ρ. We denote it by ρ∗.

2.4.1 Theorem. Let ρ be a partition of the rows of the matrix W . If the rows

of W are linearly independent, |ρ| ≤ ρ∗.

Proof. Let R be the characteristic matrix of ρ. If zT RT W = 0, then zT RT = 0.

As columns of R are linearly independent, this implies that the rows of

RT W are linearly independent.

Since the rows of RT W lie in row(W ), we have |ρ| ≤ r k(W ).

The number of distinct columns of RT W is an upper bound on rk(RT W ),

and the number of distinct columns is |ρ∗|. Our inequality follows.

This theorem has a very wide range of applications.

Let Γ be a group of automorphisms of an incidence structure of points

and blocks, let ρ be the orbit partition on points and let σ be the orbit parti-

tion on blocks. We claim4 that σ is a refinement of the induced partition ρ∗. 4 and you should prove

Hence

2.4.2 Lemma. Let I be an incidence structure of points and blocks with

incidence matrix W and let Γ be a group of automorphisms of I . If the

rows of W are linearly independent, then the number of orbits of Γ on

blocks is at least as large as the number of orbits on points.

A simple corollary is that if I is a 2-design and Γ is transitive on its

blocks, it is transitive on points.

Let G (n,e) denote the set of isomorphism classes of graphs on n vertices

with e edges.

2.4.3 Lemma. If 2 ≤ (n
2

)
, then |G (n,e −1)| ≤ |G (n,e)|.

Proof. Set N = (n
2

)
. We view a graph on n vertices with e edges as an e-

subset of some fixed set of size N (e.g., E(Kn)). Let W denote We,e−1(N ).

Then Sym(n) acts as a group of automorphisms of the incidence structure

of (e −1)- versus e-subsets of {1, . . . , N }; the orbits on (e −1)-subsets are the

elements of G (n,e − 1) while the orbits on e-subsets are the elements of

G (n,e). Since the rows of W are linearly independent, the lemma follows.
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We offer a more technical application of Theorem 2.4.1 due to Cameron

and Liebler 5. 5

2.4.4 Lemma. Let ρ be partition of the rows of W . If W W T = aI +b J for

some a 6= 0 and b and |ρ∗| = |ρ|, then (ρ,ρ∗) is equitable.

Proof. If W W T = aI +b J with a 6= 0, then W W T is invertible and the rows

of W are linearly independent. Let R and S be the respective characteristic

matrices of ρ and ρ∗. Then there is a matrix Ψ of order |ρ|× |ρ∗| such that

RT W =ΨST

Since |ρ| = |ρ∗|, we see that Ψ is square. If zTΨ= 0, then zT RT W = 0 and it

follows that z = 0. Therefore Ψ is invertible.

From equation (2.4) we find that

W W T R =W SΨT

and consequently

(aI +b J )RΨ−T =W S.

Assume W is m ×n and |ρ| = r . We write J(k) to denote the all-ones matrix

of order k ×k. As R1 = 1, find that

J(m)R = R J(r )R
T R

and therefore

W S = (aR +b J(m)R)Ψ−T = (aR +bR J(r )R
T R)Ψ−T = R(aI + J(r )R

T R)Ψ−T .

Combined with Equation (2.4), this implies that (ρ,ρ∗) is equitable.

We present two more applications of this theory as exercises.

We recall that the Gaussian binomial coefficient
[k+`

k

]
is a polynomial in

q , and can regarded as the generating function for the number of integer

partitions of n with at most k parts, and with each part of size at most `.

It is easy to see (given this description) that the coefficients of this poly-

nomial form a symmetric sequence. Your problem is to prove that it is

unimodal.

Let Γ be the wreath product Sym(`) o Sym(k), acting on a k ×` array

of squares by permuting the ` squares in a row independently, and by

permuting the k rows without changing the orders of the squares in a row.

(So |Γ| = (`!)k k!, and we might also view it as the automorphism group of

k vertex-disjoint copies of K`). Show that the number of orbits of Γ on the

sets of n squares from the array is the coefficient of qn in
[k+`

k

]
.

The second application is another proof of Theorem 2.2.4. We work with

the incidence structure formed by the t-subsets and k-subsets of a v-set,

with incidence matrix Wt ,k . Let τ be a t-subset and let Γ be the subgroup

of Sym(v) formed by the permutations that map τ into itself. (Its order is
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t !(n−t )!.) Then Γ has t+1 orbits on t-subsets, and t+1 orbits on k-subsets.

Show that matrices Φ andΨ provided by Theorem 2.3.1 are triangular with

non-zero diagonals and hence are invertible. Also show that if there is a

non-zero vector zE such that z AT Wt ,k = 0, there is a non-zero vector ẑ

constant of the cells of the row partition such that ẑT Wt ,k = 0. Hence derive

a contradiction.

2.5 Null Designs

Let Ω denote the set of all k-subsets of our v-element set V . We may define

a t-design to be a non-negative integer-valued function f on Ω such that,

for each t-subset T of V the sum of f on the k-subsets that contain T is

equal to λ.6 Equivalently, viewing f as a vector, 6 A design is simple if f is 01-valued.

Wt ,k f =λt 1.

If f and g are two t-designs, then Wt ,k ( f − g ) = 0. We say that h is a null

design if Wt ,k h = 0. The characteristic function of Ω itself is a t-design7, 7 the complete design

whence it follows that each t-design is the sum of a null-design with the

complete design.

We give a concrete example, related to Steiner triple systems. Consider

the following two sets of triples.

A

1 2 3

1 4 5

2 4 6

3 5 6

B

6 2 3

6 4 5

2 4 1

3 5 1

Let V be the set of integers {1, . . . , v}, where v ≥ 6 and let f be the function

on triples from V which is 1 on the four triples from A, −1 on the four

triples from B and 0 on all other triples. Then f is a null design.

If we are given a Steiner triple system which contains four triples form-

ing a configuration isomorphic to A then we may replace these by the

four triples in B . The result is a different Steiner triple system, which may

or may not be isomorphic to the original one. As an exercise, construct a

Steiner triple system on 13 points that contains a copy of A.

2.6 Supports

We derive a lower bound on the size of the support of a null (t ,k)-design.

The foundation of a null (t ,k)-design is the union of the blocks in its sup-

port. Suppose f is a null (t ,k)-design on the point set V and 1 ∈ V . By ???

we have (
Wt−1,k−1(v −1) 0

Wt ,k−1(v −1) Wt ,k (v −1)

)(
f1

f2

)
= 0. (2.6.1)
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From this it follows that f1 is a null (t − 1,k − 1)-design on the point set

V \1. We call it the derived design with respect to the point 1. We call f2

the residual design of f with respect to 1. The next result shows it is a null

design too. Either the derived or residual design of f could be identically

zero.

2.6.1 Lemma. Let f be a null (t ,k)-design on the point set V and suppose

1 ∈V . Then the derived design of f relative to 1 is a null (t −1,k −1)-design

and the residual design is a null (t −1,k)-design.

Proof. We have already proved the first claim. As f is also a null (t −1,k)-

design, we may apply Equation (2.6.1) with t −1 in place of t to get

Wt−1,k−1 f1 +Wt−1,k f2 = 0.

As Wt−1,k−1 f1 = 0, it follows that f2 is a null (t −1,k)-design.

2.6.2 Theorem. The support of a null (t ,k)-design on V contains at least

2t+1 blocks; its foundation contains at least k + t +1 points.

Proof. We consider supports first. Our assertion is easily verified when t =
0, so we assume that t > 0. Suppose 1 ∈ V and let f1 and f2 respectively be

the derived and residual designs relative to 1. By the previous lemma, both

f1 and f2 are null (t − 1)-designs and, if they are both non-zero, we may

assume inductively that each is supported by at least 2t blocks. Since the

supports of f1 and f2 are disjoint, the claim follows. If f1 = 0 then ??? yields

that Wt ,k v −1 f2 = 0. Thus f2 is a null t-design and we may assume that its

support has size at least 2t+1. Similarly if f2 = 0 then Wt ,k−1v −1 f1 = 0 and

f1 is a null t-design, therefore its support has size at least 2t+1.

For the foundation, let f be a null t-design on V and choose a point i in

V which does not lie in all the blocks in the support of f . Then the residual

design g of f relative to i is non-zero and so, by Lemma 2.6.1, it is a null

(t − 1,k)-design on V \i . By induction it follows that the foundation of g

contains at least k + t points, whence the foundation of f contains at least

k + t +1.

One corollary of this theorem is that if v = k + t then the columns of

the incidence matrix Wt ,k are linearly independent, but when v = k + t

this matrix is square. Hence we have shown (again) that Wt ,v−t is invertible

over the rationals and it follows (again) that the rows of Wt ,k are linearly

independent over the rationals when t ≤ k ≤ v −k.

2.7 Null-Designs on Subsets

This section is based on work of Frankl and Pach.

We have defined null (t ,k)-designs as functions f on k-subsets of V =
{1, . . . ,n} such that if τ is a t-subset of V , then f sums to zero on the set

{β⊆V : |β| = k, τ⊆β}.
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As

Wt−1,t Wt ,k = (k − t +1)Wt−1,k ,

the row-space of Wt−1,k is a subsopace of the row space of Wt ,k and if so

|sg ≤ t | a null-design sums to zero on the k-subsets that contain σ. We may

extend f to a function on subsets of V by defining it to be zero on sets of

size not equal to k.

This leads us to redefine a null-design of strength at least t as a function

on subsets of V that sums to zero on the subsets that contain a given set of

size at most t . (So a null (t ,k)-design is a null design of strength at least t

whoe support consists of subsets of size k.)

If f is a function on subsets of V , define a new function f ∗ by

f ∗(τ) := ∑
β⊇τ

f (β).

Then f is a null-design of strength at least t if f ∗ is zero on all subsets of

size at most t .

Because of the way we defined f ∗, we can recover f from f ∗ by Möbius

inversion:8 8 For Möbius inversion see, for example,
https://arxiv.org/abs/1803.06664f (β) = ∑

α:α⊇β
(−1)|β\α| f ∗(β).

With this in hand, we can create a null-design fU on a subset U of V from

a null design f on V by Möbius inversion on subsets of U applied to the

restriction f ∗�U .

2.7.1 Lemma. If f is a null-design on V and U ⊆V , then

fU (α) = ∑
γ∩U=α

f (γ).

Proof. We have

fU (α) = ∑
α⊆β⊆U

(−1)|β\α| f ∗(β)

= ∑
α⊆β⊆U

(−1)|β\α| ∑
γ⊇β

f (γ)

= ∑
γ⊆V

f (γ)
∑

α⊆β⊆U∩γ
(−1)|β\α|

= ∑
γ∩U=α

f (γ).

One consequence of this lemma is that if fU (α) 6= 0, there is a subset γ of

V such that γ∩U = α and f (γ) 6= 0. The next lemma follows immediately

from the definition of fU .

2.7.2 Lemma. Let f be a null design of strength at least t and V and let U

be a minimal subset of V such that f ∗(U ) 6= 0. If α⊆U , then

fU (α) = (−1)|U\α| f ∗(U ).

https://arxiv.org/abs/1803.06664


M O R E L I N E A R A LG E B R A 21

2.7.3 Corollary. The support of a null design of strength at least t has size

at least 2t+1.

Proof. Let U be a minimal subset of V such that F∗(U ) 6= 0. Then |U | ≥ t +1.

By the lemma, fU is non-zero on each subset α of U , and by our remark

above, for each such α there is a subset γ of V with γ∩U =α and f (γ) 6= 0.

2.8 Edge Reconstruction

We apply our bound on the support of null design to the edge-reconstruction

problem.

The edge-reconstruction conjecture is the claim that a graph is deter-

mined by the collection of its edge-deleted subgraphs. This statement is

vague, we offer a precise version of it. We say that the graph Y is an edge

reconstruction of X if there is a bijection β : E(Y ) → E(X ) such that, for

each edge e in Y we have Y \e ∼= X \β(e). A graph X is edge reconstructible

if any edge of X is isomorphic to X .

The graph K3∪K1 is an edge reconstruction of K1,3. The edge reconstruc-

tion conjecture9 is the assertion that any graph with at least four edges is 9 Harary, 1964

edge reconstructible.

In the following discussion, we view a graph on n vertices as a subset

of the edges of Kn . (So we are fixing our vertex set.) Thus a graph is just

a subset of E(Kn) and hence there are 2
(n

2

)
graphs on n vertices. (Some

people might say that we are dealing with “labelled graphs”.10 10 We will return to this below, we do not
find this terminology useful.For a graph X , define µX (F ) to be the number of edge-deleted sub-

graphs of X isomorphic to F . Let X and Y be graphs on n vertices with

e edges, with e ≥ 4. The edge reconstruction conjecture asserts that if

µX =µY , then X and Y are isomorphic.

We translate the problem into linear algebra. Let N denote
(n

2

)
and

define

W :=We−1,e (N ).

If X is a graph on e edges, let νX be the function on subsets of E(Kn) de-

fined by

νX (F ) =
1, F ∼= X ;

0, otherwise.

We view νX as a column vector; we can also view it as the characteristic

function of the set of graphs isomorphic to X .

2.8.1 Lemma. Graphs X and Y on e edges and n vertices have the same

collection of edge-deleted subgraphs if and only

W (|Aut(X )|νX −|Aut(Y )|νY ) = 0.

Proof. The entry of W νX indexed by the graph F on e − 1 edges is equal

to the number of graphs isomorphic to X that contain F (as a subgraph).
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Hence the F -entry of |Aut(X )|W νX is equal to

|{α ∈ Sym(n) : F ⊆ Xα}| = |{α ∈ Sym(n) : Fα−1 ⊆ X }| =µX (F ).

Therefore |Aut(X )|W νX =µX and this yields the lemma.

2.8.2 Theorem. Let X be a graph on n vertices with e edges. If 2e ≥ (n
2

)+1

or 2e−1 > n!, then X is edge reconstructible.

Proof. Assume µX =µY and set

z = |Aut(X )|νX −|Aut(Y )|νY .

We show that if the stated conditions on n and e hold, then z = 0.

For the first claim, recall that W has full rank and so if the number of

rows is greater then the number of columns, the columns of W are linearly

independent. Therefore z = 0 and this yields the first claim.

For the second claim, we note that if z 6= 0 and W z = 0, then z is a

null (e − 1,e)-design and therefore its support has size at least 2e . The

number of non-zero entries in νX is n!/|Aut(X )| and the number in νY

is n!/|Aut(Y )|, so z has at most 2n! non-zero entries. This implies that

2e ≤ 2n! and accordingly 2e−1 ≤ n!.

The two parts of the theorem are due respectively to Lovász and Müller.

Both parts of the above proof can be extended to reconstruction of k-edge-

deleted subgraphs (see Godsil,Krasikov, Roditty) and, even more generally,

to k-edge reconstruction of hypergraphs.

Labelled graphs: you are invited to try to express the above arguments

using the language of labelled and unlabelled graphs. One point of diffi-

culty is that I do not recall seeing a precise definition of “unlabelled graph”

in writing.
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Primary Decomposition

We use the primary decompostion to decompose vector spaces and linear

mappings.

3.1 Modules

Let V be a vector space over F and let T be an endomorphism of V . A

subspace U of V is T -invariant if u ∈ U for all elements u of U . If U is T -

invariant, it is invariant under all matrices in the ring F[T ] of polynomials

in T . Hence it is a module over this ring; we may also refer to it as a T -

module.

(1) If T = I then a T -invariant subspace is just another name for a sub-

space.

(2) The zero subspace and V itself are T -invariant, for any T .

(3) ker(T ) is T -invariant, because if u ∈ ker(T ) then Tu = 0, and certainly

0 ∈ ker(T ).

(4) The range of T is T -invariant. For if u lies in the range of T then Tu is

contained in the range of T .

(5) If U is a subspace of V , the preimage of U relative to T is the set

{v ∈V : T v ∈U }.

If U is T -invariant, then so is its preimage relative to T . (Since ker(T ) is

the preimage of {0}, this shows that ker(T ) is T -invariant.)

(6) The intersection and sum of T -invariant subspaces are T -invariant.

If U is a T -invariant subspace, then T �U denotes the endomorphism of

U that is defined by

(T �U )(u) = Tu,

for all u in U . We call T the restriction of T to U . If U is a 1-dimensional

T -invariant subspace and u spans U , then Tu must be a scalar multiple of
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u. If u is a non-zero vector and Tu = θu, we say that u is an eigenvector of

T with eigenvalue θ.

If u ∈W , then the subspace spanned by vectors

T r v , r = 0,1, . . .

is easily seen to be T -invariant. We call it the T -invariant subspace gener-

ated by v , and observe that is the smallest T -invariant subspace of W that

contains v . A T -invariant subspace generated by a single vector u is called

a cyclic subspace for T . Cyclic subspaces are perhaps the most important

class of invariant subspaces.

(1) If T ∈ End(V ) and T is invertible, show that a T -invariant subspace is

T −1-invariant.

3.2 Control Theory

Consider a system of n+1 bodies arranged in a line. Assume that if the tem-

perature of the i -th body (1 ≤ i ≤ n) at time r is ti (r ), then its temperature

at time i +1 is given by

ti (r +1 = 1

4
(ti−1(r )+2ti (r )+ ti+1(r ))

The temperature of the 0-th body is entirely under our control, we denote

its value at time r by u(r ). The temperature of the (n +1)-st is fixed at zero.

If t (r ) is the vector in Rn with i -th entry ti (r ) then t is determined by the

equation of the form:

t (r +1) = At (r )+u(r )b

and the temperature vector t (0) at time zero. In particular, if n = 5 then

A =



0 0 0 0 0 0

0.25 0.5 0.25 0 0 0

0 0.25 0.5 0.25 0 0

0 0 0.25 0.5 0.25 0

0 0 0 0.25 0.5 0.25

0 0 0 0 0 0


, b =



1

0

0

0

0

0


.

By choosing different values for the terms of the sequence

u(0),u(1) . . .u(m)

we can reach a variety of different temperature distributions; are there any

we cannot reach?

To study this we assume that t (0) = 0. Then

t (1) = u(0)b

t (2) = u(1)b +u(0)Ab

t (3) = u(2)b +u(1)Ab +u(0)A2b
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and

t (r +1) =
r∑

i=0
u(r − i )Ai b.

If Wr is the matrix

Wr =
(
b Ab · · · Ar−1b

)
then we see that

t (r +1) =Wr


u(0)

...

u(r )

 .

The state t (r +1) is therefore reachable if and only if it lies in the column

space of Wr . When r ≥ n, this column space is precisely the A-cyclic sub-

space generated by b. (As the vectors Ar b lie in Rn we have that An lies in

the column space of Wn and, in general, the rank of Wm equal to the rank

of Wn , whenever m ≥ n.)

In our particular example above, W6 is an upper triangular matrix with

diagonal entries 41−r , for r = 1, . . . ,6. Therefore the cyclic subspace gener-

ated by b is R6, and so all states are reachable after at most six steps. If we

change b to 

1

0

0

0

0

1


then the space of reachable states has dimension two—in this case all

reachable states have t1(r ) = t6(r ), t2(r ) = t5(r ) and t3(r ) = t4(r ).

(1) Show that, even if t (0) 6= 0, it is still true that all states are reachable

after at most n steps if and only if the A-cyclic subspace generated by b

is all of Rn .

(2) A system given by

t (r +1) = At (r ), z(r ) = cT t (r )

is observable if, given z(0), z(1), . . . z(m) (where m ≥ n) we can compute

t (i ) for i = 0, . . . ,m. (Note: the input for the computation is A, c and

the values of z.) Show that this system is observable if and only if the

cyclic AT -subspace generated by c is equal to Rn . Show further that, if

the system is observable, we need at most n consecutive values of z to

determine all previous states of the system.
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3.3 Sums

We consider direct sums of subspaces. Suppose U1, . . . ,Uk are subspaces

of V , and define U ′
i to be the sum of the subspaces U j , where j 6= i . We

say that V is the direct sum of the subspaces Ui if V is the sum of the sub-

spaces Ui and

Ui ∩U ′
i = {0}, (i = 1, . . . ,k). (3.3.1)

If this condition holds, we write

V =U1 ⊕·· ·⊕Uk . (3.3.2)

There is a condition equivalent to (3.3.1) that is often easier to work with: V

is the direct sum of U1, . . . ,Uk if and only if for i = 1, . . . ,n −1,

Ui ∩ (Ui+1 +·· ·+Uk ) = {0}.

We leave you to verify that these two conditions are equivalent.

As an easy consequence of the definition of direct sum, we have

dim(V ) = dim(U1)+·· ·+dim(Uk ).

There is a converse to this: if U1, . . . ,Uk are subspaces of V whose sum is V

and ∑
i

dim(Ui ) = dim(V ),

then V is the direct sum of the Ui ’s.

If (3.3.2) holds and v ∈ V , then v can be written in exactly one way as a

sum

v = u1 +·· ·+uk ,

where ui ∈Ui . Define a map Ei : V →Ui by Ei (v) = ui . Then Ei is linear,

E1 +·· ·+Ek = I ,

and

Ei E j =
Ei , ifi = j ;

0, otherwise.

Note that the last condition implies that Ei is idempotent , that is, E 2
i =

Ei . We call Ei the projection onto Ui . Conversely, if E1, . . . ,Ek is a set of

idempotents satisfying these conditions and Ui is the range of Ei , then V is

the direct sum of the spaces Ui .

1. If u1, . . . ,un are elements of V and Ui = span(ui ), show that V is the

direct sum of U1, . . . ,Un if and only if u1, . . . ,un is a basis for V .
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3.4 Invariant Sums

If T is an endomorphism of V , we say a direct sum decomposition of V

is T -invariant if each summand is. If V is the T -invariant direct sum of

U1, . . . ,Uk and v ∈V then

v = u1 +·· ·+uk ,

where ui ∈Ui . Hence

T (u) = (T �U1)(u1)+·· ·+ (T �Uk )(uk ),

and so we say that T is the direct sum of the operators T �Ui . It can be

extremely useful to be able to decompose V into a T -invariant direct sum.

We develop a characterization of invariant direct sums in terms of pro-

jections. We use the following simple tool.

3.4.1 Lemma. If E is idempotent, then x ∈ im(E) if and only if x = E x.

Proof. If x ∈ im(E) then x = E y for some y and therefore

E x = E 2 y = E y = x.

If x = E x then clearly x ∈ im(E).

3.4.2 Theorem. Suppose V = V1 ⊕ ·· · ⊕Vk and let E1, . . . ,Ek be the set of

projections corresponding to the subspaces Vi . Let T be a linear operator

on V . Then the direct sum decomposition of V is T -invariant if and only if

T Ei = Ei T for each i .

Proof. We first claim that if E is an idempotent then im(E) is T -invariant if

and only if (I −E)T E = 0.

Now (I − E)T E = 0 if and only if T maps im(E) into ker(I − E). But

(I −E)x = 0 if and only if x = E x and so the previous lemma implies that

ker(I −E) =∈ (E). This proves our claim.

It follows from this claim that im(I − E) is T -invariant if and only if

ET (I −E) = 0.

If T E = ET , then both ET (I −E) and (I −E)T E are zero. Conversely, if

ET (I −E) = (I −E)T E = 0

then

0 = ET (I −E)− (I −E)T E = ET −T E

and so T and E commute. Hence we have shown that im(E) and im(I −E)

are T -invariant if and only if ET = T E .

Let V ′
i be the sum of the subspaces V j for j 6= i . Then V ′

i = im(I −Ei ),

and so Vi and V ′
i are both T -invariant if and only if Ei commutes with T .

The theorem follows directly from this.
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Our next result identifies one case where we can express V as a sum of

T -invariant subspaces.

3.4.3 Lemma. Let T be an endomorphism of V . Then V = im(T )+ker(T ) if

and only if im(T )∩ker(T ) = 0.

Proof. Suppose rk(T ) = k and dim(W ) = n. Then dim(ker(T )) = n −k and so

im(T )+ker(T ) = n if and only if im(T )∩ker(T ) = {0}.

The constraint on T here may also be expressed thus: if w ∈ W and

T 2w = 0 then T w = 0.

As an application of this lemma, suppose that T is idempotent. If T 2v =
0, then T v = 0 and so no non-zero vector T v lies in ker(T ). Hence V is the

direct sum of im(T ) and ker(T ). Note that T �ker(T ) is the zero map.

1. Show that a square matrix of the form

P :=
(

0 X

0 I

)

is idempotent. If T is represented by the matrix(
A B

C D

)
,

show that T fixes kerP if and only if C = 0 and that T fixes col(P ) if and

only if

XC X − AX +X D −B = 0.

3.5 Minimal Polynomials

Let T be an endomorphism of the n-dimensional vector space V . If v ∈ V ,

then there is a least positive integer r such that T r v lies in the span of v ,

T v ,. . . ,T r−1. Hence there are scalars a1, . . . , ar such that

T r v +a1T r−1v +·· ·+a0v = 0.

It follows that there is a monic polynomial ϕ(t ) such that ϕ(T )v = 0. If ϕ1

and ϕ2 are two polynomials such that ϕi (T )v = 0, then for all polynomials

a1(t ) and a2(t ),

(a1(T )ϕ1(T )+a2(T )ϕ2(T )v = 0,

from which it follows that if ϕ(t ) is the gcd of ϕ1(t ) and ϕ2(t ), then ϕ(T )v =
0. Consequently:

3.5.1 Lemma. Suppose T is an endomorphism of the finite-dimensional

vector space V and v ∈ V . There is a unique monic polynomial of least

degree ψv (t ) such that ψv (T )v = 0. The degree of ψv is equal to the dimen-

sion of the subspace generated by v .
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We call ψv (t ) the minimal polynomial of T relative to v . Since dimV =
n, the degree of ψv (t ) is at most n.

Next we observe that space of endomorphisms of V has dimension n2,

and therefore there is a least integer r , at most n2, such that I , T ,. . . ,T r are

linearly dependent. It follows that there is a unique monic polynomial ψ of

least degree such that ψ(T ) = 0. It is called the minimal polynomial of T .

(If LT denotes the linear operator on End(V ) given by LT (M) = T M , then

the minimal polynomial of T is the minimal polynomial of LT relative to T

itself.)

If v ∈ V , then certainly ψ(T )v = 0, and it follows that ψv (t ) must divide

ψ(t ). Hence ψ(t ) is the least common multiple of the polynomials ψv (t ), as

v runs over a basis of V .

3.5.2 Lemma. Suppose T is an endomorphism of the finite-dimensional

vector space V and ψ is the minimal polynomial of T . Then each zero of ψ

is an eigenvalue of T .

Proof. Suppose ψv (θ) = 0. Then

ψ(t ) = (t −θ)ϕ(t )

and therefore

(T −θI )ϕ(T ) = 0.

Since ϕ is a proper factor of ψ, we see that ϕ(T ) 6= 0. Let w be a non-zero

column of ϕ(T ). Then (T −θI )w = 0, and so w is an eigenvector for T with

eigenvalue θ.

If ψv is the minimal polynomial of T relative to the vector v and ψv (t ) =
(t − θ)ϕ(t ), then ϕ(T )v is an eigenvector for T with eigenvalue θ. When

dimV is small, this provides an effective way of finding eigenvalues.

For example, suppose dimV = 2, and choose a non-zero vector v . If

we are very lucky, v is an eigenvector for T . If not, then T 2v is a linear

combination of v and T v , and ψv is quadratic. If θ and τ are the zeros of

ψv (t ), then (T −θI )v is an eigenvector for T with eigenvalue τ.

3.6 Primary Decomposition

We use the minimal polynomial of an endomorphism to derive a direct

sum decomposition of the space on which it acts. We use the following fact:

the greatest common divisor of the polynomials ϕ1, . . . ,ϕk is 1 if and only if

there are polynomials a1, . . . , ak such that

a1ϕ1 +·· ·+akϕk = 1.

3.6.1 Theorem. Let T be an endomorphism of V with minimal polynomial

ψ(t ). Suppose that ψ(t ) = ∏r
i=1ψi (t ), where the factors ψi are pairwise

coprime. Set ϕr = ψ/ψr and let a1(t ), . . . , ar (t ) be polynomials such that
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∑
i ai (t )ϕi (t ) = 1. Then V is the direct sum of T -invariant subspaces Ui ,

where Ui is the range of the idempotent ai (T )φi (T ). The minimal polyno-

mial of T �Ui is ψi (t ), and Ui = kerψi (T ).

Proof. The greatest common divisor of the polynomials ϕi is 1, and so

there are polynomials ai such that

a1ϕ1 +·· ·+arϕr = 1. (3.6.1)

Define

Ei := ai (T )ϕi (T ).

Then
r∑

i=1
Ei = I .

If i 6= j then ψ divides ϕiϕ j , whence

Ei E j = 0.

Together the last two equations imply that E 2
i = Ei ; thus Ei is an idempo-

tent.

Let Ui denote the range of Ei . If u ∈Ui then Ei u = u and so

Tu = T Ei u = Ei Tu.

Therefore Tu lies in the range of Ei , and therefore Ui is T -invariant. Hence

V is a direct sum as described.

Next we show that the minimal polynomial of T �U1 is ψ1. Suppose p is

a polynomial such that p(T )Ui = 0. Then

0 = p(T )E1 = p(T )a1(T )ϕ1(T )

which implies that pa1ϕ1 is divisible by ψ and consequently that ψ1 di-

vides pa1. Since ψ1 divides each of a2, . . . , ar , it follows from (3.6.1) that

a1 and ψ1 are coprime. Hence ψ1 divides p, and we conclude that ψ1 is

the minimal polynomial of T �U1. Setting 1 equal to i , the general result

follows.

Remark: If T has minimal polynomial ψ(t ), the ring of all polynomials in

T is isomorphic to the quotient ring F[t ]/(ψ(t )). The preceding theory is a

reflection of the structure theory of this ring.

We use the primary decomposition theorem to prove the following

fundamental result.1 1 The Jordan-Chevalley decomposition

3.6.2 Theorem. Let T be an endomorphism of the vector space V over

the field F, where F is algebraically closed. Then there is a diagonalizable

endomorphism S and a nilpotent endomorphism N such that S and N are

both polynomials in T and T = S +N .
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Proof. Let ψ be the minimal polynomial of T . Since F is algebraically

closed, we may write ψ as

ψ(t ) =∏
i

(t −θi )mi .

Define ψi by

ψi (t ) = ψ(t )

(t −θi )mi
.

Let Ei denote kerψi (T ). The polynomials ψi are coprime (as a set) and so

by the primary decomposition theorem, the Ei are pairwise orthogonal

idempotents summing to I . Further each Ei is polynomial in T .

Define S by

S =∑
i
θi Ei .

If x ∈ ker(T −θi )mi then

(T −S)mi x = (T −θi I )mi x = 0,

from which it follows that T −S is nilpotent. As Ei is a polynomial in T , we

see that S is too.

3.7 The Degree of the Minimal Polynomial

We have seen that the minimal polynomial of an endomorphism T of V is

equal to the least common multiple of the minimal polynomials ψv , where

v runs over the vectors of a basis V . Fortunately something more concrete

is true.

3.7.1 Theorem. If T is an endomorphism of Fn , then there is a vector x

such that the minimal polynomial of T relative to x is the minimal polyno-

mial of T .

Proof. Assume first that the minimal polynomial ψ of T equals p(t )m ,

where p is irreducible. Then p(T )m = 0 but p(T )m−1 6= 0. Choose a vector x

such that p(T )m−1x 6= 0. If φ is monic and φ(T )x = 0 then φ must divide ψ.

If φ divides pm−1 then φ(T )x 6= 0. Consequently φ= pm .

Now suppose that the minimal polynomial of T has the coprime factor-

ization ψ1ψ2 and that U1 and U2 are the summands of the corresponding

direct sum decomposition of Fn . Let E1 and E2 be the associated idempo-

tents. Suppose that xi is a vector in Ui such that the minimal polynomial of

T relative to xi is ψi . If φ is monic and

φ(T )(x1 +x2) = 0

then

0 = E1φ(T )(x1 +x2) =φ(T )E1(x1 +x2) =φ(T )x1.
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This implies that ψ2 divides φ and a similar argument shows that ψ1 di-

vides it. So ψ divides φ and x1 +x2 is the vector we need.

An easy induction argument based on the last two paragraphs yields

that there is always a vector x such that the minimal polynomial of T is the

minimal polynomial of T relative to x.

If the field we are working with is infinite, there is an alternative proof.

First, the set of relative minimal polynomials ψv is finite, since they are all

monic divisors of ψ. Suppose ψ1, . . . ,ψr is a list of all the possibilities, and

let Vi be the set of vectors v such that ψi (T )v = 0. Then Vi is a subspace

of V and the union of the spaces Vi is V itself. But a vector space over an

infinite field cannot be the union of a finite number of proper subspaces,

hence Vi =V for some i and ψi is the minimal polynomial of T .

3.7.2 Corollary. If dimV = n and T ∈ End(V ), then the degree of the mini-

mal polynomial of T is at most n.

Proof. If T ∈ End(V ) has minimal polynomial ψ(t ), then there is a vector

v in V such that ψ(t ) is the minimal polynomial of T relative to v . Hence,

if ψ has degree d , the vectors v , Av1, . . . , Avd−1 are linearly independent.

Therefore dim(V ) ≥ d .

(1) Let T be an endomorphism of Fn and let x1, . . . , xn be a basis for Fn . If

ψi denotes the minimal polynomial of T relative to xi , show that the

minimal polynomial of T is the least common multiple of ψ1, . . . ,ψn .

(2) Prove that a vector space over an infinite field cannot be the union of a

finite number of proper subspaces.

3.8 Root Spaces

We consider primary decomposition when the field of scalars is alge-

braically closed. In this case, if T is a linear operator on V with minimal

polynomial ψ(t ), then ψ(t ) has the coprime factorization

ψ(t ) =
k∏

i=1
(t −θi )mi ,

where θ1, . . . ,θk are the distinct zeros of ψ. It follows that V is the direct

sum of the subspaces

ker(T −θi )mi .

We call these subspaces the root spaces of T .

If v ∈ V and (T −θI )m v = 0, then the minimal polynomial of T relative

to v divides (t − θ)m . We say that v is a root vector for T if its minimal

polynomial relative to T has the form (t −θ)r , for some integer r . If (T −
θI )r v = 0 and v 6= 0, then θ is an eigenvalue of T .

Since V is the direct sum of the root spaces of T , we have the following

fundamental result.
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3.8.1 Theorem. Let V be a finite-dimensional vector space over an alge-

braically closed field. If T is a linear operator on V , then V has a basis

consisting of root vectors of T .

The dimension of the root space of an eigenvalue θ of T is called its

algebraic multiplicity . (The dimension of ker(T − θI ) is the geometric

multiplicity of the eigenvalue.)

3.8.2 Lemma. Let T be a linear operator on V and let v1, . . . , vn be non-zero

root vectors. If the respective eigenvalues of these vectors are distinct, then

they are linearly independent.

Proof. Assume dim(V ) = n. Suppose that we have scalars a1, . . . , ak , not all

zero, such that
k∑

i=1
ai vi = 0. (3.8.1)

We prove by induction on k that a1 = ·· · = ak = 0. When k = 1, this claim

is trivial. Assume k > 1. If we apply (T −θk I )n to both sides of the above

expression we get

a1(T −θk I )n v1 +·· ·+ak−1(T −θk I )n vk−1 = 0. (3.8.2)

Since none of v1, . . . , vk−1 lie in the root space belonging to θk , none of the

k −1 terms in this sum is zero. Since each root space is T -invariant, (T −
θi I )n vi is therefore a non-zero root vector in the root space containing vi .

So by induction, (3.8.2) implies that a1 = ·· ·ak−1 = 0. From (3.8.1) it follows

that ak = 0 too, and we conclude that v1, . . . , vk are linearly independent.

(1) Let T be a linear operator on V with an eigenvalue θ. Show that all root

vectors belonging to θ are eigenvectors if and only if

ker(T −θI )∩ range(T −θI ) = {0}.

3.9 Examples of Root Spaces

We give three examples of root spaces.

Suppose dimV = n and e1, . . . ,en is a basis for V . Thene there is a linear

operator T on V such that

T (ei ) =
ei+1, if i < n;

0, if i = n.

Thus, if r < n then T r (e1) = ei+r and T ne1 = 0. In this case V is the root

space belonging to the eigenvalue 0.

Let V be C∞(R) and let D be differentiation. Then kerDr is the space

of polynomials of degree less than r . With some work, we can determine

ker(D −λI )r . First we define a linear operator Mλ on V by

Mλ( f ) := eλt f .
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We claim that D −λI = MλDM−λ. (So D and D −λI are similar.)

To verify this we compute

DM−λ( f ) = d

d t
e−λt f (t )

=−λe−λt f (t )+e−λt f ′(t )

= e−λt (−λ f (t )+D( f (t )))

= M−λ(D −λI ) f .

Since M−1
λ

= M−λ, it follows that for all f in V ,

(MλDM−λ)( f ) = (D −λI )( f ),

which is what we claimed.

Now we determine ker(D −λI )r . We have

(D −λI )r = MλDr M−λ

and therefore (D −λI )r (g ) = 0 if and only if

MλDr M−λ(g ) = 0.

Since Mλ is invertible this holds if and only if

Dr M−λ(g ) = 0.

Accordingly ker(D −αI )r consists of the functions g (t ) such that e−λt g (t )

is a polynomial of degree less than r . Therefore ker(D −λI )r consists of the

functions eλt p(t ) where p(t ) is a polynomial of degree less than r .

Let V = CN and let S be the left shift on V . Define a linear operator Mλ

by

Mλ(a0, a1, a2, . . .) := (a0,λa1,λ2a2, . . .).

If λ 6= 0, then M−1
λ

= Mλ−1 and

S −λI = Mλ(S − I )M−1
λ .

We can show that ker(S − I )r consists of the sequences

(p(0), p(1), p(2), . . .)

where p is a polynomial of degree less than r , and hence we can show that

ker(S −λI )r consists of the sequences

(p(0),λp(1),λ2p(2), . . .)

where p is again a polynomial of degree less than r .

The kernel of Sr consists of the sequences (ai )i≥0 such that ai = 0 if

i > r .
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3.10 Differential Equations

We begin with two technical results. In this section V is a vector space over

C.

3.10.1 Lemma. Let T : V → V be linear and suppose that if λ ∈ C, then

dim(ker(T−λI ) ≤ 1. If p(t ) is a polynomial of degree n, then dim(ker p(T )) ≤
n.

Proof. We prove the result by induction on the degree of p(t ). If n = 1, there

is nothing to prove. Assume n > 1.

Suppose θ is a zero of p(t ). Then

p(t ) = (t −θ)q(t ),

where q is a polynomial of degree n − 1. By induction on n, we see that

U = ker q(T ) has dimension at most n −1.

Now ker p(T ) consists of all vectors v such that q(T )v lies in ker(T −θI ).

Hence q(T ) maps ker p(T ) into ker(T −θI ). Let S denote the restriction of

q(T ) to ker p(T ). Then by the dimension theorem,

dim(ker p(T )) = dimker(S)+ rk(S) ≤ dim(ker(q(T )))+1 ≤ n.

The hypotheses of this lemma hold when V =C∞(R) and T is differenti-

ation, or when V =CN and T is the left shift.

3.10.2 Theorem. Let T be a linear operator on V and let p(t ) be a polyno-

mial whose zeroes are θ1, . . . ,θk , with respective multiplicities ν1, . . . ,νk . If

ker p(T ) has finite dimension, it has a basis consisting of root vectors of T ;

the eigenvalues of these root vectors are the zeros of p(t ) and the index of

the root vectors with eigenvalue θi is at most νi .

Proof. Suppose K := ker p(T ). If u ∈ K , then

p(T )Tu = T p(T )u = 0

and therefore K is T -invariant. Hence K is spanned by root vectors of the

restriction of T to K , and these are root vectors of T . Suppose z is a root

vector of T with eigenvalue θ and index m. Then

(T −θI )m z = 0, p(T )z = 0.

Therefore the minimal polynomial of T relative to z divides (t −θ)m and

p(t ), and thus it divides (t −θ)ν, where ν is the multiplicity of θ as a zero of

p(t ).

Let V =C∞(R) and let D be differentiation. if

p(t ) := t n +a1t n−1 +·· ·+an ,
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then the set of solutions to the differential equation

Dn f +a1Dn−1 f +·· ·+an f = 0

is the kernel of p(D). By Lemma 3.10.1 we see that ker p(D) has finite

dimension and so by Theorem 3.10.2, it follows that ker p(D) is spanned

by root vectors of D whose eigenvalues are zeros of p(t ).

We want to find all solutions to

D2 f +3D f +2 f = 0.

The solution set of this equation is ker p(D), where

p(t ) := t 2 +3t +2 = (t +1)(t +2)

From our work above, this subspace has a basis consisting of root vectors

for D . Since the zeros of p(t ) are simple we only need root vectors of index

one, that is, we only need eigenvectors. Hence the functions

e−t , e−2t

form a basis for the solution space of this differential equation and there-

fore every solution can be written as

Ae−t +Be−2t ,

for some scalars A and B .

Suppose we want all solutions of

D2 f +2D f + f = 0

Here

p(t ) = (t +1)2,

whence we see that ker p(D) is spanned by root vectors with eigenvalue −1

and index at most two. Therefore it is spanned by

e−t , te−t ;

the solutions all have the form

(A+B t )e−t

for some scalars A and B .

3.11 Linear Recurrence Equations

The Fibonacci sequence ϕ= ( fn)n≥0 is defined by the recurrence

fn+1 = fn + fn−1 (3.11.1)
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and the initial conditions f0 = f1 = 1. We want to find an explicict expres-

sion for the terms of this sequence.

Let S denote the left shift on CN. Then we may rewrite (3.11.1) as

S2ϕ= Sϕ+ϕ;

this suggests we should study ker p(S), where

p(t ) = t 2 − t −1.

The zeros of p(t ) are

1±p
5

2
;

denote these by θ and τ, where θ > τ. It follows from Theorem 3.10.2 that

ker p(S) is spanned by root vectors for θ and τ with index at most one,

hence by eigenvectors.

The eigenvector for S with eigenvalue a is the geometric series

(1, a, a2, . . .)

and therefore there are constants a and b such that

fn = aθn +bτn .

Setting n = 0 and n = 1 here gives two equations in the unknowns a and b:

1 = a +b, 1 = aθ+bτ.

We can rewrite the second equation as

1 = a +b

2
+ a −b

2

p
5;

since a +b = 1 this implies that

a −b = 1p
5

.

Therefore

a = 1+p
5

2
p

5
= θp

5

and

b = −1+p
5

2
p

5
=− τp

5

We conclude that

fn = 1p
5

(θn+1 −τn+1).
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3.12 Diagonalizability

A matrix A is diagonalizable if there is a diagonal matrix D and an invert-

ible matrix L such that A = LDL−1, that is, A is similar to a diagonal matrix.

If A = LDL−1 then Ak = LDk L−1, and so computing k can be reduced to

the simpler task of computing Dk . More generally, it is often possible to

reduce questions about diagonalizable matrices to questions are diagonal

matrices (which are often trivial).

3.12.1 Theorem. For an n ×n matrix A over an algebraically closed field F,

the following are equivalent:

(a) A is diagonalizable.

(b) Fn has a basis that consists of eigenvectors of A.

(c) The minimal polynomial of A has no repeated factors.

Proof. If two matrices are similar, their minimal polynomials are equal, and

so (a) implies (c).

If the minimal polynomial has no repeated factors then there are no root

vectors of index greater than one, and thus it follows that Fn has a basis

formed from eigenvectors of A.

Finally, suppose that the columns of L are a basis consisting of eigen-

vectors. Then each column of AL is a scalar multiple of the corresponding

column of L, and therefore there is a diagonal matrix D such that AL = LD .

Since L must be invertible, (a) follows.

If F is not algebraically closed (or close to it, like R), then diagonalizabil-

ity is not usually a useful concept.
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Frobenius Normal Form

We derive some properties of matrices from the theory we have established,

and then develop the theory of the Frobenius normal form.

4.1 Companion Matrices

Let T be an endomorphism of the finite-dimensional vector space V . One

of the best ways to study T is to find T -invariant subspaces of V , and cyclic

subspaces are the most accessible of these.

The dimension of the subspace U generated by a vector v is the least

integer k such that T k v lies in the span of the vectors

v ,T v , . . . ,T d−1v ,

and this set of vectors forms a natural basis for U . Let vi denote T i v . Then

there are scalars a1, . . . , ak such that

T vd−1 =−ad v0 −·· ·−a1vd−1. (4.1.1)

If i < d−1, then T vi = vi+1 and therefore the matrix representing the action

of T on U , relative to the ordered basis v0, . . . , vd−1, has the form

0 0 · · · 0 −ad

1 0 0 −ad−1

0 1 0 −ad−2
...

...
...

...

0 0 · · · 1 −a1

 (4.1.2)

We call this matrix the companion matrix of the polynomial

p(t ) = t d +a1t d−1 +·· ·+ad .

(We will also refer to this as the right companion matrix of p; we will meet

other flavours as we proceed.) Since vi = T i v0, from (4.1.1) we find that

p(T )v0 = (T d +a1T d−1 +·· ·+ad I )v0 = 0.

Thus p(t ) is the minimal polynomial of T relative to v .
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We now consider a matrix view of the previous material. Suppose v ∈ Fn

and A ∈ Matn×n(F). Assume that the A-cyclic subspace generated by u has

dimension d and let the matrix R be given by

R :=
(
u Au · · · Ad−1u

)
.

Thus col(R) is the A-cyclic subspace generated by u. If ψ(t ) is the minimal

polynomial of A relative to u and C is the companion matrix of ψ, then

AR =
(

Au A2u · · · Ad u
)
= RC .

There is a third view, which is also quite important. Suppose ψ is a poly-

nomial of degree d over F and let Vψ be the vector space of polynomials

over Fmodulo ψ. This vector space is usually denoted by F[z]/(ψ(z)); its

elements are equivalence class of polynomials, where polynomials f and

g are equivalent if and only if f − g is divisible by ψ. Each equivalence

class contains a unique polynomial of degree less than d , and these are the

natural representatives of the equivalence classes.

The powers

1, z, . . . , zd−1

provide one basis for Vψ. Multiplication by z is an endomorphism of Vψ,

and the matrix respresenting multiplication by z relative to this basis is

easily seen to be the companion matrix of ψ.

1. Let p(z) be a polynomial of degree k as above and let Cp denote its

companion matrix. If f is a polynomial of degree less than k, let f̂ be the

coordinate vector of f relative to the standard basis 1, x, . . . , xk−1. Use

the fact that f (z)zi and zi f (z) have the same remainder modulo p to

prove that

f (Cp ) =
(

f̂ Cp f̂ . . . (Cp )k−1 f̂
)

.

Deduce that f (Cp )ĝ = g (Cp ) f̂ .

2. If Cp is a companion matrix of order n ×n, show that rk(Cp −θI ) ≥ n −1,

for any element θ of F. Deduce that the geometric multiplicity of any

eigenvalue is at most 1. (This implies that C is diagonalizable if and only

if the zeros of p are all simple.)

3. Let U be the subspace spanned by the vectors T r u, where r ≥ 0. If

Su ∈U , show that there is a polynomial p such that Su = p(T )u. Hence

deduce that if U is S-invariant and ST = T S, then S�U is a polynomial in

T �U .

4.2 Transposes

We introduce a second basis for Vψ. If

ψ(z) = t d +a1t d−1 +·· ·+ad ,
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define polynomials ψ1, . . . ,ψd by

ψi (z) := t d−i +a1t d−i−1 +·· ·+ad−i .

These polynomials can also be defined by the initial condition ψd (z) = 1

and the backwards recurrence

ψi−1(z) = zψi (z)+ad−i+1. (4.2.1)

As a third alternative, we can view ψi (z) as the polynomial part of the

rational function z−iψ(z). Since ψi (z) is monic of degree d − i , we see that

these polynomials form a basis for Vψ, sometimes called the control basis .

Suppose v ∈ V and T is an endomorphism of V with minimal polyno-

mial ψ(z) relative to v . Then the vectors

ψ1(T )v , . . . ,ψd (T )v

form a basis for the T -cyclic subspace U generated by v . It follows from

(4.2.1) that

Tψi (T )v =
−ad v , if i = 1;

ψi−1(T )v −ad+1−i v , if 2 ≤ i ≤ d .

Let Y be the matrix with columns

ψ0(T )v , . . . ,ψd−1(T )v .

Then you may check that T Y = Y C T
ψ , from which we see that Cψ and C T

ψ

are similar. We can say more about this.

4.2.1 Lemma. Let T be an endomorphism of V with minimal polynomial

ψ(t ) = t d +a1t d−1 +·· ·+ad .

If Q is the d ×d matrix

Q =



ad−1 ad−2 . . . a1 1

ad−2 ad−3 1 0
...

...

a1 1 0

1 0 . . . 0


then CψQ =QC T

ψ .

Proof. If W is the matrix with columns

v ,T v , . . . ,T d−1v ,

then Y =W Q. Now T Y =Y C T
ψ and therefore

T W Q =W QC T
ψ .

As

T W =W Cψ

we deduce that QC T
ψQ−1 =Cψ.
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Note that Q is symmetric and

(CψQ)T =QC T
ψ =CψQ,

therefore CψQ is symmetric. Consequently C = (QC )Q−1 is the product

of two symmetric matrices. Using this you may prove that any real square

matrix is the prpoduct of two symmetric matrices.

4.3 Eigenvectors for Companion Matrices

We give explicit formulas for the left and right eigenvectors of a companion

matrix. We use e1, . . . ,ed to denote the standard basis vectors of Fd , as

customary.

4.3.1 Lemma. Let ψ(z) be a polynomial of degree d and let C be its com-

panion matrix. Then(
1 z · · · zd−1

)
C = z

(
1 z · · · zd−1

)
−ψ(z)eT

d .

Proof. Suppose

ψ(z) = t d +a1t d−1 +·· ·+ad .

If i < d , the i -th entry of (
1 z · · · zd−1

)
C

is zi+1; while the d-th entry is

−(a1 +a2z +·· ·+ad zd−1 = zd −ψ(z).

The lemma follows at once from this.

If, in the above lemma, we take z to be a zero θ of ψ, then it follows that(
1 θ · · · θd−1

)
is a left eigenvector of C with eigenvalue θ.

Our next lemma will provide right eigenvectors. Let ψ1, . . . ,ψd denote

the control basis for Vψ.

4.3.2 Lemma. Let ψ(z) be a polynomial of degree d and let C be its com-

panion matrix. Then

C


ψ1

...

ψd

= z


ψ1

...

ψd

−ψ(z)e1.

Proof. This is again routine; we leave it as an exercise.
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These two lemmas provides right and left eigenvectors for C , one for

each zero θ of ψ(z). If ψ(z) has d distinct zeros, we obtain d distinct left

eigenvectors for C . Since the eigenvalues are distinct, these eigenvectors

are linearly independent.

If we are working over R or C, we can say something useful when ψ(z)

has zeros with multiplicity greater than 1. The idea is to differentiate both

sides of the identity in Lemma 4.3.2. Define

Ψ(z) :=


ψ1

...

ψd


and let Ψ(r )(z) denote the r -th derivative of Ψ(z). Then

CΨ(r )(z) = zΨ(r )(z)+ rΨ(r−1) −ψ(r )(z)e1.

If θ is a zero of ψ with multiplicity m and r < m, then ψ(r )(θ) = 0 and

therefore

(C −θI )rΨ(r )(θ) = r !Ψ(θ).

Note the since the polynomials ψi form a basis for the polynomials of de-

gree less than d , they cannot all be zero at θ; therefore Ψ(θ) 6= 0. It follows

that the vectors Ψ(r )(θ) are a basis for the root space associated with θ.

(Exercise: show that these vectors are linearly independent.)

1. By expanding the expression

(
1 w · · · wd−1

)
C


ψ1(z)

...

ψd (z)


in two different ways, derive the identity

(w − z)
∑

i
w iψi (z) =ψ(w)−ψ(z).

(If we take w and z to be zeros of ψ, this gives the orthogonality relation

between the right and left eigenvectors of C .)

2. Let Q be the symmetric matrix from ??. Show that

Ψ(z) =Q


1

z
...

zd−1

 ,

and hence deduce that C T =Q−1CQ.
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4.4 Inverses of Companion Matrices

Suppose A ∈ Matn×n(F) and that u ∈ Fn that generates an A-cyclic subspace

of dimension d . Let ψ be the minimal polynomial of A relative to u. If

ψ(t ) := t k +a1t k−1 +·· ·+ak ,

then C is invertible if and only if ak 6= 0. (There are a number of ways to see

this. Perhaps the easiest is to note that if we move the last column of C to

the first position, the resulting matrix C ′ is lower triangular with (C ′)1,1 =
−ak and all other diagonal entries equal to 1.) If C is invertible, there is a

simple expression for C−1. To describe this, we need a new operation on

polynomials.

If q is a polynomial with degree k, let q̃ denote the polynomial t k q(t−1).

(This is q with its coefficients reversed.) Note that if A is invertible, then

p(A) = 0 if and only if

Ak p̃(A−1) = 0.

It follows that if p is the minimal polynomial of A, then a−1
k p̃ is the mini-

mal polynomial of A−1.

Let R be the matrix given by

R =
(
u Au · · · Ad−1u

)
.

Then AR = RC and col(R) is the A-cyclic subspace generated by u. If A

is invertible, then A−1 is a polynomial in A and therefore col(R) is A−1-

invariant. Hence there is a matrix D such that

A−1R = RD

and D =C−1. Now

A−1
(
u Au · · · Ad−1u

)
=

(
A−1u u · · · Ad−2

)
,

whence D is a d ×d matrix of the form(
γ Id−1

cd 0

)
.

If we write C in the form

C =
(

0 ad

Id−1 α

)
,

then the equation DC = I implies that

Id =
(

Id−1 adγ+α
0 ad xd

)

Consequently we must have

cd = a−1
d , γ=−a−1

d α
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and therefore

D =
(
−a−1

d α Id−1

a−1
d 0

)
.

This expression for D makes sense if and only if ad 6= 0, because C can be

invertible even when A is not. Hence we have proved the following:

4.4.1 Theorem. Let p be a polynomial with degree k and let C be the com-

panion matrix of p. Then C is invertible if and only if p(0) 6= 0. If p(0) 6= 0,

then

C−1 = T DT ,

where D is the companion matrix of a−1
k p̃ and T is the matrix whose

columns are the standard basis vectors in reverse order.

By way of example, we have
−c/d 1 0 0

−b/d 0 1 0

−a/d 0 0 1

−1/d 0 0 0




0 0 0 −d

1 0 0 −c

0 1 0 −b

0 0 1 −a

= I .

If C is a companion matrix and T is the permutation matrix in the previ-

ous theorem, we say that T C T is a left companion matrix . Analogously we

will call C T a bottom companion matrix. And to round off the list, TC T T is

a top companion matrix. All four flavours occur in practice.

4.5 Cycles

Let P be the n ×n matrix such that Pe1 = en and, if 2 ≤ i ≤ n then Pei = ei−1

and Pen = e1. Thus if n = 5,

P =


0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 .

We see that P n = I and P is a companion matrix for the polynomial t n −1.

Further P−1 = P T , and therefore P is orthogonal.

Let vθ be the vector of length n with i -th entry θi−1. Thus

vθ =
∑

i
θi−1ei

and consequently, if θn = 1, then

P vθ =
∑

i
θi−1Pei =

∑
i
θi−1ei−1 = θvθ.
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Therefore the vectors vθ , as θ runs over the distinct n-th roots of unity, are

eigenvectors for P . It is not hard to show that, if n is odd, any real eigenvec-

tor of P is a scalar multiple of v1.

Now let A = P +P T . Then A is symmetric and

Avθ = (θ+θ−1)vθ .

Therefore the vectors vθ , as θ runs over the distinct n-th roots of unity, are

eigenvectors for A. Note that here the eigenvalues

θ+θ−1 = θ+θ

are real, even though the eigenvectors themselves are complex (unless θ is

real).

The eigenvalues of P are roots of unity. Suppose Q is orthogonal and v is

an eigenvector for it with eigenvalue θ. Then Qv = θv , but

‖v‖ = ‖Qv‖ = ‖θv‖ = |θ|‖v‖.

It follows that all eigenvalues of an orthogonal matrix lie on the unit circle

in the complex plane.

4.6 Circulants and Cyclic Codes

Let Pn be the companion matrix for the polynomial t n − 1. Thus if n = 5

then

P5 =


0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


We see that Pnei = ei+1 if i < n and Pnen = e1. A circulant matrix is a matrix

which is a polynomial in Pn . This is equivalent to stating that a matrix is a

circulant if it is square and each row is a cyclic right shift of the row above it.

If the first column of the circulant A is
a1
...

an


then

A =
n∑

i=1
ai P i−1.

It follows that there is an isomorphism between the vector space of n ×n

circulant matrices and the space of polynomials with degree less than n.

But this is misleading. Suppose a and b are polynomials with degree less

than n, and associated circulants A and B respectively. Then the product
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AB is a circulant, but the polynomial belonging to it cannot be ab unless

the degree of this product is less than n. In fact the polynomial is the re-

mainder of the product a(t )b(t ) on division by t n − 1. Thus the space of

n ×n circulants is isomorphic to the quotient ring F[x]/(xn −1). This iso-

morphism is an algebra isomorphism. If deg(a) < n, we use Cg to denote

the circulant associated with g .

The row space of an n ×n circulant over F is a cyclic code of length n.

Suppose f is a polynomial and that g is its greatest common divisor with

t n −1. Then there are polynomials a and b such that

a(t ) f (t )+b(t )(t n −1) = g (t ).

Hence

Cg =Ca f =CaC f

and therefore row(Cg ) ⊆ row(C f ). On the other hand, f = f1g and so

C f =C f1Cg ,

which implies that row(C f ) ⊆ row(Cg ) and hence that row(C f ) = row(Cg ).

This proves that a cyclic code of length n over F is equal to Cg , for some

divisor g of t n −1.

One of the most important parameters of a code is its dimension. Thus

we would like to determine rk(Cg ). If g has degree d , then the submatrix

formed by the intersection of the first n −d columns and last n-d rows of

Cg is the identity matrix In−d . Therefore

rk(Cg ) ≥ n −d .

Suppose a(t ) is a polynomial of degree less than n, and let [a] denote its

coordinate vector with respect to the ordered basis 1, t , . . . , t n−1. If Cg [a] =
0, then

0 =Cg [a] = P r Cg [a] =Cg P r [a]

for all r and consequently

Cg Ca = 0.

Equivalently, Cg Ca = 0 if and only if Cg Cae1 = 0. Now Cg Ca = 0 if and

only if t n −1 divides g (t )a(t ), and accordingly the null space of Cg consists

of the vectors [a] such that (t n − 1)/g (t ) divides a(t ). If we set h(t ) equal

to (t n − 1)/g (t ), then the null space of Cg is the column space of Ch . The

dimensions of the row and column spaces of Ch are equal, and therefore

rk(Ch) ≥ n − (n −d) = d .

So by the rank+nullity theorem,

rk(Cg )+ rk(Ch) = n,

which forces us to conclude that rk(Cg ) = n −d .
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If Cg 2 [a] = 0 then Cg 2Ca = 0 and so t n − 1 divides g (t )2a(t ). If t n −
1 has no repeated factors, then t n − 1 divides g (t )2a(t ) if and only if it

divides g (t )a(t ). In this case it follows that Cg is diagonalizable. If xn −1 =
p(t )2q(t ), then C 2

pq = 0 and Cpq is nilpotent, and not diagonalizable.

However xn −1 has a repeated factor if and only if its gcd with its deriva-

tive nxn−1 is not constant, in other words, if and only if n is not divisible

by the characteristic of F. In particular, if the characteristic of F does not

divide n, then Fn is the direct sum of ker(Cg ) and col(Cg ).

Let E be an extension field of F in which t n −1 splits into linear factors.

If n and the characteristic of F are coprime, these factors are all distinct. It

follows that each divisor g of t n −1 is determined by the set of n-th roots

of 1 on which it vanishes. Let vθ be the vector of length n with i -th entry

equal to θi−1. Then if θn = 1,

Cg vθ = g (θ−1)

and so row(Cg ) consists of the vectors xT such that

xT vθ = 0

whenever θ−1 is a zero of g .

4.7 Frobenius Normal Form

A square matrix C is in Frobenius normal form if

(a) It is block-diagonal, with diagonal blocks C1, . . . ,Cm .

(b) Each diagonal block is the companion matrix of a polynomial ψi (t ).

(c) For i = 1, . . . ,m −1, the polynomial ψi+1 divides ψi .

Thus the Frobenius normal form can be specified by giving the sequence of

polynomials ψi .

We want to prove that two matrices over a field are similar if and only if

they have the same Frobenius normal form. he next lemma is the key.

4.7.1 Lemma. Let A be an n ×n matrix over F. If U is a non-zero cyclic

A-module, then:

(a) There is a cyclic A-module that contains U nad has a complement.

(b) If dim(U ) equals the degree of the minimal polynomial of A, then U

has an A-invariant complement.

Proof. Let u be a non-zero vector and suppose that the A-invariant sub-

space it generates has dimension k. Let U be the n × k matrix with the

vectors

u, Au, . . . , Ak−1u
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as its columns. Then the columns of U are linearly independent and there-

fore there is a n × k matrix V such that V T U = I . Let w denote the last

column of V . (Now that we have w , we will ignore V .)

We have

wT Ar As u = wT Ar+s u =
1, if r = k −1− s;

0, ifr < k −1− s.

If W is the matrix with columns

(Ak−1)T w , (Ak−2)T w , . . . , AT w , w

then W T U is a lower triangular matrix with diagonal entries equal to 1.

Therefore it is invertible, and therefore rk(W ) = k. Let ` be the dimension

of the AT -invariant subspace generated by w . Since rk(W ) = k, we see that

k ≤ `.

If k 6= `, then repeating the above argument with AT in place of A and w

in place of U , we obtain a cyclic subspace for A with dimension at least `.

By repeating both these steps a finite number of times, we bring ourselves

to the case where k = `.

Therefore we may assume that col(W ) is AT -invariant, and so there is a

matrix L such that AT W =W LT . If W T x = 0 then

0 = LW T x =W T Ax;

accordingly the null-space K of W T is A-invariant. Since W T U is invert-

ible, no non-zero element of col(U ) lies in K . Since rk(W ) = k, we see that

dimK = n −k and therefore K is an A-invariant complement to col(U ).

To obtain the last statement of the proof, note that A and AT have the

same minimal polynomial. So if k equals the degree of this polynomial,

then rk(U ) = rk(W ).

It follows readily from this lemma that every square matrix is similar to

a block diagonal matrix, where each block is a companion matrix. We can

also use it as follows to verify the existence of the Frobenius normal form.

4.7.2 Theorem. Every square matrix is similar to a matrix in Frobenius

normal form.

Proof. Let A be an n ×n matrix with minimal polynomial ψ(t ) of degree k.

By ??, there is a vector u such that ψ is the minimal polynomial of A with

respect to u, and therefore u generates a cyclic subspace V of dimension

k. By the previous lemma, it follows that this subspace has an A-invariant

complement K .

Choose a basis for Fn consisting of the columns of V followed by a basis

for K . Relative to this basis, A is represented by a block-diagonal matrix(
L 0

0 B

)
,
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where L is the companion matrix of the minimal polynomial of A. The min-

imal polynomial of B divides the minimal polynomial of A. By induction

on n we see that B is similar to a matrix in Frobenius normal form; stacking

L on top of this produces a matrix in Frobenius normal form that is similar

to A.

4.7.3 Lemma. Assume the matrices N1 and N2 are in Frobenius normal

form. If N1 and N2 are similar, they are equal.

Proof. Suppose that

N1 :=
(

L1 0

0 D1

)
, N2 :=

(
L2 0

0 D2

)

are both in Frobenius normal form and that L1 and L2 are companion

matrices. Then p(N ) = 0 if and only if p(L1) = 0 and p(D1) = 0 and hence

the minimal polynomial of N1 is the minimal polynomial of L1. Since N1

and N2 are similar, they have the same minimal polynomial, and this is

also the minimal polynomial of L2. Thus L1 and L2 have the same minimal

polynomial, and as they are companion matrices this implies that they are

equal.

Assume now that L1 is in Frobenius normal form (not necessarily a

companion matrix) and that L1 = L2. Let ψ1 be the minimal polynomial of

D1. Then ψ1(N1) and ψ1(N2) are similar and thus(
ψ1(L) 0

0 0

)
∼

(
ψ1(L) 0

0 ψ1(D2)

)
.

This implies that ψ1(D2) = 0 (prove it!) and we conclude that D1 and D2

have the same minimal polynomial. An easy induction argument now

yields that D1 = D2.

We can use Lemma 4.7.1 to compute the minimal polynomial of a

square matrix. First compute a block-diagonal matrix similar to A, with

companion matrices as its blocks. The least common multiple of the poly-

nomials associated to these companion matrices is the minimal polyno-

mial of A.

4.8 Applications

We use C (M) to denote the commutant of M , that is, the set of matrices

that commute with M . This a subspace that contains all polynomials in M .

4.8.1 Theorem. Let A and B be square matrices. If C (A) ⊆C (B), then B is a

polynomial in A.

Proof. Assume A is n ×n. We can decompose Fn as the direct sum of A-

invariant subspaces V1, . . . ,Vk . For each subspace there is a cyclic vector vi
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such that the powers Ar vi span Vi . If ψi is the minimal polynomial of A�Ui ,

then its degree equals dimVi , and ψi+1 divides ψi .

Let Pi denote the projection on Vi . From ??, the projections Pi com-

mute with A. Hence they commute with B and, again by ??, it follows that

the subspaces Vi are B-invariant. Therefore B vi ∈ Vi and therefore there is

a polynomial gi such that B vi = gi (A)vi . As AB = B A, we have

B Ar vi = Ar B vi = Ar gi (A)vi = gi (A)Ar vi ,

and therefore B v = gi (A)v for all v in Vi .

To complete the proof, we show that gi (A)vi = g1(A)vi . This implies

that B = g1(A).

Let qi := ψ1/ψi . Consider the map that sends f (A)vi to qi (A) f (A)v1.

If f (A)vi = 0, then ψi divides f and so ψ1 = ψi qi divides qi (A) f (A)v1. It

follows that this is a well-defined linear map from Vi to V1. We extend it

a linear map Xi from V to V by defining Xi (v) = 0 if v ∈ V j and j 6= i ; if

v = f (A)vi then Xi v = qi (A) f (A)v1.

If i 6= j and v ∈V j , then AXi v = Xi Av = 0. Further

AXi f (A)vi = Aqi (A) f (A)v1

and

Xi A f (A)vi = qi (A)A f (A)v1.

Therefore Xi commutes with A, and therefore it commutes with B . Now

Xi B vi = Xi gi (A)v1 = gi (A)qi (A)v1

and

B Xi vi = B qi (A)v1 = qi (A)B v1 = qi (A)g1(A)v1.

Since Xi and B commute, this implies that

(gi (A)− g1(A))qi (A)v1 = 0,

whence (gi − g1)q1 is divisible by p1 = qi pi , and so pi divides gi − g1.

Consequently

gi (A)vi = g1(A)vi ,

for all i .

The above proof follows Prasalov.

4.9 Nilpotent Matrices

A linear mapping or a matrix is nilpotent if some power of it is zero. The

canonical example is

N2 :=
(

0 0

1 0

)
,
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whose square is zero. If T is nilpotent then its minimal polynomial is t k

for some k, sometimes called the index of nilpotency of T (but not very

often, if we can help it). A nilpotent matrix of index 1 is the zero matrix. We

note that N2 is the companion matrix of t 2. More generally the companion

matrix of t k is a nilpotent matrix with index k, which we will denote by Nk .

Note that Nk e1 = 0 and Nk ei+1 = ei when i ≥ 1.

Nilpotent matrices are interesting and useful, but also a source of diffi-

culties. Since Nk e1 = 0, we see that e1 is an eigenvector of Nk with eigen-

value 0. Since the minimal polynomial of Nk is t k , we see that 0 is the only

eigenvalue of Nk . Further, since rk(Nk ) = k −1, the eigenspace associated

with 0 has dimension 1, and therefore equals the span of e1. Consequently

eigenvalues and eigenvectors provide very little information about nilpo-

tent matrices.

We have the following structure theorem.

4.9.1 Theorem. If M is a nilpotent matrix, then it is similar to a block diago-

nal matrix, where each diagonal block is equal to Nk for some k.

Proof. The required block diagonal matrix is the Frobenius normal form of

M .

One corollary of this is that the number of similarity classes of n ×
n nilpotent matrices over a field equals the number of vectors of non-

negative integers

(k1, . . . ,kn)

such that k1 ≥ k2 ≥ ·· · ≥ k1 and
∑

i ki = n.

4.9.2 Lemma. Let A be an n ×n matrix over an algebraically closed field

with minimal polynomial ψ(t ). Then A is similar to a block diagonal matrix

with diagonal blocks of the form θI + Nθ, where θ runs over the zeros of

ψ, and Nθ is nilpotent with index equal to the multiplicity of θ as a zero of

ψ(t ).

Proof. By the primary decomposition theorem Theorem 3.6.1, we know

that A is similar to a diagonal matrix with diagonal blocks Aθ indexed by

the zeros of ψ, such that the minimal polynomial of Aθ is (t −θ)mθ , where

mθ is the multiplicity of θ as a zero of ψ(t ). Hence A −θI is nilpotent, with

index mθ. Thus we may write

Aθ = θI +Nθ,

where Nθ is nilpotent, of index mθ .

The corank of (A −θI )mθ is known as the algebraic multiplicity of the

eigenvalue θ. This distinguishes it from the geometric multiplicity , which

is the corank of A−θI .
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We present one application. We wish to determine when a matrix A

has a square root, that is, when there is a matrix X such that X 2 = A. If

A = LBL−1 and B has a square root Y , then

(LY L−1)2 = LY 2L−1 = LBL−1 = A.

This allows us to use the primary decomposition theory; more precisely, we

assume that A is block diagonal with blocks of the form

Aθ = θI +Nθ.

It follows that A has a square root if and only if each of its blocks does.

Suppose M is nilpotent. Then I +M has a square root

(I +M)1/2 = ∑
r≥0

(
1
2

r

)
M r .

Note that this is a finite sum, since M r = 0 for all but finitely many values of

r . It follows that, if θ 6= 0, then

θI +Nθ = θ(I +θ−1Nθ)

has a square root. Hence we are left with the case where θ = 0, and this our

questions reduces to deciding which nilpotent matrices have a square root.

If N is nilpotent with index k and X 2 = N , then X 2k = 0 and so X is nilpo-

tent with index 2k. (This implies that the matrices Nk are not squares.)

Assume now that N is in Frobenius normal form. We claim that the

(k +1)× (k +1) matrix

N ′
k :=

(
Nk 0

0 0

)
has a square root. (You do it!) It follows that N has a square root if and only

if its corank is at least as large as the number of non-zero blocks.

4.10 A Similarity Condition

We are given the following two n ×n matrices:(
A 0

0 D

)
,

(
A B

0 D

)
,

where A and D are square. We ask for which matrices B are they similar.

We note that(
I −X

0 I

)(
A B

0 D

)(
I X

0 I

)
=

(
A AX −X D +B

0 D

)
,

and deduce that they are similar if there is a matrix X such that

AX −X D = B .
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We show that this condition is necessary.

Suppose that our two matrices are similar. Then there is an invertible

matrix S such that

S

(
A 0

0 D

)
=

(
A B

0 D

)
S.

We define linear mappings T1 and T2 on the space of n ×n matrices by

T1(Y ) :=
(

A 0

0 D

)
Y −Y

(
A 0

0 D

)
,

T2(Y ) :=
(

A B

0 D

)
Y −Y

(
A 0

0 D

)
.

We have

S(T1(S−1Y )) = S

(
A 0

0 D

)
S−1Y −Y

(
A 0

0 D

)

=
(

A B

0 D

)
Y −Y

(
A 0

0 D

)
= T2(Y ),

and therefore ker(T1) and ker(T2) have the same dimension.

Let Y be the matrix

Y =
(

Y1,1 Y1,2

Y2,1 Y2,2

)
,

where the partitioning is compatible with the partitioning of the other

matrices above. Then

T1(Y ) =
(

AY1,1 −Y1,1 A AY1,2 −Y1,2D

DY2,1 −Y2,1B DY2,2 −Y2,2D

)
and

T2(Y ) =
(

AY1,1 −Y1,1 A+BY2,1 AY1,2 −Y1,2D +BY2,2

DY2,1 −Y2,1D DY2,2 −Y2,2D

)
.

We note that (
Y1,1 Y1,2

0 −I

)
lies in ker(T2) if and only if AY1,2−Y1,2D−B = 0, and we can prove our claim

by showing that there is a matrix of this form in ker(T2).

Let Ti denote the restriction to kerTi of the linear map(
Y1,1 Y1,2

Y2,1 Y2,2

)
7→

(
Y2,1 Y2,2

)
.

We will prove that T1 and T2 have the same image.

From the expressions for T1(Y ) and T2(Y ), we see that kerT1 = kerT2.

Further

imT1 = {
(
Y2,1 Y2,2

)
: DY2,1 −Y2,1 A = 0, DY2,2 −Y2,2D = 0}
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and im T2 consists of the elements of kerT1 for which there are matrices

Y1,1 and Y1,2 such that

C Y2,1 = Y1,1 A− AY1,1, C Y2,2 = Y1,2D − AY1,2.

It follows that imT2 ⊆ imT1. Now

dim((T1))+ rk(T1) = dim(kerT1)

dim((T2))+ rk(T2) = dim(kerT2).

Since T1 and T2 have the same corank and since T1 and T2 have the same

corank, it follows that T1 and T2 have the same rank.

Finally, it easy to verify that(
0 0

0 −I

)
∈ kerT1

whence (
0 −I

)
∈ imT1 = imT2

and accordingly there is a matrix in kerT2 of the form(
Y1,1 Y1,2

0 −I

)
.

This completes the proof.

4.11 Triangular Maps

A flag in V is a sequence V0, . . . ,Vr of distinct subspaces such that

V0 ⊂V1 ⊂ ·· · ⊂Vr .

If dimV = n, then a flag contains at most n +1 subspaces, and a maximal

flag is a flag with n +1 elements. A maximal flag V0, . . . ,Vn has V0 = {0} and

Vn =V . If v1, . . . , vn is a basis for V and we define V0 = {0} and

Vi := span{v1, . . . , vi }

then V0, . . . ,Vn is a maximal flag. There is a converse to this. Suppose that

V0, . . . ,Vn is a maximal flag, and for i = 1, . . . ,n choose a non-zero vector wi

in Vi \Vi−1. Then w1, . . . , wn is a basis (as you are invited to prove). Let T

be an endomorphism of V . A flag F is T -invariant if each subspace of F is

T -invariant. If F is T -invariant, we also say that T fixes F .

4.11.1 Lemma. If β = x1, . . . , xn is a basis for the vector space V and the

linear map A fixes the flag associated to β, then the matrix that represents

A relative to β is upper triangular.
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4.11.2 Theorem. An endomorphism of a finite-dimensional vector space

over an algebraically closed field fixes a maximal flag.

Proof. We prove the result by induction on dimV . We define a hyperplane

in V to be a subspace with dimension dim(V )−1. It will be enough to prove

that any endomorphism of a vector space fixes a hyperplane H for then, by

induction, we may assume that T �H fixes a maximal flag of H .

By Lemma 3.5.2, the adjoint T ∗ of T has an eigenvector in V ∗. Choose

such an eigenvector f . Then T ∗ f = λ f for some scalar λ, but T ∗ f is the

composition f ◦T and therefore

f (T v) =λ f (v),

for all elements v of V . This implies that if f (v) = 0, then f (T v) = 0 and

therefore ker f is T -invariant.

Since f 6= 0, there is a vector v such that f (v) 6= 0. If f (w) 6= 0 too, then

the vector

f (w)v − f (v)w

lies in ker f , from which it follows that ker f is a hyperplane.

In Section 4.12, we will prove a more concrete version of this result using

a variation of the above argument.

(1) Prove that each maximal flag determines a basis, as described above.

(2) Prove that if f ∈V ∗, then ker f is a hyperplane.

(3) Let S and T be endomorphisms of V that fix the same flag, and sup-

pose n = dimV . Prove that the minimal polynomial of ST −T S divides

t n .

4.12 Triangulations

We prove that if A is a square matrix over C, then there is a unitary matrix

L such that L−1 AL is triangular. We have already proved a version of this

result for linear mappings (see Section ??) but our argument there did not

yield the fact that we could choose L to be unitary.

4.12.1 Theorem. Let A be an n ×n matrix over C. Then there is a unitary

matrix L such that L−1 AL is lower triangular.

Proof. We proceed by induction on n. Let u1 be an eigenvector for A∗ with

eigenvalue θ and let U denote the subspace

u⊥ = {x ∈Cn : u∗x = 0}.

Then U is A-invariant: if v ∈U , then

u∗
1 Av = (A∗u1)T v = θu∗

1 v = 0.
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Let u2, . . . ,un be an orthonormal basis for U . Since u1 ∉ U , the vectors

u1,u2, . . . ,un form an orthonormal basis for Cn . If we define the matrix L1

by

L1 :=
(
u1 u2 · · · un

)
then L1 is unitary and

AL1 = L1

(
a 0

b A2

)
.

We may assume inductively that there is a unitary matrix M such that

M−1 A2M is lower triangular; then L = L1M is the unitary matrix we need.

Suppose that M is an upper triangular n ×n matrix. If M v = θv , then

(M −θI )v = 0 and so M −θI is not invertible. The matrix M −θI is also

upper triangular; it is invertible if and only if its diagonal entries are non-

zero. We conclude that the eigenvalues of M are precisely the diagonal

entries of M . This generalises the fact the the eigenvalues of a diagonal

matrix are its diagonal entries.

4.13 The “Fundamental” “Theorem of Algebra”

The fundamental theorem of algebra is the assertion that any polynomial

with coefficients from C has a root in C. It is equivalent to the claim that ev-

ery complex matrix has an eigenvector, and we offer a proof of this due to

Harm Derkson. The original appears in the American Math. Monthly, and

on his web page. (It has been stated that this result is theorem of analysis,

not algebra, and is not fundamental. I tend to agree.)

This proof is due to Harm Derksen, American Math. Monthly, 110,

(2003), pp. 620- 623.

4.13.1 Theorem. Every square complex matrix has an eigenvector.

Before setting out on the proof, some terminology. Let A be a set with a

multiplication defined on it. If A,B ∈ A , we denote their product by AB . A

set A of endomorphisms of V is an algebra if

(a) A is a vector space over F.

(b) If A,B ∈A , then AB ∈A .

(c) There is an element I in A such that AI = I A = A for all A in A .

If V is a vector space over F, then End(V ) is an algebra. If the elements of

an algebra A are endomorphisms of V , it is called an operator algebra ;

if the elements of A are matrices we call it a matrix algebra . The set of

all upper triangular matrices is an example of a matrix algebra. The set

of strictly upper triangular matrices is not an algebra according to our

definition, because it does not contain the identity matrix. An algebra A is
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commutative if AB = B A for all A and B in A . If A is a square matrix, the

set of all polynomials in A is a commutative algebra.

We note next that if f (t ) is a polynomial over Rwith odd degree, then f

has a real zero. (This is a comparatively simple exercise in calculus.)

We now start the proof of the theorem. We divide it into a number of

lemmas.

4.13.2 Lemma. If A is an n ×n real matrix and n is odd, then A has an

eigenvector.

Proof. The space Rn is a direct sum of cyclic subspaces for A. Since n is

odd, there is a cyclic subspace U for A with odd dimension d . The minimal

polynomial ψ of A�U has degree d , and therefore there is a real number θ

such that ψ(θ) = 0. It follows that A has an eigenvector with eigenvalue θ.

4.13.3 Lemma. If A is a commutative algebra of real n ×n matrices and n

is odd, there is a vector z which is an eigenvector for all matrices in A.

Proof. Let A1, . . . , Ak be a basis for A . If A is generated by I , there is noth-

ing to prove, so we may assume A1 6= I . By the previous lemma, A1 has

an eigenvector z; let θ be its eigenvalue. The subspaces ker(A1 −θI ) and

im(A1 −θI ) are proper non-zero subspaces of Rn and by the rank theorem,

dim(ker(A1 −θI ))+dim(im(A1 −θI )) = n.

Therefore one of these subspaces has odd dimension; we denote it by U .

If A1u = θu, then

A1 Ai u = Ai A1u = θAi u

and consequently Ai u ∈ ker(A1 −θI ) if u ∈ ker(A1 −θI ). If v = (A1 −θI )w ,

then

Ai v = Ai (A1 −θI )w = (A1 −θI )Ai w ∈ im(A1 −θI ).

Hence U is invariant under each matrix A1, . . . , Ak , and so it is invariant

under all matrices in A .

Since U is a proper non-zero subspace of Rn with odd dimension, it

follows by induction that there is a vector in U which is an eigenvector for

each matrix in A .

4.13.4 Lemma. If A is an n ×n complex matrix and n is odd, then A has an

eigenvector.

Proof. Let W denote the vector space of all n×n Hermitian matrices (which

is not an algebra if n > 1). We define linear operators L1 and L2 by

L1(M) = 1

2
(AM +M A∗),

L2(M) = 1

2i
(AM −M A∗).
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If M = M∗, then

(L1(M))∗ = 1

2
(AM +M A∗)∗ = 1

2
(M A∗+ AM) = L1(M)

and

(L2(M))∗ = 1

−2i
(AM −M A∗)∗ = 1

−2i
(M A∗− AM) = L2(M).

Therefore L1,L2 ∈ End(W ). Also

L1L2(M) = 1

2

1

2i
[A(AM −M A∗)+ (AM −M A∗)A∗] = 1

2

1

2i
[A2M −M(A∗)2]

and

L2L1(M) = 1

2

1

2i
[A(AM +M A∗)− (AM +M A∗)A∗] = 1

2

1

2i
[A2M −M(A∗)2].

Therefore L1 and L2 commute.

Now W is a vector space of dimension n2 over R, and n2 is odd. If we

choose a basis for W , the matrices representing L1 and L2 relative to this

basis have order n2×n2 and they commute. Consequently they have a com-

mon eigenvector, and this is an eigenvector for L1 and L2 This eigenvector

is a non-zero matrix M such that

L1(M) =λM , L2(M) =µM .

Then

AM = L1(M)+ i L2(M) = (λ+ iµ)M

and this shows that each non-zero column of M is an eigenvector for A.

4.13.5 Lemma. If A is a commutative algebra of complex n ×n matrices

and n is odd, there is a vector z which is an eigenvector for all matrices in

A.

Proof. We simply apply the proof of Lemma 4.13.3. If A1, . . . , Ak is a basis

for A and A1 has an eigenvector, then there is a non-zero proper subspace

of Cn of odd dimension over Cwhich is invariant under A . By induction

this contains an eigenvector for A .

4.13.6 Lemma. A square complex matrix has an eigenvector.

Proof. Assume n = 2k n1, where n1 is odd. We prove the lemma by induc-

tion on k. Let W denote the space of all matrices M in Matn×n(C) such that

M T =−M . We note that

dim(W ) =
(

n

2

)
and therefore 2k does not divide dim(W ). We define two mappings L1 and

L2 as follows:

L1(M) = AM +M AT ,

L2(M) = AM AT .
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Then L1,L2 ∈ End(W ) and L1L2 = L2L1. Choose a basis for W . The matrices

representing L1 and L2 relative to this basis commute and have order(n
2

)× (n
2

)
. By induction on k, the algebra generated by these matrices has

an eigenvector M ; this is an eigenvector for L1 and L2 and we may assume

that its eigenvalues are λ and µ respectively. Hence

µM = AM AT = A(L1(M)− AM) = (λA− A2)M

and so

(A2 −λA+µI )M = 0.

Let z be a non-zero column of M . Then the minimal polynomial of

A relative to z is quadratic, and so the A-cyclic subspace generated by z

has dimension at most two. Assume that the minimal polynomial ψ of A

relative to z is quadratic, and is equal to

t 2 −λt −µ.

This quadratic has two roots in C, and so there are complex numbers θ and

τ such that

(A−θI )(A−τI )z = 0.

If (A − τI )z = 0, then z is an eigenvector for A with eigenvalue τ; if (A −
τI )z 6= 0 then (A −τI )z is an eigenvector for A with eigenvalue θ. Thus we

have shown that A has an eigenvector.
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Tensors

5.1 The Kronecker Product

If A and B are matrices over F, we construct their Kronecker product A ⊗B

by replacing the i j -entry of A with

Ai , j B ,

for all i and j . We find that

(A⊗B)(u ⊗ v) = Au ⊗B v

and, more generally that

(A⊗B)(C ⊗D) = AC ⊗BD ,

provided only that the products AC and BD are defined. It follows that

if x is an eigenvector for A and y is an eigenvector for B , then x ⊗ y is an

eigenvector for A ⊗B . Consequently the eigenvectors of A ⊗B are just the

products λµ, where λ is an eigenvalue of A and µ is an eigenvalue of B . We

also have

(A⊗B)T = AT ⊗B T .

If X is an m × n matrix, then vec(X ) is the mn × 1 matrix we get by

stacking the columns of X one above the other. In other terms

vec(X ) =∑
Xi , j ei ⊗e j .

We have

vec(AX ) = (I ⊗ A)vec(X ), vec(X B) = (B T ⊗ I )vec(X ).

It follows for example, that there is a matrix X such that

AX −X B =C

if and only if

(I ⊗ A−B T ⊗ I )vec(X ) = vec(C ).

The eigenvalues of the matrix I ⊗ A − B T ⊗ I are the differences µ−λ,

where λ is an eigenvalue of A and µ is an eigenvalue of B , and therefore it is

invertible if and only if A and B have no eigenvalues in common.
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Let P be the matrix such that

P (x ⊗ y) = y ⊗x.

Then P maps U ⊗V to V ⊗U . If V =U , then P 2 = P . We say an element u of

V ⊗V is symmetric if Pu = u and antisymmetric if Pu =−u. Thus u⊗u and

u ⊗ v + v ⊗u

are symmetric and

u ⊗ v − v ⊗u

is antisymmetric. (Thus symmetric and antisymmetric elements of V ⊗V

are eigenvectors for P , with eigenvalues 1 and −1 respectively.) If A and B

belong to End(V ), then

P (A⊗B)P (u ⊗ v) = P (A⊗B)(v ⊗u) = (B ⊗ A)(u ⊗ v).

We also have

P vec(X ) = vec(X T ).

(1) Show that the matrix P (A⊗ AT ) is symmetric.

(2) Let V be Matn×n(F) and let A be a fixed matrix. If X ∈ V , define the

map AdA in End(V ) by

AdA(X ) := AX −X A.

If An = 0, prove that Ad2n
A = 0.

5.2 Tensor Products

The tensor product U ⊗V of two vector spaces U and V over F is defined as

a quotient space. We start with the space of all finitely supported functions

FU×V , the tensor product is the quotient of this subspace modulo the

subspace spanned R by vectors of the following forms:

(a) a(u, v)− (au, v), a(u, v)− (u, av) for a ∈ F and (u, v) in U ×V .

(b) (u1 +u2, v)− (u1, v)− (u2, v) for u1,u2 ∈U , v ∈V .

(c) (u, v1 + v2)− (u, v1)− (u, v2) for u ∈U , v1, v2 ∈V .

(Here we are using formal sum of finitely many terms to represent elements

of FU⊗V .) We denote the image of (u, v) in U ⊗V by u ⊗ v . The map that

sends (u, v) to u ⊗ v is bilinear.

For finite-dimensional vector spaces, there is no harm in identifying the

tensor product with Kronecker product.

The tensor product is not commutative, the spaces U ⊗V and V ⊗U are

isomorphic but not equal. The tensor product is associative, in that

(U ⊗V )⊗W ∼=U ⊗ (V ⊗W ).



M O R E L I N E A R A LG E B R A 63

The vectors of the form u⊗v are known as pure tensors ; they span U ⊗V

but do not form a basis. We note that a scalar times a pure tensor is a pure

tensor, and so any element of U ⊗V can be expressed as a sum of pure

tensors. If α ∈U ⊗V , we define the tensor rank of α to be the least integer r

such that α can be expressed as the sum of r pure tensors, that is, the least

integer r such that

α=
r∑

i=1
ui ⊗ vi .

The key property of the tensor product is that it allows us to deal with

linear maps in place of multilinear maps (at the cost of increasing dimen-

sions). Thus if we have a bilinear map

β : U ×V →W ,

then there is a linear map β̂ from U ⊗V to W such that

β̂(u ⊗ v) =β(u, v).

If A and B are linear maps defined on U and V respectively, we define

their tensor product A⊗B by

(A⊗B)(u ⊗ v) = Au ⊗B v .

If we have inner products defined on U and V , we can define

〈(u1 ⊗ v1), (u2 ⊗ v2)〉 = 〈u1,u2〉〈v1, v2〉.

This is a consequence of our definition of the tensor products of maps,

because the maps 〈u1,?〉 and 〈u2,?〉 are elements of U∗.

The field F is a 1-dimensional vector space and so the tensor product

F⊗V is defined. The map that sends 1⊗v to v is an isomorphism. If ψ ∈U∗,

then ψ× I is a linear map from U ⊗V to F⊗V , and hence it determines a

linear map from U ⊗V to V . We will usually identify these two maps.

5.3 Quadratic Tensors

We investigate properties of elements of the tensor product U ⊗V .

5.3.1 Lemma. If α ∈ U ⊗V has tensor rank r and α = ∑r
i=1 ui ⊗ vi for

some vectors u1, . . . ,ur and v1, . . . , vr , then both of these sets of vectors are

linearly independent.

We leave the proof of this as an exercise.

5.3.2 Lemma. If α ∈U ⊗V has tensor rank r and

α=
r∑

i=1
ui ⊗ vi =

r∑
i=1

xi ⊗ yi

then

span{u1, . . . ,ur } = span{x1, . . . , xr }, span{v1, . . . , vr } = span{y1, . . . , yr }.
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Proof. There are vectors ψ1, . . . ,ψr in U∗ such that ψi (u j ) = δi , j . So the

image of α under the map ψk ⊗1 is vk , according to the first expression for

α, and its image is
r∑

i=1
ψi (xi )yi .

This shows that vk ∈ span{y1, . . . , yr }, and now everything follows.

The previous results are analagous to properties of the usual rank of a

matrix. This is no accident:

5.3.3 Theorem. For any two vector spaces U and V , the spaces Lin(U ,V )

and U∗⊗V are isomorphic. Under this isomorphism elements of U∗⊗V

with tensor rank r map to operators with rank r .

Proof. If ψ ∈U∗ and v ∈V , let the map λψ,v be given by

λψ,v (u) =ψ(u)v .

This assigns a linear map to each pure tensor in U∗⊗V and hence gives us

a linear map from U∗⊗V to Lin(U ,V ). Denote this map by Λ.

We show that Λ is onto. The first step is to show that each linear map in

Lin(U ,V ) with rank one is the image of a pure tensor. We leave this as an

exercise.

The second step is to show that any m×n matrix can be written as a sum

of rank-one matrices. Suppose A is m ×n. If A 6= 0, there are vectors x and

y such that xT Ay 6= 0, and so we may assume that we have vectors x and y

such that xT Ay = 1. Define

B = A− Ax yT AT .

Each column of Ax yT AT is a scalar multiple of Ax, and it follows that the

column space of B is contained in the column space of A. Next, Ax 6= 0 but

B x = Ax − Ax yT AT x = Ax − (xT Ay)Ax = 0.

Therefore the column space of B is a proper subspace of the column space

of A and so rk(B) < rk(A). On the other hand

rk(A) = rk(B + Ax yT A) ≤ rk(B)+ rk(Ax yT AT ) ≤ rk(B)+1

and we conclude that rk(B) = rk(A)−1. It follows by induction that A can

be expressed as the sum of r rank-one matrices.

Note that it is imediate that a matrix with m rows is the sum of m rank-

one matrices, and we can use this to provide a simple proof of the isomor-

phism in the above theorem. However the relation between tensor rank

and the usual rank is inmportant.

5.3.4 Theorem. We have

dim(U ⊗V ) = dim(U )dim(V ).
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Proof. If u1, . . . ,um and v1, . . . , vn are basis for U and V respectively, then

the pure tensors ui ⊗ v j span U ⊗V .

Now suppose that the pure tensors ui ⊗ v j (for all i and j ) are linearly

dependent. Then there are linearly independent vectors u1, . . . ,ur in U and

vectors w1, . . . , wr in V such that

0 =
r∑

i=1
ui ⊗wi .

As before, choose elements f1, . . . , fr in U∗ such that ψi (u j ) = δi , j . If we

apply ψk ⊗1 to each side of the above expression, we get

0 = wk .

5.4 Cubic Tensors

Consider a tensor α in U ⊗V ⊗W given by

α=
r∑

i=1
ui ⊗βi

where β1, . . . ,βr ∈ V ⊗W . The subspace C (α) of V ⊗W spanned by the

tensors β1, . . . ,βr is an invariant of α. Define the order of a subspace of

V ⊗W to be the least integer s such that it is contained in the span of s pure

tensors. If C (α) has order s, then there are vectors v1, . . . , vs in V and pure

tensors γ1, . . . ,γs in V ⊗W such that

α=
s∑

i=1
xi ⊗γi

Hence the tensor rank of α is at most s. Since no proper subset of γ1, . . . ,γs

spans C (α), it follows that s is the tensor rank of α.

We give one example of the order of a subspace. Identify V ⊗W with the

vector space of matrices of order dim(V ) times dim(W ). If C is the space of

upper-triangular 2×2 matrices then C has dimension three and order four.

For quadratic tensors, we have the following theorem.

5.4.1 Theorem. For vector spaces V and W , the set

Sk := {T ∈V ⊗W |r k(T ) ≤ k}

is closed (i.e., if limi→∞ Ti = T and r k(Ti ) ≤ k, then r k(T ) ≤ k).

Proof. Each T ∈ V ⊗W is associated with a matrix A whose rank is equal

to the tensor rank of T . Hence the sets Sk are determined by algebraic

equations and are closed.

The set of matrices of rank at most r is a closed set, and so the limit

of any sequence of matrices with rank at most r is a matrix with rank at

most r . Tensor rank is in general less well behaved. Let V be R2 with the

standard basis e1, e2.
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5.4.2 Lemma. The element

T := e1 ⊗e1 ⊗e1 +e1 ⊗e2 ⊗e2 +e2 ⊗e1 ⊗e2

of R2⊗R2⊗R2 has tensor rank three, but is the limit of a sequence of tensors

with rank at most two.

Proof. Define

Tλ :=λ−1[e1 ⊗e1 ⊗ (−e2 +λe1)+ (e1 +λe2)⊗ (e1 +λe2)⊗e2)].

Then

Tλ−T =λe2 ⊗e2 ⊗e2,

whence Tλ converges to T as λ→ 0.

The only difficulty is to verify that T has tensor rank three. Suppose by

way of contradiction that

T = (α1e1 +α2e2)⊗b ⊗ c + (µ1e1 +µ2e2)⊗ v ⊗w .

Then

T = e1 ⊗ (α1b ⊗ c +µ1v ⊗w)+e2 ⊗ (α2b ⊗ c +µ2v ⊗w).

Comparing this with the definition of T , we deduce that

e1 ⊗e1 +e2 ⊗e2 =α1b ⊗ c +µ1v ⊗w

e1 ⊗e2 =α2b ⊗ c +µ2v ⊗w .

The two vectors on the left in these expressions are linearly independent,

and therefore these equations imply that b ⊗ c and v ⊗ w are linearly in-

dependent and that they are linear combinations of the vectors on the

left.

Now we use the isomorphism between R2 ⊗R2 and Mat2×2(R). The

image of the span of the vectors on the left consists of all matrices of the

form (
x y

0 x

)
All rank-one matrices of this form must have x equal to 0, and so the rank-

one matrices of this form span a 1-dimensional space. It follows that b ⊗ c

and v ⊗w are linearly dependent. This the contradiction we wanted—we

conclude that the tensor rank of T is three.

5.5 Multiplication

Let M be the space of n ×n matrices over some field. Matrix multiplication

defines a linear map from V ⊗V to V . By Theorem 5.3.3 we have

L (V ⊗V ,V ) ∼= M∗⊗M∗⊗M ,
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and so matrix multiplication can be viewed as a particular element of this

space. More concretely, if the elements Ei , j form a basis for M and εi , j

denotes the element of M∗ that sends a matrix to its i j -entry, then

AB = ∑
i , j ,k

εi , j (A)ε j ,k (B)Ei ,k

and so matrix multiplication corresponds to the tensor∑
i , j ,k

εi , j ⊗ε j ,k ⊗Ei ,k .

This is a sum of n3 terms, which reflects the fact that the implies algorithm

for the product of two n ×n matrices requires n3 multiplications of scalars.

It is surprising and significant that the rank of this tensor is less than n3.

Strassen proved that when n = 2, its rank is at most seven, and this has

lead to algorithms for matrix multiplication that, for large values of n, are

substantially faster than the natural one.

For further information, start with Prasolov.

In the most general sense, an algebra is a vector space V with a bilinear

multiplication µ defined on it. As above we can identify µ with a cubic

tensor. For is v1, . . . , vd is a basis for V and γi is the element of V ∗ that

maps a vector v to its i -th coordinate, then for x and y in V , we have

µ(x, y) =
d∑

i , j=1
γi (x)γ j (y)µ(vi , v j ).

and so we can identify µ with the element∑
i , j
γi ⊗γ j ⊗µ(vi , v j )

of V ∗⊗V ∗⊗V or, if we willing to be flexible, with an element of V ⊗3.

5.6 Semifields

If

V :=V1 ⊗·· ·⊗Vd

and ϕ lies in the dual space V ∗
j , we define ϕ( j ) to be the linear map such

that

ϕ( j )(v1 ⊗·· ·⊗ vd ) =ϕ(v j )(v1 ⊗·· ·⊗ v j−1)⊗ (v j+1 ⊗·· ·⊗ vd )

We refer to ϕ( j ) as a contraction . Following Liebler 1 we define, an element 1

of a tensor product V1 ⊗·· ·⊗Vd to be non-singular if

(a) d = 1, any non-zero element of V is non-singular.

(b) d > 1, and any non-zero contraction is non-singular.
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The second-simplest case is when d = 2, in this case an element of

V1 ⊗V2 is non-singular if the corresponding matrix is non-singular (in the

usual meaning of the term).

(1) Suppose T ∈ End(V ) and rk(T ) = 1. Prove that there is f in V ∗ and v in

V such that T x = f (x)v .



6

Type-II Matrices

6.1 Definitions

If M and N are m ×m matrices, their Schur product is the m ×n matrix

M ◦N defined by

(M ◦N )i , j = Mi , j Ni , j

This is a commutative associative product with the all-ones matrix J as

multiplicative identity. If no entry of M is zero, we define the matrix M (−)

by

(M (−))i , j := M−1
i , j

and call it the Schur inverse of M ; clearly M ◦ M (−) = J . If M is a Schur

invertiblematrix we define

Mi / j := (Mei )◦ (Me j )(−).

Thus Mi / j is the ratio of the i -th and j -th columns of M .

An n ×n complex matrix w is a type-II matrix if it is Schur invertible and

W W (−)T = nI

Any Hadamard matrix is a type-II matrix, as is the character table of an

abelian group. For any nonzero complex number t , the matrix

W =


1 1 1 1

1 1 −1 −1

1 −1 t −t

1 −1 −t t


is type-II.

If W1 and W2 are type-II, so is the Kronecker product W1 ⊗W2.

We define a monomial matrix to be any product of permutation matri-

ces and invertible diagonal matrices. Matrices W1 and W2 are monomially

equivalent if there are monomial matrices M and N such that W2 = MW1N .

If W is monomially equivalent to a type-II matrix, it is a type-II matrix.1 1 as you may show
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If W is type-II, so is its transpose W T , but in general W and W T are not

monomially equivalent.

Our next result introduces an important class of type-II matrices. We say

that a complex matrix is flat if its entries all have the same absolute value.

6.1.1 Lemma. Suppose W is a square Schur-invertible matrix. Then any

two of the following statements imply the third:

(a) W is type-II.

(b) W is flat.

(c) W is unitary.

A flat unitary matrix is commonly referred to as a complex Hadamard

matrix .

6.2 Traces and Type-II Matrices

6.2.1 Lemma. An n ×n matrix W is type-II if and only if for any two diago-

nal matrices D1 and D2,

〈D1,W −1D2W 〉 = 1

n
tr(D1) tr(D2).

Proof. We have

〈ei eT
i ,W −1e j eT

j W 〉 = tr(ei eT
i W −1e j eT

j W ) = eT
i W −1e j eT

j W ei = (W −1)i , j W j ,i ,

and so our claim holds for D1 = ei eT
i and D2 = e j eT

j if and only if

(W −1)i , j W j ,i = 1

n
.

It holds for all i and j if and only if W −1 = 1
n W (−1)T , i.e., if W is type-II. The

result now follows by linearity.

6.2.2 Corollary. If W is type-II of order n ×n and D is diagonal,

(W −1DW )i ,i = 1

n
tr(D).

6.3 Compressions and Projections

A resolution of the identity is a sequence of projections Q1, . . . ,Qm such

that
∑

i Qi = I . (So each direct sum decomposition of a vector space pro-

vides a resolution of the identity.2) 2 The converse is also true

6.3.1 Lemma. If P1, . . . ,Pm are projections and their sum is a projection,

then Pi P j = 0 when i 6= j .
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Proof. Assume Q =∑
i Pi . Then

Q =Q2 =∑
i

Pi +
∑
i 6= j

Pi P j =Q + ∑
i 6= j

Pi P j

and therefore

0 = tr

(∑
i 6= j

Pi P j

)
=∑

i
tr(Pi P j ).

Since projections are positive semidefinite, if tr(Pi P j ) = 0, then Pi P j = 0.

If follows that if
∑

i Pi = I , then the matrices Pi commute. Since these

matrices are normal, there is a change of basis that makes them diagonal.

Hence if P1, . . . ,Pm is a resolution of the identity, by making a change of

basis we may assume each Pi is diagonal, with all diagonal entries 0 or 1.

If A is an algebra and P1, . . . ,Pm is a resolution of the identity formed by

projections in A , we define a map Ψ from A to itself by setting

Ψ(M) :=∑
i

Pi MPi .

You may verify that the image of Ψ is a subalgebra of End(A ). The map Ψ

is referred to as a compression . (If we have chosen a basis so the Pi ’s are

diagonal, then Ψ(M) will be block diagonal—equivalently Ψ just sets the

off-diagonal blocks to zero.)

6.3.2 Lemma. Let Ψ be the element of End(A ) arising from the resolution

of the identity P1, . . . ,Pm . Then

(a) Ψ is self-adjoint.

(b) Ψ is a projection.

(c) The image of Ψ is set of matrices in A that commute with P1, . . . ,Pm .

Proof. We calculate:

〈M ,Ψ(N )〉 =∑
i

tr(M∗Pi N Pi ) =∑
i

tr((Pi M∗P )N )−〈(,Ψ〉(M), N ).

This gives (a) and, since Ψ2 =Ψ, we get (b).

Since Ψ(M) is a sum of matrices that commute with P1, . . . ,Pm , it com-

mutes with each element of P1, . . . ,Pm . Since Ψ acts as the identity on the

commutant of P1, . . . ,Pm , we see that Ψ is onto.

6.3.3 Lemma. Suppose P1, . . . ,Pk are pairwise orthogonal projections

summing to I . If W is a k ×k type-II matrix and we define

Ui = 1p
n

∑
j

Wi , j P j (i = 1, . . . ,k),

then U1, . . . ,Uk are invertible and∑
i

Pi ⊗Pi =
∑

i
Ui ⊗U−1

i .

If W is unitary, so are U1, . . . ,Uk .
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Proof. We have U−1
i = n−1/2 ∑

j W −1
i , j P j and consequently

nUi ⊗U−1
i =

(∑
j

Wi , j P j

)
⊗

(∑
k

W −1
i ,k Pk

)

=
(∑

j ,k
Wi , j W −1

i ,k

)
P j ⊗Pk .

Therefore

n
∑

i
Ui ⊗U−1

i =∑
j ,k

(∑
i

Wi , j W −1
i ,k

)
P j ⊗Pk

=∑
j ,k

(W (−)T W ) j ,k P j ⊗Pk

= n
∑

j
P j ⊗P j .

If W is flat, the eigenvalues of the matrices Ui are complex numbers of

norm one, since Ui is Hermitian it follows that Ui is unitary.

6.4 Classical Colourings

We give a description of classical colourings of graphs in linear algebraic

terms, with a view to presenting a quantum analog later.

A colouring of the graph X is a partition π of V (X ), such that the sub-

graphs induced by the cells of π are cocliques. We can represent a partition

by its characteristic matrix . If |π| denotes the number of cells of π this is

the |V (X )|× |π| matrix whose i -th column is the characteristic vector of the

i -th cell of π. So the characteristic matrix is a 01-matrix with column sum

equal to 1.

If N is the characteristic matrix of a partition with m classes we can, for

each i , convert the i -th column to a diagonal matrix Pi . (Thus (Pi )u,u =
(Nei )u .) Then P 2

i = Pi and
∑

i Pi = I , and we have a resolution of the

identity. We refer to the matrices Pi as the projections associated to the

cells of π.

6.4.1 Lemma. Assume P1, . . . ,Pm are the projections associated to a parti-

tion π of V (X ). Then π is a colouring if and only if
∑

i Pi A(X )Pi = 0.

We use this lemma, along with earlier work, to derive an eigenvalue

bound on the chromatic number.

6.4.2 Theorem. Let X be a graph on n vertices with eigenvalues

θ1 ≥ ·· · ≥ θn .

Then

χ(X ) ≥ 1− θ1

θn
.
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Proof. Let π be the partition of a c-colouring of X . Let P1, . . . ,Pc be the cor-

responding projections and let U1, . . . ,Uc be the unitary matrices derived

from the projections using some flat type-II matrix. Then

0 =
c∑

i=1
Pi APi =

∑
i

Ui AU∗
i

and therefore

U1 AU∗
1 =−

c∑
i=2

Ui AU∗
i

whence

A =−
c∑

i=2
U∗

1 Ui AU∗
i U1.

This implies that

θ1 ≤ (c −1) max{θ1(U∗
1 Ui (−A)U∗

i U1) : 2 ≤ i ≤ c}

≤ (c −1) max{θ1(−A) : 2 ≤ i ≤ c}

= (c −1)(−θn)

and the bound follows.

6.5 Quantum Permutations

A quantum permutation P is an n ×n matrix such that each entry is a d ×d

projection, and the projections in each row and column sum to Id . We

prefer to view P as a matrix over the ring of d ×d matrices but, occasionally

it is convenient to view it as an nd ×nd matrix with blocks of size d ×d . In

this case we will write P̃ to warn the reader of the change of viewpoint.

Note that if Q1, . . . ,Qk are projections and
∑

i Qi = I , then Qi Q j = 0 when

i 6= j . If the entries in a quantum permutation P all have rank one, then P is

also known as a quantum Latin square.

6.5.1 Lemma. Suppose P is an n ×n quantum permutation with d ×d

projections as entries. Then P̃ is unitary.

Proof. Easy exercise.

An important consequence of this result is that P and P̃ are invertible.

Following Roberson et al 3, we define two graphs X and Y on n vertices 3

to be quantum isomorphic if there is a quantum permutation P of order

n ×n, with entries projections of order d ×d , such that

(A(X )⊗ Id )P̃ = P̃ (A(Y )⊗ Id ).

If X = Y , we have a quantum automorphism of X . Since P is unitary, the

matrices A(X )⊗ I and A(Y )⊗ I are similar, and so we see that quantum

isomorphic graphs are cospectral. We’ll see that more is true, but there are

graphs that are quantum isomorphic but not isomorphic. (See 4.) 4
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An automorphism of the graph X on n vertices can be specified by an

n ×n permutation matrix Q such that Q A = AQ. Then Q ⊗ I and A ⊗ I

commute, and we see that any automorphism of a graph gives rise to

quantum automorphism,

6.5.2 Lemma. If P is a quantum permutation, P̃ commutes with J ⊗ Id .

This result is easy to prove, and is left to the reader. One consequence

of it is that quantum isomorphic graphs are cospectral with cospectral

complements.

Our next results holds provided the entries in any row of P satisfy

Pi , j Pi ,k = δ j ,k Pi , j ;

they do not need to be projections.

6.5.3 Lemma. If P is a quantum permutation and P̃ commutes with M ⊗ I

and N ⊗ I , it commutes with (M ◦N )⊗ I .

Proof. The i j -block of (M ⊗ I )P̃ is∑
r

Mi ,r Pr , j

and, by hypothesis, this is equal to the i j -block of P̃ (M ⊗ I ):∑
s

Ms, j Pi ,s .

We have ∑
r

Mi ,r Pr , j
∑

s
Ni ,s Ps, j =

∑
r

(Mi ,r Ni ,r )Pr , j

where the right side is the i j -block of ((M ◦N )⊗ I )P̃ . Similarly∑
r

Mr , j Pi ,r
∑

r
Nr , j Pi ,r =

∑
r

(Mr , j Nr , j )Pi ,r

where the right side is the i j -block of P̃ ((M ◦N )⊗ I ). Since the left sides of

the previous pair of equations are equal, our result follows.

6.5.4 Lemma. Let P be a quantum permutation. The set of matrices M

such that M ⊗ I commutes with P̃ is ∗-closed.

Proof. Since the entries of P are Hermitian, we have

(P̃ (M∗⊗ I ))x,y =
∑

r
Px,r M∗

r ,y =
∑

r

(
Px,r Mr ,y

)∗ = (
(P̃ (M ⊗ I ))x,y

)∗
and, if P and M ⊗ I commute, then(

(P̃ (M ⊗ I ))x,y
)∗ = ((M∗⊗ I )P̃ )x,y .

It follows that if M ⊗ I commutes with P̃ , so does M∗⊗ I .

From the previous two lemmas we see that the set of matrices M such

that P̃ commutes with (M ⊗ I ) is a coherent algebra.
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6.6 Quantum Colourings

We introduce a quantum version of colouring. The basic idea is that a

quantum c-colouring of X is given by an n × c matrix whose entries are

d ×d projections, with the projections in each row sum to the identity

matrix Id . (If d = 1, we will get a classical colouring.)

6.6.1 Lemma. If Q1, . . . ,Qm are projections with sum Id , then Qi Q j = 0 if

i = j . If R1, . . . ,Rm is a second sequence of projections summing to Id , then∑
i Qi Ri = 0 if and only if Qi Ri = 0 for all i .

Proof. Set S =∑
i Qi . Then

S2 =∑
i

Qi +
∑
i 6= j

Qi Q j .

As S = I , this implies that
∑

i 6= j Qi Q j = 0 and consequently

0 = ∑
i 6= j

tr(Qi Q j ).

Since projections are positive semidefinite, tr(Qi Q j ) ≥ 0 and equality holds

if and only if Qi Q j = 0.

If Q1, . . . ,Qm and R1, . . . ,Rm are resolutions of the identity such that

Qi Ri = 0 for all i , we say the resolutions are orthogonal .5 5 just what we need, another meaning
assigned to ‘orthogonal’We now define a quantum m-colouring of X to be a |V (X )|×m matrix N

of d ×d projections such that:

(a) Each row is a resolution of Id .

(b) If vertices i and j are not adjacent in X , the partitions in the rows e t
i N

and eT
j N are orthogonal.

We refer to d as the index of the quantum colouring. The quantum colour-

ings of index one are precisely the clasical colourings.

6.6.2 Lemma. A quantum m-colouring of Km is a quantum permutation.

Proof. if N is a quantum m-colouring of Km , then the projections in any

column of N are pairwise orthogonal and hence each column sum is an

idempotent of order d ×d . Therefore

D j := I −
m∑

i=1
Ni , j < 0

and so
∑

j D j < 0. But

∑
j

D j =
m∑

j=1

m∑
i=1

(I −∑
j

Ni , j ) =
m∑

i=1

m∑
j=1

(I −∑
j

Ni , j ) = 0

and therefore D j = 0 for all j , that is,
∑

i Ni , j = Id .
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6.7 The Nomura Algebra of a Type-II Matrix

If W is Schur-invertible, we define Wi / j to be the vector W ei ◦ (W (−)e j ).

To each m × n Schur-invertible matrix W we associate its Nomura

algebra, defined to be the set of m ×m matrices M such that each ratio

Wi / j is an eigenvector. Hence M lies in the Nomura algebra of W if and

only if there are scalars Θi , j (M) such that

MWi / j =Θi , j (M)Wi / j .

We denote this algebra by NW . It contains the identity matrix, so it is at

least not empty.

6.7.1 Lemma. A square Schur-invertible matrix W is type-II if and only if

J ∈NW .

So if W is type-II, the dimension of its Nomura algebra is at least two.

There is a non-trivial class of examples based on finite abelian groups.

Assume G is an abelian group of order n, given by n ×n permutation matri-

ces, and let W be its character table, with rows indexed by group elements

and columns by characters. Then Wi / j is a character of G , and therefore

NW consists of the matrices M for which there is a diagonal matrix D such

that MW = W D . It is not hard to verify that all permutation matrices in G

belong to NW .

It is surprisingly difficult to provide examples of type-II matrices where

the dimension of the Nomura algebra is greater than two. We can use

products to get examples which we deem trivial: It can be proved that if W1

and W2 are type-II matrices, then

NW1⊗W2
∼=NW1 ⊗NW2 .

Hence if W is the Kronecker product of k type-II matrices,

dim(NW ) ≥ 2k .

A type-II matrix W is a spin model if W ∈NW (or, more precisely, if W is

monomially equivalent to an element of NW ). Spin models are important

because they give rise to link invariants. The character tables of abelian

groups provide examples of spin models where the type-II matrices are flat;

the only known examples where the type-II matrix is not flat is one based

on the Higman-Sims graph (due to Jaeger 6) and a family due to Nomura 7 6

7

based on Hadamard matrices.

6.8 The Matrix of Idempotents of a Type-II Matrix

We describe an operation on type-II matrices which we can use to con-

struct quantum permutations. Assume W is an n×n type-II matrix and, for
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each i and j , define a rank-1 matrix Yi , j by

Yi , j := 1

n
Wi / j (W j /i )T .

Let YW denote the n ×n matrix with i j -entry equal to Yi , j (for all i and j ).

We call it the matrix of idempotents of W .

We observe that

Yi ,i = 1

n
J

and

Y T
i , j = Y j ,i .

The latter implies that YW is symmetric. Further

Y (−)
i , j = nW j /i (Wi / j )T = n2Y j ,i .

If Y τ denotes the matrix we get by replacing each entry of Y by its trans-

pose (i.e., the partial transpose of Y ), then

Y τ = 1

n
Y (−).

Finally, if W is flat, then Yi , j is Hermitian.

6.8.1 Theorem. Let Y be the matrix of idempotents of the n ×n type-II

matrix W . Then each row and column of Y sums to I .

Proof. Let ∂i (M) denote the diagonal matrix such that (∂i (M)r ,r = (Mei )r .

We have

n
∑

j
Yi , j =

∑
j

Wi / j (W j /i )T = ∂i (W )

(∑
j

(W e j )(−)(W e j )T

)
∂i (W )−1.

Here the inner sum is equal to

W (−)W T = (W W (−)T )T = nI .

Since Y is symmetric, the result follows.

Let S be the endomorphism of Cn ⊗Cn that sends u ⊗ v to v ⊗u. Note

that S2 = I and S is a permutation matrix.

6.8.2 Theorem. If W is a type-II matrix, its matrix of idempotents Y is a

type-II matrix. If W is flat, then Y is flat and is a quantum permutation.

Proof. For fixed i , the vectors W e j form a basis of Cn and the vectors

n−1(W e j )(−) form a basis dual to this. Hence the matrices

1

n
(W e j )(−1)(W e j )T

are pairwise orthogonal idempotents and sum to I . Therefore for fixed i

the matrices Yi , j are pairwise orthogonal idempotents that sum to I .

Since Y T =Y , it also follows that each column of Y consists of pairwise

orthogonal idempotents that sum to I . If W is flat, then Yi , j is Hermitian.
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6.8.3 Corollary. If W is a Hadamard matrix, YW is a Hadamard matrix of

Bush type.

6.8.4 Lemma. If W is type-II, then YW T = SYW S.

Proof. We have

n(Yi , j )r ,s =
Wr ,i

Wr , j

Ws, j

Ws,i
= Wr ,i

Ws,i

Ws, j

Wr , j
=

W T
i ,r

W T
i ,s

W T
j ,s

W T
j ,r

= n(Yr ,s (W T ))i , j .

Here the left hand and right hand terms are equal respectively to

(ei ⊗er )T YW (e j ⊗es ), (er ⊗ei )T Y (es ⊗e j )

and the result follows.

6.9 Commutants

After one preparatory lemma, we derive a useful second characterization of

NW .

6.9.1 Lemma. If W is an n ×n type-II matrix, then (Wk/i )T Wi / j = nδ j ,k .

Proof. We have

(Wk/i )T Wi / j =
∑

r

Wr ,k

Wr ,i

Wr ,i

Wr , j
=∑

r

Wr ,k

Wr , j
= (W (−)e j )T W ek

= (W (−)T W ) j ,k

= nδ j ,k .

6.9.2 Theorem. Let W be a type-II matrix. For a matrix M , the following are

equivalent:

(a) M ∈NW .

(b) Each vector Wi / j is an eigenvector for M .

(c) Each vector (W j /i )T is a left eigenvector for M .

(d) M commutes with Yi , j for all i and j .

Proof. From the definition of NW , (a) implies (b).

If L is a matrix of eigenvectors for A and D is the corresponding diagonal

matrix of eigenvalues, then AL = LD , so L−1 A = DL−1 and the rows of L−1

are left eigenvectors for A. If

L =
(
W1/ j . . . Wn/ j

)
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then, by the previous lemma,
(W j /1)T

...

(W j /n)T

L = nI .

Therefore the vectors (W j /i )T are left eigenvectors for M .

Finally, suppose M x yT = x yT . As the column space of M x yT is spanned

by M x and the column space of x yT M is spanned by x, we see that x is

an eigenvector for M . Similarly yT is a left eigenvector. Conversely, if x is

a right eigenvector for M and y a left eigenvector for M , then x yT and M

commute. Hence (b) and (c) are equivalent to (d).

6.9.3 Corollary. If W is type-II, then NW is transpose-closed.

Proof. The matrix M commutes with Yi , j , if and only if M T commutes with

(Yi , j ])T ). Since (Yi , j ])T ) = Y j ,i , the corollary follows.

6.10 Coherent Algebras

If P is a permutation matrix, then P (A ◦B) = (PA) ◦ (PB). We derive an

analogous result for quantum permutations.

6.10.1 Lemma. Let Z be an n ×n matrix with entries d ×d idempotents.

If the entries in each row and in each column are pairwise orthogonal and

sum to Id , then for any n ×n matrices M and N ,

((M ◦N )⊗ I )Z = ((M ⊗ I )Z )◦ ((N ⊗ I )Z )

Z ((M ◦N )⊗ I ) = (Z (M ⊗ I ))◦ (Z (N ⊗ I ))

Proof. We have

((M ⊗ I )Z )i , j =
∑

r
Mi ,r Zr , j , ((N ⊗ I )Z )i , j =

∑
r

Ni ,r Zr , j .

Since the entries in a column of Z are pairwise orthogonal,

((M ⊗ I )Z )i , j ((N ⊗ I )Z )i , j =
∑

Mi ,r Ni ,r Zr , j = (((M ◦N )⊗ I )Z )i , j .

This proves the first equality, the second follows similarly.

6.11 A Nomura Algebra is Schur-Closed

Let W be a type-II matrix. Recall that if M ∈ NW , then Θi , j (M) is the eigen-

value of M on the eigenvector Wi / j . Accordingly we define ΘW (M) to be

the matrix with

(ΘW (M))i , j =Θi , j (M);
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it is the matrix of eigenvalues of M . Clearly, if M , N ∈NW , then

ΘW (M N ) =ΘW (M)◦ΘW (N ).

If M and N are square matrices of the same order, their Lie bracket is

[M , N ] := M N −N M .

Obviously [M , N ] = 0 if and only if M and N commute (and this is the only

property of the Lie bracket that we will use.)

6.11.1 Theorem. Let W by type-II and let Y be its matrix of idempotents.

Then

NW = {M : [I ⊗M ,YW ] = 0},

and

NW T = {N : [N ⊗ I ,YW ] = 0}.

Proof. We have that [I ⊗M ,Y ] = 0 if and only if [M ,Yi , j ] = 0 for all i and

j . Now M commutes with a rank-1 matrix uv∗ if and only if u is a right

eigenvector for M and v∗ is a left eigenvector. Hence [M ,Yi , j ] = 0 for fixed i

and all j if and only if M ∈NW .

For the second claim,

S((N ⊗ I )YW )S = (I ⊗N )YW T ,

from which the assertion follows.

6.11.2 Corollary. If W is a type-II matrix, then NW is Schur-closed.

Since NW is closed under transpose, it follows that it is the Bose-Mesner

algebra of an association scheme. Similarly NW T will be a Bose-Mesner al-

gebra; the relation between these two algebras is described in the following

theorem, which we would like to be able to prove using the machinery at

hand.

We have

(M ⊗ I )Y = (Θ(M)⊗ J )◦Y .

6.11.3 Theorem (Nomura). If W is a type-II matrix of order n ×n, then

ΘW (M) ∈NW T

and

ΘW (M ◦N ) = 1

n
ΘW (M)ΘW (N ).
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The Smith Normal Form

In this chapter we study some linear algebra over rings. The most impor-

tant rings we use are Z and F[x].

7.1 Domains

Let R be a commutative ring. We say that an element a of R divides an

element b if b = ax for some x. We call R a domain if it has no divisors of

zero, that is, if a,b ∈ R and ab = 0 then a = 0 or b = 0. Clearly any field is a

domain. Further examples are provided by the integers Z and F[x], the ring

of polynomials in x with coefficients from F.

An ideal of R is a non-empty subset I such that if a ∈ I and r ∈ R, then

r a ∈ I . The even integers form an ideal in Z. The polynomials p in F[x]

such that p(1) = 0 provide a second example. If I and J are subsets of R,

then I J is given by

I J := {ab : a ∈ I , b ∈ J }.

Thus the subset I of R is an ideal if RI ⊆ I . The only ideal of R that contains

1 is R itself. It follows that a proper ideal cannot contain an invertible ele-

ment of R. If S ⊆ R, then the set SR is an ideal; we call it the ideal generated

by S. It consists of all R-linear combinations of the elements of S. An ideal

generated by a single element is called a principal ideal. For example, the

even integers 2Z form a principal ideal in Z. If I is the principal ideal gen-

erated by d , then I consists of the elements of R that are divisible by d . A

principal ideal domain is a ring in which every ideal is principal. Both Z

and F[x] are examples.

An ideal I is prime if it is a proper ideal and, whenever ab ∈ I , either a

or b lies in I . If m ∈Z, then mZ is a prime ideal if and only if m is a prime. A

ring is a domain if and only if the sero ideal is prime.

Suppose R is a principal ideal domain and a,b ∈ R. The ideal generated

by a and b is generated by some element d , which divides both a and b.

Since this ideal consists of the R-linear combinations of a and b, there are
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elements r and s of R such that

d = r a + sb.

It follows that if c divides a and b, then c divides d and therefore d is a

greatest common divisor of a and b.

If d divides e and e divides d , we have

d = d1e, e = e1d

whence d = d1e1d . Therefore

(1−d1e1)d = 0

and so d1e1 = 1; hence both d1 and e1 are units of R. It follows that, in a

principal ideal domain, any two non-zero elements have a greatest com-

mon divisor, which is unique up to multiplication by a unit.

It can be difficult to verify that a given ring is a principal ideal domain.

There is one case where it is easy. We say R is a Euclidean domain if there is

a function ρ from R \0 toN such that

(a) If a,b ∈ R then ρ(ab) ≥ ρ(a).

(b) If a,b ∈ R, there are elements q and r such that b = qa + r and ρ(r ) <
ρ(a).

The advantage of Euclidean domains is that we can compute the greatest

common divisor of any two elements using the usual Euclidean algorithm.

Also, a Euclidean domain is a principal ideal domain.

We consider examples. If R = Z, take ρ(a) to be |x|. If R = F[x], use

ρ(p) = deg(p). If p, q ∈ F[x], we say the rational function p/q is proper if

deg(p) < deg(q). If we define ρ by

ρ

(
p

q

)
:= deg(q)−deg(p).

The set of proper rational functions over F, with this function ρ, forms a

Euclidean domain. If F = C, the proper rational functions are the rational

functions that are bounded at infinity.

1. Prove that a finite domain is a field.

2. If (R,ρ) is a Euclidean domain and x is a unit in R, show that ρ(ax) =
ρ(a) for all a in R.

7.2 Localization

Let R be a domain. A subset S of R is multiplicatively closed if

(a) 0 ∉ S and 1 ∈ S,
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(b) If a,b ∈ S, then ab ∈ S.

In Z, the set of integers not divisible by a given prime is multiplicatively

closed. The set of non-zero elements of R is also multiplicatively closed.

Using S, we can construct a new ring, denoted R[S−1]. It elements are

equivalence classes of ordered pairs from R×S. We define (a, s) and (b, t ) to

be equivalent if there is an element x of R such that b = ax and t = sx. The

product of the pairs (a, s) and (b, t ) is (ab, st ); their sum is

(at +bs, st ).

These definitions will seem more familiar if we write our pairs as ratios a/s.

We then see that if R = Z and S consists of the non-zero integers, R[S−1] =
Q. If R = F[x] and S consists of all powers of x, then R[S−1] is known as

the ring of Laurent polynomials. It consists of the rational functions of the

form xk p(x), where p ∈ F[x] and k ∈Z.

If S = R \0, then the ring R[S−1] is called the quotient field of R. The

quotient field of Z isQ, as we have just noted. The quotient field of F[x] is

ring of rational functions in x, denoted F(x).

We can view R[S−1] as being constructed by adjoining the multiplicative

inverse of each element of S to R. The element of R[S−1] of the form a/1

form a subring isomorphic to R. If a ∈ R and s ∈ S, then a/1 and a/s gen-

erate the same ideal. It follows from this that ideals of R[S−1] correspond

to the ideals I of R such that I ∩S = ;. An important consequence is that

R[S−1] is a principal ideal domain if R is.

We consider some examples. Let R = C[x] and let C be a subset of C, for

example, the unit disc. Then the polynomials p(x) with no zeros in C form

a multiplicatively closed subset S. The ring R[S−1] consists of the rational

functions with no pole in the unit disc.

1. Prove that if I is an ideal of R, then R \I is multiplicatively closed if and

only if I is prime.

2. Let S be a multiplicatively closed subset of the domain R. Prove that

each ideal of R[S−1] consists of the elements a/s, where a comes from a

given ideal I of R, and s ∈ S.

7.3 Binet-Cauchy

We prove a useful determinental identity. If C is a k ×n matrix and S ⊆
{1, . . . ,n} of size k, define pS (C ) to be the determinant of the submatrix of C

formed by the columns of C indexed by entries from S.

The following in the Binet-Cauchy identity. The cases k = 1 and k = n

should be familiar.1 1 proof by Tao, from wikipedia

7.3.1 Theorem. If A and B are k ×n matrices over a commutative ring, then

det(AB T ) = ∑
|S|=k

pS (A)pS (B).
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Proof. Recall that

det(t I +B T A) = t n−k det(t I + AB T ).

On the right, the coefficient of t n−k is det(AB T ). On the left, this coefficient

is the sum of the principal k × k minors of B T A.2 If |S| is a k-subset of 2 using a result of Laplace

{1, ldot s,n}, the (S,S) minor of B T A is pS (B)pS (A).

If Q is k ×k and A is k ×n and S is a k-subset of {1, l dot s,n}, we have

pS (Q A) = det(Q)pS (A)

The quantities pS (A) are the Plücker coordinates of the row space of A.

You may show that A and B have the same row space if and only there is a

non-zero scalar γ such that pS (A) = γpS (B) for all k-subsets S.

7.4 Fitting Invariants

Let A be an m×n matrix over a ring R. We define the Fitting invariant Fk (A)

to be the ideal generated by the k ×k minors of A, where 1 ≤ k ≤ min{m,n}.

If R is a principal ideal domain, then the ideal Fk (A) is generated by an

element fk , and so we may use the sequence of elements f1, . . . , fm∧n ,

rather than the ideals Fk (A).

7.4.1 Lemma. Let A be an m ×n matrix over R, where m ≤ n. Then the

following are equivalent:

(a) A has a right inverse.

(b) Fk (A) = R for k = 1, . . . ,m.

(c) Fm(A) = R.

Proof. First suppose that B is a right inverse for A over R. Then B is m ×n

and, since AB = Im , by the Binet-Cauchy identity,

1 = det(AB) =∑
S

pS (A)pS (B)

There the ideal generated by the k × k minors of A is R, equivalently

Fm(A) = R.

Now suppose that Fm(A) = R. Let S be a set of m columns of A and set

dS equal to det AS . Let M be the n ×m matrix such that MS = adj(AS ) and

Mei = 0 if i ∉ S. Then

AM = dS I .

If T is a second subset of m columns of A and N is constructed analogously

to M , then AN = dT I and therefore

A(xM + y N ) = (xdS + ydT )I .

It follows that if the minors dS generate R, then there is a right inverse for

A.
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One consequence of this lemma is that if A is m ×n and Fm(A) = R,

then Fk (A) = R for k = 1, . . . ,m. We recall that two matrices A and B are

equivalent over R if there are invertible matrices P and Q over R such that

B = PAQ.

7.4.2 Lemma. Let A and B be two m ×n matrices over R. If A and B are

equivalent, they have the same Fitting invariants.

Proof. Assume Q is invertible. By Binet-Cauchy, each r × r minor of QB lies

in the ideal generated by the r × r minors of B and hence Fr (QB) ≤ Fr (B).

By the same argument, since the entries of Q−1 lie in R, we have

Fr (B) = Fr (Q−1(QB)) ≤ Fr (QB).

The lemma follows.

In Section 7.5, we will see that if R is a principal ideal domain, then two

matrices of the same order are equivalent if and only if they have the same

Fitting invariants. Note that A and AT have the same Fitting invariants.

1. Let A be a m ×n matrix over Z. Show that if, for each prime p, the rank

of A modulo p equals its rank overQ, then the greatest common divisor

of the m ×m minors of A is 1.

7.5 Smith Normal Form

Let A and B be two m×n matrices over a commutative ring R. (Think Z[x].)

We say that A and B are equivalent over R if there are invertible matrices

P and Q such that PAQ = B . We want to decide if two given matrices are

equivalent.

7.5.1 Theorem. Let A be a matrix over a principal ideal domain R. Then

there is a unique matrix D over R which is equivalent to A such that Di j = 0

if i 6= j and Di ,i divides Di+1,i+1 for i = 1, . . . ,n −1.

Proof. We first show that A is equivalent to a matrix D such that Di j = 0 if

i 6= j , and only then show that D can be arranged to have the form stated.

Suppose a and b are two elements of R, and suppose that the ideal they

generate is generated by d . Then there must be elements s and t of R such

that sa + tb = d . Further, there are elements a1 and b1 such that a = a1d

and b = b1d . Hence (
s t

−b1 a1

)(
a

b

)
=

(
d

0

)
.

As sa1 + tb1 = 1 the determinant of(
s t

−b1 a1

)

is 1 and therefore this matrix is invertible.
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If the i -th of A is x and the j -th row is y and we may replace x be sx + t y

and y by −b1x +a1 y , the resulting matrix is equivalent to A.

We may permute the columns of A so that any zero columns are last.

Having done this, we may convert A to an equivalent matrix where A1,1 =
a 6= 0 and Ai ,1 = 0 if i > 1. If a divides each entry of the first row of A then A

is equivalent to a matrix of the form(
a 0

0 A1

)
and we can prove our claim by induction.

If a does not divide each entry in the first row, then we may operate on

the columns of A, converting it to an equivalent matrix with A1,1 = a′ and

A1, j = 0 if j > 1. Further the ideal generated by a is properly contained

in the ideal generated by a′. We hope now that a′ divides each entry in

the first column of A. If so then we reduce to the previous induction. If

not, we operate on the rows again. Since the ideal generated by A1,1 form

a strictly increasing sequence, and since R does not contain an infinite

increasing sequence of ideals, we conclude that A is equivalent to a matrix

with Ai ,1 = 0 when i > 1 and A1, j = 0 when j > 1. This proves our claim.

To reduce R to the required form, we observe that the two matrices(
a 0

0 b

)
,

(
a 0

sa + tb b

)
are equivalent; given this it is easy to see R is equivalent to a matrix satisfy-

ing the divisibility condition we gave.

The problem left is to prove that R is unique. This follows because A

and D have the same Fitting ideals, and because a diagonal matrix which

satisfies our divisibility condition is determined by its Fitting ideals.

If R is a Euclidean domain, then we can use elementary row and column

operations rather than the 2× 2 matrices we described. Note that over a

principal ideal domain there may be invertible 2×2 matrices that are not

products of elementary matrices. Cohn 3 gives an example overQ(
p−19). 3

(No problems over Euclidean domains.)

The matrix R whose existence is guaranteed by the theorem is called the

Smith normal form of A. If A is square then det(A) is a unit times det(R).

Computing the Smith normal form, even over Z, is one of the more difficult

problems in linear algebra. If implemented as described then the number

of digits in an entry can double at each step.

Generally one only meets the Smith normal form for matrices over Z

and over F[z]; there are a number of interesting Euclidean domains that

arise in control theory, related to rational functions. Call a rational function

p/q in F(z) bounded if deg p ≤ deg q . If we define

ρ1(p/q) = deg q −deg p,
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the bounded rational functions form a Euclidean domain relative to the

function ρ1.

For a second example, let S be a subset of the complex plane, and call

a polynomial stable if its zeros all lie in S. The set of stable polynomials is

multiplicatively closed, and so the rational functions p/q where q is stable

form a ring. If we define ρ2(p/q) to be the number of zeros of p not in S

then this ring is a Euclidean domain relative to ρ2.

The intersection of these two rings has the baroque denotation RH∞+ . If,

as is standard, S is the open left half-plane, this ring consists of the rational

functions that are uniformly bounded on the closed right half-plane. It is a

Euclidean domain relative to the function ρ1 +ρ2.
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Polynomial and Rational Matrices

A polynomial matrix is a matrix whose entries come from the ring F[z]. A

rational matrix is a matrix whose entries come from the field of rational

functions F(z). We will also have occasion to consider matrices whose en-

tries are formal power series or Laurent series, but we will not assign names

to these. Any matrix polynomial A(z) can be written as a polynomial in z

with coefficients Ai from Matm×n(F):

A(z) =∑
i

Ai zi .

(This encodes an isomorphism between the ring of polynomial matrices,

and the ring of polynomials with matrix coefficients, but this distinction

goes beyond the level of sophistication to which we aspire.) The degree

is the maximum degree of an entry. We will also be concerned with the

degrees of the rows and/or columns of polynomial matrices. The key here

is to note that each column of a polynomial matrix is a polynomial matrix,

and so has a well-defined degree.

We consider one pertinent example. If A is n ×n, then t I − A is a polyno-

mial matrix with degree one. We have

(zI − A)adj(zI − A) = det(zI − A)I .

Here adj(zI − A) is also a matrix polynomial, with degree n −1, and

(zI − A)−1 = 1

det(zI − A)
adj(A).

In this chapter, we will study the basic properties of polynomial and

rational matrices.

8.1 Series

A rational function is proper if the degree of its numerator is less than

the degree of its denominator; if the degree of its numerator equals that

of its denominator we say it is bounded 1 A rational matrix is proper if 1 bounded = bounded at infinity; in control
theory the corresponding terms are
“strictly proper” and “proper”.
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its elements are proper and bounded if they are bounded. The bounded

rational matrices form a ring, and the strictly proper rational matrices form

a proper ideal in this ring.2 2 In fact they form the unique maximal
ideal, the ring is local .We can view the ring of polynomials F[z] as a subring of the ring of

formal power series F[[z]]. This has some use, for example if p(z) is a poly-

nomial and p(0) 6= 0, then p(z) has a multiplicative inverse in F[[z]]. In a

similar way, we can represent rational functions by formal Laurent series.

Suppose

p(z) = zn +p1zn−1 +·· ·+pn .

Then

p(z)−1 = z−n
(
1+ p1

z
+·· ·+ pn

zn

)−1

Hence p(z)−1 has a formal power series expansion in z−1, and it follows

that any rational function has an expansion as a formal Laurent series in

z−1. If p(z)/q(z) is a rational function then

p(z)

q(z)
=

∞∑
i=−k

ai z−i ,

where k = deg(p)−deg(k). Hence the ring of rational functions in z is

isomorphic to a subring of the ring of Laurent series in z−1, and the image

of the bounded rational functions under this isomorphism is the ring of

formal power series in z. The proper rational functions map to the formal

power series with contstant term equal to 0.

Since we have used nothing more than the geometric series expansion,

everything goes over to matrix rational functions: these are isomorphic

to a subring of the ring of Laurent series in z−1 with matrix coefficients,

bounded rational matrices correspond to formal power series and proper

rational matrices to formal power series with constant term equal to 0.

From this we see, for example, that the bounded rational matrices form a

ring, and the proper rational functions form an ideal in this ring. We note

one other property we will need.

8.1.1 Lemma. If M(z) is a proper rational matrix, then I +M(z) is invertible,

and its inverse is a bounded rational matrix.

Proof. Since M(z) is strictly proper it has a series expansion

M(z) = ∑
i≥0

Mi z−i

Hence I +M(z) is a formal power series with constant term I , and therefore

it has a multiplicative inverse, which is again a formal power series with

constant term I .

8.2 Polynomial Matrices

We develop some of the basic properties of polynomial matrices.
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Every polynomial matrix is a rational matrix. Since

A(z)adj(A(z)) = det(A(z))I

we see that if det(A(z)) 6= 0, then

1

det(A(z))
adj(A(z))

is the inverse of A(z) in the ring of rational matrices. Thus a polynomial

matrix A(z) has a rational inverse if and only if its determinant is not zero,

although A(z) may not be invertible for certain values of z in F. A poly-

nomial matrix has a polynomial inverse if and only if its determinant is a

non-zero constant. We say that a square matrix over a ring is unimodular if

its determinant is a unit. Since the units in F[x] are the non-zero constants,

a polynomial matrix is unimodular if and only if it has a polynomial inverse.

More generally, we recall from Section 7.4 that an m×n matrix A over a ring

R has a right inverse if and only if the ideal generated by the m ×m minors

of A is equal to R.

Suppose A(z) is an m ×n polynomial matrix with linearly independent

rows that is not right invertible. Then the greatest common divisor of the

m ×m minors of A(z) is a polynomial of positive degree. It follows that

there are values of z in the algebraic closure of F such that rk(A(z)) < m.

8.3 Division

The degree of a vector over F[t ] is the maximum degree of an entry. If A is a

square matrix over F[t ] and di is the degree of its i -th column, then

deg(det(A)) ≤∑
i

di .

We say that A is column reduced if equality holds.

If a(z) and d(z) are polynomials over a field, there are unique polynomi-

als q(z) and r (z) such that degr < degd and

a(z) = q(z)d(z)+ r (z).

We establish a matrix version of this.

8.3.1 Theorem. Suppose D(z) and N (z) are polynomial matrices of orders

n×n and m×n respectively, and D(z) is column reduced. Then N (z)D(z)−1

is proper if and only if each column of N (z) has degree less than the degree

of the corresponding column of D(z).

Proof. Suppose first that G(z) = N (z)D(z)−1 is proper. We have

N (z) =G(z)D(z)

and if Ni (z) and Di (z) denote the i -th columns of N (z) and D(z) respec-

tively,

Ni (z) =G(z)Di (z).
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Since G(z) is proper, the degree of an element of Ni (z) is less than the

degree of the corresponding element of Di (z). (Note that for this part of the

argument we did not need D(z) to be column reduced.)

Assume now that D(z) is column reduced and that the degree of each

column of N (z) is less than the degree of the corresponding column of

D(z). We may write

D(z) = HS(z)+L(z),

where H is the leading coefficient matrix of D(z). Then

D(z)−1 = S(z)−1H−1(I +L(z)S(z)−1H−1)−1

Therefore

N (z)D(z)−1 = (N (z)S(z)−1) H−1(I +L(z)S(z)−1H−1)−1

is the product of two rational matrices. The factor N (z)S(z)−1 is proper by

hypothesis. Regarding the second factor, L(z)S(z)−1H−1 is proper and so by

Lemma 8.1.1, we see that (I +L(z)S(z)−1H−1)−1 is a proper rational matrix.

It follows that N (z)D(z)−1 is proper, as required.

8.3.2 Theorem. Suppose D(z) and A(z) are polynomial matrices and D(z)

is invertible and column-reduced. Then there are unique polynomial

matrices Q(z) and R(z) such that for each i , the degree of the i -th column

of P1 is less than the degree of the i -th column of D , and

A(z) =Q(z)D(z)+R(z).

Proof. The matrix A(z)D(z)−1 is rational and so

A(z)D(z)−1 =Q(z)+P (z),

where P (z) is polynomial and R(z) is a proper rational matrix. Hence

A(z) =Q(z)D(z)+P (Z )D(z)

and, since A(z) and Q(z)D(Z ) are polynomial matrices, so is P (z)D(z). Let

R(z) := P (z)D(z). Then R(Z )D(z)−1 is proper and so by Theorem 8.3.1

the degree of each column of R(z) has degree less than the degree of the

corresponding column of R(z).

Now suppose

A(z) =Q1(z)D(z)+R1(z)

where P1 and Q1 are polynomial and for each i , the degree of the i -th

column of P1 is less than the degree of the i -th column of D . Then

(Q −Q1)D + (R −R1) = 0

and therefore

Q −Q1 = (R1 −R)D−1.

Here the left side is a polynomial matrix, while by Theorem 8.3.1, the right

side is a proper rational matrix. Therefore both sides are zero, and there-

fore Q(z) and R(z) are unique.
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Note that we do not get a version of the Euclidean algorithm, because

there is no guarantee that the remainder R(z) is not a zero divisor or, if not,

that it is reduced. So we cannot expect to be able to divide Q(z) by R(z).

8.4 Cayley-Hamilton

Assume A is square. The matrix zI − A is column reduced and linear so if

we divide by it, the remainder must be a constant matrix. We can give an

explicit formula for the remainder.

8.4.1 Lemma. Suppose F (z) = ∑r
i=0 Fi zi . Then remainder of F (z) on right

division by zI − A is
∑

i Fi Ai . The remainder on left division is
∑

i Ai Fi .

Proof. We can write

(zI − A)−1 = z−1
∑
i≥0

Ai z−i ;

the coefficient of z−1− j in F (z)(zI − A)−1 is then

F0 A j +F1 A j+1 +·· ·+Fr A j+r = (F0 +F1 A+·· ·+Fr Ar )A j .

Therefore there is polynomial matrix Q(t ) such that

F (z)(zI − A)−1 =Q(z)+ (F0 +F1 A+·· ·+Fr Ar )(zI − A)−1

and the remainder on right division of F (z) by (zI − A)−1 is F0 +F1 A +·· ·+
Fr Ar , as claimed.

We’ve left the left division as an exercise.

We write F (A) to denote the remainder of F (z) on right division by

zI − A.

This last result is an extension of the result that the remainder of p(z) on

division by z − a is p(a). It also implies the Cayley-Hamilton theorem. For

suppose that φ(z) is the characteristic polynomial of A, and consider the

remainder on left division of φ(z)I by zI − A. By the lemma,

φ(z)I =Q(z)(zI − A)+φ(A)

and since φ(z) = (zI − A)adj(zI − A), we find that

(zI − A)(adj(zI − A)−Q(z)) =φ(A).

As adj(zI − A) is a matrix polynomial, it follows that adj(zI − A)−Q(z) = 0

and consequently φ(A) is zero.

Let d(z) denote the greatest common divisor of the entries of adj(zI − A)

and let C (z) be the matrix polynomial

C (z) = d(z)−1 adj(zI − A).

If p(z) is the polynomial φ(z)/d(z) then, since

φ(z)I = adj(zI − A) (zI − A)
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we see that p(A) = 0. Let ψ(z) be the minimal polynomial of A and let Ψ(z)

be the matrix polynomial satisfying

ψ(z)I =Ψ(z)(zI − A).

If c(z) := p(z)/ψ(z), then

C (z)(zI − A) = p(z)I = c(z)ψ(z)I = c(z)Ψ(z)(zI − A).

As zI − A is invertible, this implies that C (z) = c(z)Ψ(z). Since the greatest

common divisor of the entries if C (z) is 1, it follows that c(z) = 1. Thus we

have shown that ψ(z) =φ(z)/d(z).

8.5 Equivalence and Similarity

We derive a characterization of matrix similarity over fields.

8.5.1 Theorem. Two n ×n matrices A and B over F are similar if and only if

t I − A and t I −B are equivalent over F[t ].

Proof. If A and B are similar, say B = L−1 AB , then

L−1(t I − A)L = t I −B

and thus t I − A and t I −B are equivalent.

So assume that t I − A and t I −B are equivalent over F[t ]. Then there are

invertible matrices P (t ) and Q(t ) such that

P (t )(t I − A) = (t I −B)Q(t ).

There are matrices P0(t ) and P1 such that deg(P0(t )) < deg(P (t )) and P0 is

constant and

P (t ) = (t I −B)P0(t )+P1

Similarly we have

Q(t ) =Q0(t )(t I − A)+Q1

It follows that

((t I −B)P0(t )+P1)(t I − A) = ((t I −B)Q0(t )+Q1)(t I − A)

and therefore

(t I −B)(P0(t )−Q0(t ))(t I − A) =−P1(t I − A)+ (t I −B)Q1.

Here the right side has degree at most one but if P0(t ) 6= Q0(t ), the left side

has degree at least two. Consequently P0(t ) =Q0(t ) and so

tP1 −P1 A = tQ1 −BQ1. (8.5.1)

This implies that P1 = Q1 and we can complete our proof by showing that

Q1 is invertible.
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We may assume that

Q(t )−1 = R0(t )(t I −B)+R1.

Now

I =Q(t )−1Q(t ) = (R0(t )(t I −B)+R1)(Q0(t )(t I − A)+Q1)

= R0(t )(t I −B)Q0(t )(t I − A)+R0(t )(t I −B)Q1 +R1Q0(t )(t I − A)+R1Q1

and since (from Equation (8.5.1))

(t I −B)Q1 = P1(t I − A)

we have

I = (R0(t )(t I −B)Q0(t )+R0(t )P1(t I − A)+R1Q0(t ))(t I − A)+Q1R1.

This implies that I =Q1R1 and therefore Q1 is invertible.

It follows that we can decide if two matrices A and B are similar by

computing the Smith normal forms of t I − A and t I −B .

8.6 An Identity

We will need the following result.

8.6.1 Lemma. Let C = (ci , j ) be a square matrix. Then

∂

∂ci , j
(zI −C )−1 = (zI −C )−1ei eT

j (zI −C )−1.

Proof. This is an easy consequence of the following identity, which itself is

easily verified.

(zI −C )−1 − (zI −D)−1 = (zI −C )−1(C −D)(zI −D)−1.

The matrix Ψ in the proof of the next result is defined in ??.

8.6.2 Theorem. Let ψ be a polynomial of degree d , let Cψ be its compan-

ion matrix and let Eψ(z) denote the d ×d matrix with i j -entry equal to

ψi (z)z j−1/ψ(z). Let N be the companion matrix of zd . Then

(zI −Cψ)−1 −Eψ(z) =
(
N + zN 2 +·· ·+ zd−2N d−1

)T
.

Proof. The right side of this identity is independent of ψ (apart from its

degree). By ??,

ψ(z)−1Ψ(z) = (zI −Cψ)−1e1

and therefore

Eψ(z) = (zI −Cψ)−1e1

(
1 z · · · zd−1

)
.
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Our strategy is to show that (zI −Cψ)−1 −Eψ(z) is independent of ψ, and

then evaluate it when ψ= zd .

Assume

ψ(z) = t d +a1t d−1 +·· ·+ad ;

then Ci ,d =−ai and, by the previous lemma

∂

∂ai
(zI −Cψ)−1 =−(zI −Cψ)−1ei eT

d (zI −Cψ)−1.

From ?? we have

eT
d (zI −Cψ)−1 =ψ(z)−1ei

(
1 z · · · zd−1

)
and therefore

∂

∂ai
(zI −Cψ)−1 =−ψ(z)−1(zI −Cψ)−1ei

(
1 z · · · zd−1

)
.

We have
∂

∂ai
Eψ(z) = ∂

∂ai
(zI −Cψ)−1e1

(
1 z · · · zd−1

)
.

Since

ei

(
1 z · · · zd−1

)
e1

(
1 z · · · zd−1

)
= ei

(
1 z · · · zd−1

)
,

it follows that
∂

∂ai
(zI −Cψ)−1 = ∂

∂ai
Eψ(z).

We conclude that (zI −Cψ)−1 −Eψ(z) is independent of ψ.

Now suppose ψ(z) = zd and N =Cψ. Then N d = 0,

(zI −N )−1 = z−1(I − z−1N )−1 =
d−1∑
i=0

z−i N i ,

and (
Eψ(z)

)
i , j = z−i+ j−1.

The theorem follows at once.

(1) By setting z = 0 in Theorem 8.6.2, deduce the expression for the inverse

of an invertible companion matrix in Theorem 4.4.1.

8.7 Resolvents

Let A be an n ×n matrix. In this section we generally work over any field

that contains all the eigenvalues of A. The resolvent R(z) of A is the matrix

(zI − A)−1. As

R(z) = 1

det(zI − A)
adj(zI − A),
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each entry of R(z) is a rational function. Let θ be an eigenvalue of A with

multiplicity m. Then there are matrices Ai such that

R(z) =
∞∑

r=−m
Ar (z −θ)r ;

we wish to determine these matrices.

The key to this is the following identity.

8.7.1 Theorem. If R(z) is the resolvent of some matrix then

R(z)−R(w) =−(z −w)R(z)R(w).

Proof. Let R(z) be the resolvent of A. Then

(zI − A)(R(z)−R(w))(w I − A) = (w I − A)− (zI − A) = (w − z)I ,

whence the result follows.

We note a simple consequence of this.

8.7.2 Lemma. If A is symmetric, then all poles of the entries of R(z) are

simple.

Proof. Suppose that θ is an eigenvalue of A and

R(z) = ∑
r≥−m

Ar (z −θ)r .

Here m ≥ 1 and we may assume without loss that A−m 6= 0. Then R(z)T R(z)

is equal to AT−m A−m(z − θ)−2m , plus terms of higher order and, as A is

symmetric, R(z)T R(z) = R(z)2. On the other hand, from Theorem 8.7.1 we

have that
d

d z
R(z) =−R(z)2.

The term of least order in R(z)′ is −m A−m(z −θ)−m−1; consequently we

must have m +1 = 2m, i.e., m = 1.

8.7.3 Lemma. Suppose that R(z) is the resolvent of A and that θ is an eigen-

value of A with multiplicity m. If R(z) =∑∞−m Ar (z −θ)r then

Ar As =


−Ar+s+1, r , s ≥ 0;

Ar+s+1, r + s ≥−m −1, r , s ≤−1;

0, otherwise.

Proof. We assume that 0 is an eigenvalue of A, and seek to determine the

coefficients Ar in the expansion R(z) = ∑
r≥−m Ar zr . From Theorem 8.7.1

we have

− ∑
r ,s≥−m

Ar As zr w s =−R(z)R(w) = R(z)−R(w)

z −w
= ∑

r≥−m
Ar

zr −w r

z −w
.

The lemma follows for θ = 0 by comparing coefficients of zi w j in the two

series above, and the general result is an easy consequence of this.
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From this result we see that the matrices Ai , i =−m,−m+1, . . . commute.

We also find that:

Ar = (−1)r Ar+1
0 , if r ≥ 0,

A−r = (A−2)r−1, if r ≥ 2,

A−1 A−r = A−r , if r ≥ 0.

Therefore the coefficients in our Laurent series for R(z) are determined by

A0, A−1 and A−2, where (A−1)2 = A−1 and (A2)m = 0. Thus A−1 is idem-

potent and A−2 is nilpotent, let us denote them respectively by Eθ and Nθ.

Now note that

(t I − A)R(z) = ((t − z)I + zI − A)R(z) = (t − z)R(z)+ I ;

Putting t = θ in this yields

(θI − A)Ar = Ar−1, r 6= 0,

(θI − A)A0 = A−1 − I .

(θI − A)A−m = 0.

Hence

Nθ = (θI − A)Eθ.

Define the principal part Pθ(z) of R(z) by

Pθ(z) :=
m∑

r=1
A−r (z −θ)−r .

Thus

Pθ(z) = (z −θ)−1Eθ+
m−1∑
r=1

N r
θ (z −θ)−r

= (z −θ)−1
m−1∑
r=0

(θI − A)r Eθ(z −θ)−r

We note that, if θ and τ are distinct eigenvalues of A, then PθPτ = 0 and so

EθEτ = 0. We have the following result, which provides a partial fraction

decomposition of the resolvent.

8.7.4 Theorem. Let R(z) be the resolvent of A and let Pθ(z) be the principal

part of R(z) at θ. Then R(z) =∑
θ Pθ(z).

Proof. A rational function in z is called proper if the degree of its numera-

tor is less than the degree of its denominator. A proper rational function

with no poles is constant. The set of proper rational functions is a vector

space.

We note that the entries of R(z) and the entries of Pθ(z) are proper

rational functions. Hence each entry of the difference

R(z)−∑
θ

Pθ(z);
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is a proper rational function. By the construction of Pθ(z), these rational

functions have no poles. As both R(z) and Pθ(z) converge to zero as z →∞,

our theorem follows.

We know that, if m is the multiplicity of θ as an eigenvalue of A then

Ar = 0 when r < −m, equivalently (θI − A)mEθ = 0. This implies that the

order of the pole of R(z) at θ is at most m.

8.7.5 Theorem. The order of the pole of R(z) at θ is equal to the multiplicity

of θ as a zero of the minimal polynomial of A.

Proof. Let ψ(z) denote the minimal polynomial of A, let ν(θ) be the multi-

plicity of θ as a zero of ψ(z) and suppose

ψθ(z) = ψ(z)

(z −θ)ν(θ)
.

Let Aθ denote the space spanned by the matrices (θI − A)i Eθ and let

d(θ) be its dimension. Thus d(θ) is the greatest integer such that (θI −
A)d(θ)−1Eθ 6= 0.

As (θI − A)d(θ)Pθ(z) = 0, it follows that∏
θ

(θI − A)d(θ)R(z) = 0.

Since R(z) is invertible, this implies that∏
θ

(θI − A)d(θ) = 0.

From the definition of the minimal polynomial we then deduce that ν(θ) ≤
d(θ), for all eigenvalues θ of A. We show next that ν(θ) = d(θ).

The matrices (θI − A)i Eθ for i = 0,1, . . . ,d(θ)−1 form a basis for Aθ. As

ψθ(θ) 6= 0, it follows that the matrix representing the action of ψθ(A) rela-

tive to this basis is triangular, with non-zero diagonal entries. In particular,

it is invertible. On the other hand, if M ∈Aθ, then

0 = (θI − A)ν(θ)ψθ(A)M =ψθ(A)(θI − A)ν(θ)M ,

and this implies that (θI − A)ν(θ) acts as the zero operator on Aθ . It follows

that ν(θ) ≥ d(θ).

8.7.6 Corollary. For each eigenvalue θ, the matrix Eθ is a polynomial in A.

Proof. Since zR(z) → I and zPθ(z) → Eθ as z →∞, Theorem 8.7.4 implies

that

I =∑
θ

Eθ. (8.7.1)

It follows from the proof of Theorem 8.7.5 that ψθ(A)Eτ = 0 if τ 6= θ, whence

(8.7.1) yields that

(θI − A)iψθ(A) = (θI − A)iψθ(A)Eθ .
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Referring to the proof of Theorem 8.7.5 again, we see that ψθ(A)Eθ lies

in Aθ . It is not hard to show that the matrices (θI − A)iψθ(A)Eθ for i =
0,1, . . . ,ν(θ) form a basis for Aθ, and accordingly each matrix in Aθ must be

a polynomial in A.

8.7.7 Corollary. Any square matrix A is the sum of a diagonalizable and a

nilpotent matrix, each of which is a polynomial in A.

Proof. As EθEτ = 0 when θ 6= τ and E 2
θ
= Eθ, the column space of Eθ is an

eigenspace for all the idempotents Eτ. Given this, (8.7.1) implies that Fn

is the direct sum of eigenspaces of Eθ. Hence Eθ is diagonalizable; more

generally any linear combination of the matrices Eθ is diagonalizable. It is

also a polynomial in A.

As AEθ = Eθ+Nθ , it also follows from (8.7.1) that

A =∑
θ

(θEθ+Nθ) =∑
θ

θEθ+
∑
θ

Nθ .

Since NθNτ = 0 when θ 6= τ, it follows that
∑
θ Nθ is nilpotent. Since Nθ =

(θI − A)Eθ, we see that Nθ is a polynomial in A and, therefore,
∑
θ Nθ is

too.

The last result implies that symmetric matrices are diagonalizable—if A

is symmetric, so is any polynomial in A, but the only symmetric nilpotent

matrix is the zero matrix. It is slightly more difficult to see that the only

normal nilpotent matrix is the zero matrix; from this it follows that normal

matrices are diagonalizable.

8.7.8 Corollary. Let ϕ(z) be the characteristic polynomial of A and let g (z)

be the greatest common divisor of the determinants of the (n −1)× (n −1)

submatrices of zI − A. Then ϕ(z)/g (z) is the minimal polynomial of A.

Proof. Let θ be an eigenvalue of A, with multiplicity m, and let ν be its

multiplicity as a zero of ψ(z). Let fi , j (z) be the i j -minor zI − A. It follows

from Theorem 8.7.5 that no entry of R(z) has a pole of order greater than

ν(θ) at θ, and that some entry has a pole of this order at θ. In other words

(z −θ)m−ν divides each polynomial fi , j (z), and divides one of these polyno-

mials exactly. The result follows immediately.

8.8 Paraunitary Matrices

Suppose

A(z) =
m∑

r=0
Ar zr ,

where Ar ∈ Matn×n(C) and let A∗(z−1) be given by

A∗(z) =
m∑

r=0
A∗

r z−r .
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We say that A(z) is paraunitary if

A(z)A∗(z−1) = I .

One consequence of this definition is that if A(z) is paraunitary, then A(z)

is unitary when ‖z‖ = 1. The product of paraunitary matrices is parauni-

tary.

By way of example if v ∈ Cn and ‖v‖ = 1, then an easy computation

shows that

V (z) := I − v v∗+ zv v∗

is paraunitary. We also see that V (1) = I and, with some effort, that

detV (z) = 1.

Paraunitary matrices of this type are called primitive. Note that V ∗(z) =
V (z), so V (z)V (z−1) = I .

8.8.1 Lemma. 3.1 If A(z) is paraunitary, then det A(z) = zm for some non-

negative integer m.

Proof. Suppose p(z) := det A(z), and let p(z) be the polynomial whose

coefficients are the complex conjugates of those of p(z). Then p(z−1) =
det A∗(z−1) and since A(z)A∗(z−1) = I , we have

p(z)p(z−1) = det(A(z))det(A∗(z−1)) = 1.

Suppose p(z) has degree d and that ze is the highest power of z that divides

p(z) Then

p(z)p(z−1) = p(z)q(z)

zd
,

where q(z) is a polynomial of degree d − e. Therefore p(z)q(z) has degree

d −e, and the lemma follows at once.

8.8.2 Lemma. Let A(z) be a paraunitary matrix. Then A(z) is constant if

and only if det A(z) = 1.

Proof. Suppose

A(z) =
m∑

r=0
zr Ar

and Am 6= 0. If m = 0 then A(z) is constant and det A(z) = 1.

If m > 0, then the coefficient of z−m in the product A(z)A∗(z−1) is A0 A∗
m ,

whence A0 A∗
m = 0 and A0 is singular. Then

det A(z)det(A0 + zB(z)),

where B(z) is a polynomial matrix. Therefore the constant term of det A(z)

is det A(0), which is zero. We conclude that det A(z) is a positive power of

z.
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8.8.3 Theorem. If A(z) is a paraunitary matrix and det A(z) = zd , then

A(z) = A(1)W (z), where W (z) is the product of d primitive paraunitary

matrices.

Proof. If d = 0 then A(z) = A(1) and there is nothing to prove, so we assume

d > 0. As in the proof of the previous lemma, it follows that the constant

term A0 in A(z) is singular and therefore there is a unit vector v such that

v∗A0 = 0.

Suppose A(z) =−∑m
r=0 Ar zr and

V (z) := I − v v∗+ zv v∗

and consider the product

B(z) =V (z−1)A(z) = (I − v v∗+ z−1v v∗)(A0 + A1z +·· ·+ Am zm).

Since v∗A0 = 0, we see that B(z) is a polynomial matrix and hence that is is

paraunitary.

Since V (z)B(z) = A(z) we have

z detB(z) = zd

and consequently detB(z) = zd−1. The theorem follows now by induction

on the degree of det A(z).

Paraunitary matrices play a significant role in the theory of filter banks

and in some treatments of wavelets. For the latter, see Resnikoff and Wells

“Wavelet Analysis” (Springer, New York) 1998.
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Orthogonality

We study inner product spaces over R and C.

9.1 Properties of Projections

Let U be subspace of the inner product space V . Then orthogonal pro-

jection onto U is a function P from V to itself such that, for all v in V , we

have v −P (v) ∈ U⊥. We establish a number of properties of P , the most

important of which is that it is linear.

9.1.1 Lemma. Let P be the orthogonal projection of V onto U . Then P is

linear mapping and

(a) im(P ) =U .

(b) ker(P ) =U⊥.

(c) P 2 = P .

(d) If v , w ∈V , then 〈v ,P w〉 = 〈P v , w〉.

Proof. Suppose v , w ∈ V . Then v −P (v) and w −P (w) both belong to U⊥,

whence

(v +w)− (P (v)+P (w)) = (v −P (v)+ (w −P (w)) ∈U⊥.

Since P (v)+P (w) ∈ U , this implies that P (v)+P (w) is the orthogonal

projection of v +w onto U . Therefore P is linear.

Since P v ∈U for all v in V , we see that im(P ) ⊆U , and since Pu = u for

all u in U , we see that im(P ) =U and P 2 = P . This proves (a) and (c).

For (b), we note that if P (v) = 0 then v ∈ U⊥. On the other hand, v −
P (v) ∈U⊥ and so if v ∈U⊥ then P (v) ∈U⊥. Since P (v) ∈U , this implies that

P (v) = 0.

Finally, for any vectors v and w we have

〈v −P v ,P w〉 = 0, 〈P v ,P w −w〉 = 0.
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Summing these two expressions yields

0 = 〈v ,P w〉−〈P , v〉P w +〈P v ,P w〉−〈P v , w〉,

whence (d) follows.

Linear mappings P such that P 2 = P are called idempotent. If 〈v ,P w〉 =
〈P v , w〉 for all v and w , we say P is self adjoint with respect to the inner

product.

9.2 Matrices Representing Projections

If we are working in Euclidean space—Rn with dot product—then we can

give an explicit formula for the matrix representing orthogonal projection.

9.2.1 Lemma. Let V be Rn equipped with dot product, and let U be a sub-

space of V with dimension k. If B is an n ×k matrix whose columns form a

basis for U , the matrix representing orthogonal projection on U is

B(B T B)−1B T .

Proof. We offer two proofs. The first is a simple verification that the quoted

formula is correct. First you may easily verify that B(B T B)−1B T is symmet-

ric. Then we compute that

(I −B(B T B)−1B)B = B −B(B T B)−1B T B = B −B = 0

and therefore

(v −B(B T B)−1B T v)T B = vT (I −B(B T B)−1B)T B

= vT (I −B(B T B)−1B)B

= 0.

So, if u := B(B T B)−1B T v , then v −u is orthogonal to each column of B .

Hence it lies in U⊥, and therefore u is the orthogonal projection of v onto

U .

A difficulty with the previous argument is that it gives no indication

how we found the matrix B(B T B)−1B T in the first place. We outline the

reasoning. Suppose Q is the matrix representing orthogonal projection on

U . Then rkQ = k and by Theorem ?? we can write

Q = AB T ,

where A and B are n ×k matrices with rank k. Since col(A) = col(Q) = U ,

the columns of A form a basis for U . Since the columns of A are linearly

independent, if Ax = 0 then x = 0. Therefore kerB T = kerP = U⊥ and

consequently col(B) ⊆ U⊥⊥ = U . As rkB = k, this shows that colB = U .

Since each column of A lies in U , we have

A =Q A = AB T A
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and therefore B T A = I . On the other hand, the columns of B form a basis

for U , so each column of A is a linear combination of columns of B , and

therefore there is a k × k matrix M such that A = B M . If B T A = I , this

implies that B T B M = I and so M = (B T B)−1. Accordingly

Q = B(B T B)−1B T .

(It might be a useful exercise to identify where in this argument we have

used that our inner product is the dot product.)

To sum up, we have two ways to compute the orthogonal projection of

a vector v onto a subspace U . If we are given an orthogonal basis for U , we

can use (??). If we are working in Rn with dot product and given a basis for

U , we could construct Q = B(B T B)−1B T , in which case the answer is Qv .

(1) If 〈·, ·〉 is the dot product, show that (??) implies that P = P T .

(2) Suppose B and C are n ×k matrices with rank k and the same column

space. Prove that B(B T B)−1B =C (C T C )−1C .

(3) Let u1, . . . ,uk be an orthogonal basis for the subspace U . Show that the

matrix representing orthogonal projection on U is equal to

k∑
i=1

〈ui ,ui 〉−1ui uT
i .

9.3 Least Squares

We consider a version of the least squares problem. Let W be an m ×n

matrix where m < n, and rk(W ) = m. Then the system of equations

W x = v (9.3.1)

will have infinitely many solutions, but some may suit us better than others.

For example, in the control theory setting of Chapter 14, a solution x to

an equation of the form W x = v represented a sequence of inputs that

would drive our system to a chosen state. In this case, xT x corresponds to

the power that this sequence would require, and it would be very natural

to seek to minimize it. Thus we want to find the solution to (9.3.1) with

minimum squared length.

Suppose that x is any solution to (9.3.1), and let x̄ be the orthogonal

projection of x on col(W T ). Then x − x̄ is orthogonal to col(W T ), and

therefore W (x − x̄) = 0. Hence

W x̄ =W x = v .

If y is another solution to (9.3.1), then W y = W x̄ and so y − x̄ is in the null

space of W . Consequently y − x̄ is orthogonal to x̄ and

‖y‖2 = ‖y − x̄‖2 +‖x̄‖2.
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Thus x̄ is the solution to (9.3.1) with minimum norm.

How can we compute x̄? If we can assume that the rows of W are lin-

early independent then, by Lemma 9.2.1, the matrix representing orthogo-

nal projection onto colW T is

Q :=W T (W W T )−1W

and our solution is Qx. However we do not need to find x; we have

Qx =W T (W W T )−1W x =W T (W W T )−1v ,

and we can proceed as follows: given v , solve the system

W W T z = v ,

the desired solution is W T z. (This approach avoids the need to compute

the inverse of W W T . Computing an inverse explicitly is rarely worth the

trouble. It may also pay to avoid computing W W T , but we digress. . . .)

In ??, we will develop a general method for least squares problems,

which does not require that the rows of W are linearly independent.

9.4 Orthogonal Polynomials

Let V be the space of all real polynomials, or the vector space of polyno-

mials with degree at most n. Assume V is equipped with an inner product

such that

〈p, xq〉 = 〈xp, q〉,
and, if p(x) is non-negative and not zero, then 〈1, p〉 > 0. All our examples

have these properties.

If we apply Gram-Schmidt to the basis of V formed by the powers of

x, we obtain a sequence of polynomials (pr )r≥0, where pr has degree r . A

sequence of orthogonal polynomials is an orthogonal set of polynomials

(pr )r≥0, where pr has degree r (and p0 6= 0). If we multiply each member

of a sequence of orthogonal polynomials by a non-zero scalar, the result is

still a sequence of orthogonal polynomials.

9.4.1 Lemma. The sequence of polynomials (pr )r≥0 is an orthogonal basis

if and only if pr is non-zero and is orthogonal to all polynomials of degree

less than r .

9.4.2 Lemma. Let (pr )r≥0 be a sequence of orthogonal polynomials. If

pr (x) = a(x)b(x), where a and b are polynomials and b(x) ≥ 0 for all x, then

b is constant.

Proof. We have

〈pr , a〉 = 〈ab, a〉 = 〈1, a2b〉.
Now a2b is non-zero and non-negative and therefore 〈1, a2b〉 > 0. But, if

the degree of b is positive, then the degree of a is less than r and, by the

previous lemma, 〈pr , a〉 = 0. We conclude that b must be constant.
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9.4.3 Theorem. If p is a member of a sequence of orthogonal polynomials,

its zeros are real and simple.

Proof. Suppose θ is a complex zero of p. Then its complex conjugate θ̄ is

also a zero of p and therefore the real quadratic polynomial

(x −θ)(x − θ̄)

divides p. Since this quadratic has two complex roots and is monic, it is

non-negative. By the previous lemma, it cannot divide p. This proves the

first claim.

For the second, note that (x −θ)2 is non-negative and the same tech-

nique yields that this cannot divide p.

(1) Let 〈p, q〉 := ∫ 1
0 p(x)q(x)d x. Show that if p is a member of the se-

quence of orthogonal polynomials associated to this inner product, all

zeros of p lie in the interval (0,1).

(2) Suppose pr and pr+1 are consecutive members of a sequence of or-

thogonal polynomials. Show that they cannot have a common zero.

9.5 The Three-Term Recurrence

We provide an easier way to construct families of orthogonal polynomials.

The key is to note that

〈xpr , p j 〉 = 0

if j ∉ {r − 1,r ,r + 1}. For if j < r − 1 then xp j has degree less than r , and

therefore

〈xpr , p j 〉 = 〈xpr , p j 〉 = 0.

If j > r +1 then similarly p j is orthogonal to xpr .

9.5.1 Theorem. Let (pr )r≥0 be a sequence of monic orthogonal polynomi-

als. Then

pn+1 = (x −an)pn −bn pn−1,

where an = 〈xpn , pn〉/〈pn , pn〉 and bn = 〈pn , pn〉/〈pn−1, pn−1〉.

Proof. From our remarks just above, xpn is a linear combination of pn−1,

pn and pn+1. Thus we may write

xpn = γpn+1 +αpn +βpn−1.

Here

γ= 〈xpn , pn+1〉
〈pn+1, pn+1〉

.

Since pn+1 is monic, xpn = pn+1 −q , where q has degree less than n. So

〈xpn , pn+1〉 = 〈pn+1, pn+1〉
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and therefore γ= 1.

Next we see that α= 〈xpn , pn〉/〈pn , pn〉 and

β= 〈xpn , pn−1〉
〈pn−1, pn−1〉

.

Arguing as before,

〈xpn , pn−1〉 = 〈pn , pn〉
and this leads to the stated expression for bn .

One consequence of the formulas for the coefficients in this recurrence

is that bn > 0 for all n.

There is another way of stating the last result. Let (pr )r≥0 be a monic

sequence of orthogonal polynomials. Let Mx denote the linear transfor-

mation that maps a polynomial p to xp. Then the matrix representing Mx

with respect to the basis (pr )r≥0 is
a0 b1

1 a1 b2

1 a2 b3

. . .
. . .

. . .


This is an example of a tridiagonal matrix.

9.6 Numerical Integration

We want to compute definite integrals of the form∫ b

a
f (t ) w(t )d t .

Here w(t ) is a weight function. For example if the interval of integration is

[0,∞], then we may use w(t ) = e t . But for now we take w(t ) to be identi-

cally 1, and the interval of integration will be [0,1]. So all we want is∫ 1

0
f (t )d t .

The problem is that we do not know the anti-derivative of f , and so we seek

a procedure that will produce a reasonably accurate answer in reasonable

time.

There are many possible notions of what ‘reasonably accurate’ might

mean. Before we discuss this, we specify the sort of procedure we want in

more detail. The first thing is to note that the map

S : f 7→
∫ 1

0
f (t )d t .

is a linear map from the space C [0,1] of continuous functions on [0,1] to R.

Hence it is an element of the dual space C [0,1]∗. This has the property that
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if f ≥ 0, then S ( f ) ≥ 0—it maps non-negative functions to non-negative

real numbers. In this context, the elements of C [0,1]∗ are known as linear

functionals, and we say a linear functional is non-negative if it maps non-

negative functions to non-negative numbers.

There are many other non-negative linear functionals, and amongst the

simplest are the evaluation maps ea , for a ∈R, given by

ea( f ) := f (a).

Our aim is to choose an increasing sequence of nodes θ1, . . . ,θn and a

sequence of weights w1, . . . , wn , such that the linear functional

Q :=∑
i

wi eθi

is a good approximation to S . We call a linear functional of this form a

quadrature scheme. Define the degree of precision of Q to be the greatest

integer k such that

Q(p) =
∫ 1

0
p(t )d t

for all polynomials p with degree at most k.

By way of example, if Q has degree of precision 1, then

Q(1) = 1 Q(t ) = 1

2
.

These hold if and only if

∑
i

wi = 1,
∑

i
wiθi = 1

2
.

It is easy to find nodes and weights for which these conditions hold.

We will be more greedy. Suppose we are given nodes a1, . . . , an , and

that we try to find weights to go with them. Let p1, . . . , pn be the Lagrange

interpolating polynomials at the given nodes. Thus

pi (a j ) = δi , j .

Then

Q(pi ) =∑
j

w j pi (a j ) = wi

and, if we want degree of precision at least n −1, we will need

wi =
∫ 1

0
pi (t )d t .

There is one problem: there are good reasons to require that the weights wi

be non-negative, and it is not clear how to choose the nodes to ensure this

in general.
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We can go further if we use orthogonal polynomials. Define an inner

product on C [0,1] by

〈p, q〉 =
∫ 1

0
p(t )q(t )d t .

Let p0, . . . , pn be the first n + 1 members of the corresponding family of

orthogonal polynomials, and let θ1, . . . ,θn be the zeroes of pn in increasing

order. (We know by Theorem 9.4.3 that these zeroes are real and distinct.)

Using the Lagrange interpolating polynomials, we compute the weights wi

for a quadrature scheme with degree of precision at least n − 1. Then, as

Gauss first noted, a miracle occurs: the degree of precision of our scheme is

2n −1.

We verify this. Suppose f is a polynomial with degree at most 2n −1. By

the Euclidean algorithm, there are polynomials q and r , both with degree

at most n −1, such that

f (t ) = q(t )pn(t )+ r (t ).

Now ∫ 1

0
f (t )d t = 〈1, f (t )〉 = 〈1, q(t )pn(t )〉+〈1,r (t )〉.

Since q has degree less than n,

〈1, q(t )pn(t )〉 = 〈q(t ), pn(t )〉 = 0,

and therefore ∫ 1

0
f (t )d t =

∫ 1

0
r (t )d t .

Because the degree of r (t ) is at most n −1, the integral on the right can be

computed exactly using our (well, Gauss’s) quadrature scheme. Hence this

scheme has degree of precision at least 2n −1. However it is exactly 2n −1,

because

Q(pn(t )2) = 0 <
∫ 1

0
pn(t )2 d t .
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Eigenvectors and Eigenvalues

In this chapter we undertake a study of questions related to existence

of eigenvectors and eigenvalues. Our focus is on self-adjoint operators,

because that is where eigenvalues are most useful.

10.1 Self-Adjoint Operators

If S is an operator on an inner product space V , we define the adjoint S∗ of

S to be an operator such that, for all u, v in V we have

〈S∗u, v〉 = 〈u,Sv〉.

It is an easy exercise to show that, if it exists, the adjoint is unique. If V

is Cn and the inner product is the usual complex dot product, amd M

is a matrix repsenting S on V , then S8 is represented by the conjugate

transpose of M , which we usually denote by M∗.

By way of a second example, if V is the vector space of all real polynomi-

als and

〈p, q〉 :=
∫ b

a
p(x)q(x) w(x)d x

then

〈xp, q〉 = 〈p, xq〉.

Hence the operation of multiplication by x is a self-adjoint linear mapping

of V . (This is why the theory of orthogonal polynomials is so rich.)

We turn to the existence question. There is a notational difficulty that

arises because, outside the context of inner product space, the dual of a

linear mapping is often referred as the adjoint (with good reason). We will

temporarily use Sd to denote the dual of a linear mapping.

There are two steps to the existence proof. Assume V is an inner prod-

uct space. If a ∈V then we have a map θa in V ∗ given by

θa(v) = 〈a, v〉.
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This is linear, and is an isomorphism from V to its dual V ∗. If ∈ EndV then,

by the definition of the dual,

〈u,Sv〉 = (θa ◦S)(b) = (Sdθa)(b).

Now Sd ◦θa ∈ V 8 and, since the map a 7→ θa is an isomorphism, there is a

vector S∗(a) in V such that

Sd ◦θa = θS∗(a).

As the notation suggests, and as you should prove, the map a 7→ S∗(a) is

linear. We say that S∗ is the adjoint of S.

10.2 Diagonalizability

Our chief tool is the following general result.

10.2.1 Theorem. Let B be a commutative matrix algebra with identity over

an algebraically closed field. Assume that if N ∈ B and N 2 = 0, then N = 0.

Then B has a basis of pairwise orthogonal idempotents.

Proof. As a first step, we show that each element of B is a linear combina-

tion of idempotents.

Suppose A ∈ B. Let ψ(t ) be the minimal polynomial of A and assume

that

ψ(t ) =
k∏

i=1
(t −θi )mi .

If

ψi (t ) := ψ(t )

(t −θi )mi
,

then from the primary decomposition theorem we know that there are

polynomials f1(t ), . . . , fk (t ) such that

I =∑
i

fi (A)ψi (A). (10.2.1)

Each fi (A)ψi (A) is an idempotent for each i , which we denote it by Ei .

Further,

(A−θi I )mi Ei = 0

and consequently

[(A−θi I )Ei ]mi = 0.

Given our hypothesis, it follows that (A −θi I )Ei = 0 and we may rewrite

(10.2.1) as

I = E1 +·· ·+Ek .

Therefore

A = AE1 +·· ·+ AEk = θ1E1 +·· ·+θk Ek ,

thus expressing A as a linear combination of idempotents.
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We have shown that B is spanned by idempotents. The essential prob-

lem that remains is to show that minimal idempotents exist. Suppose E

and F are distinct idempotents and E ≤ F . Then

F (I −E) = F −E 6= 0

but E(I −E) = 0. Hence the column space of E must be a proper subspace

of the column space of F . Therefore if E1, . . . ,Em are distinct idempotents

and

E1 ≤ ·· · ≤ Em

then m ≤ n +1. We conclude that minimal idempotents exist.

Now we prove that each idempotent is a sum of minimal idempotents.

Suppose F is an idempotent and E is a minimal idempotent. If EF 6= 0,

then EF ≤ E and therefore EF = E . This also shows that distinct minimal

idempotents are orthogonal. Let F0 be the sum of the distinct minimal

idempotents E such that E ≤ F . Then F0 is an idempotent. If F0 6= F then

F −F0 is an idempotent and so there is a minimal idempotent below it,

which contradicts our choice of F0. We conclude that B is spanned by

minimal idempotents.

10.2.2 Corollary. Let B be a commutative matrix algebra of n ×n matrices

with identity over an algebraically closed field F. Assume that if N ∈B and

N 2 = 0, then N = 0. Then there is a basis of Fn relative to which all elements

are diagonalizable.

Proof. Take the union of bases of the column spaces for the idemptoents.

10.3 Diagonalization of Self-adjoint Operators

We prove that self-adjoint operators are diagonalizable, and more.

10.3.1 Theorem. Let S be a self-adjoint operator on the inner product

space V . Then

(a) The minimal polynomial of S has only simple zeros.

(b) Eigenvectors of S with distinct eigenvalues are orthogonal.

(c) The eigenvalues of S are real.

(d) S is diagonalizable.

Proof. Let A denote the algebra generated by S. If M ∈A and M 2 = 0, then

0 = tr(M 2) = ‖M‖2

and therefore M = 0. By Corollary 10.2.2, each element of A is diagonaliz-

able and, consequently, the minimal polynomial of each element has only

simple zeros.
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Next, suppose

Su = θu, Sv = τv .

Then

τ〈u, v〉 = 〈u,τv〉 = 〈u,Sv〉 = 〈Su, v〉 = 〈θu, v〉 = θ〈u, v〉;

and we conclude that either θ = τ, or 〈u, v〉 = 0.

On the other hand, the proof of Corollary 10.5.2 shows that each S∗S-

invariant subspace of V contains an eigenvector for S∗S with a non-

negative real eigenvalue. Since S∗S = S2, any S-invariant subspace is

S∗S-invariant. Suppose the eigenvalue of S2 on Vi is σi . Then σi = θ2
i , and

therefore θ is real.

10.3.2 Corollary. Suppose S is a self-adjoint operator on the inner product

space V . Then there is an orthogonal basis for V formed of eigenvectors for

S.

We offer a second proof that for any self-adjoint operator on a finite

dimensional space, there is an orthogonal basis for the space that consists

of eigenvectors. The is a consequence of the following result.

10.3.3 Lemma. Let S be a self-adjoint operator on the inner product space

V . If U is an S-invariant subspace of V , then U⊥ is S-invariant.

Proof. If v ∈U⊥, then

〈Sv ,u〉 = 〈v ,Su〉

and therefore Sv lies in U⊥.

This makes everything easy. Suppose S is self-adjoint and λ is a zero

of its minimal polynomial. Then there is an eigenvector z associated with

λ. Its span U is certainly S-invariant, and hence U⊥ is S-invariant. The

restriction of S to U⊥ is self-adjoint (prove it) and therefore by induction on

the dimension, U⊥ has an orthogonal basis formed from eigenvectors. This

basis together with z provides the basis of V that we need.

10.4 Rank-1 Approximation

Let B be a complex m ×n matrix. We want the rank-1 matrix Z such that

‖B −Z‖ is minimal.

10.4.1 Lemma. If B is m ×n and y and z are unit vectors in Cm and Cn

respectively, then the minimum value of ‖A−λy z∗‖2 is equal to

〈A, A〉−〈y z∗, A〉〈A, y z∗〉,

and occurs when λ= 〈y z∗, A〉.
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Proof. We have

〈B −λy z∗,B −λy z∗〉 = 〈B ,B〉−λ〈y z∗,B〉−λ〈B , y z∗〉+λλ
= 〈y z∗,B〉〈B , y z∗〉−λ〈y z∗,B〉−λ〈B , y z∗〉+λλ+〈B ,B〉−〈y z∗,B〉〈B , y z∗〉
= (〈y z∗,B〉−λ)(〈B , y z∗〉−λ)+〈B ,B〉−〈y z∗,B〉〈B , y z∗〉.

As

(〈y z∗,B〉−λ)(〈B , y z∗〉−λ) = ‖〈B , y z∗〉−λ‖2

and the lemma follows.

Now our task is to determine unit vectors y and z so that 〈y z∗,B〉〈B , y z∗〉
is maximal. Set Q(y) = 〈y z∗,B〉〈B , y z∗〉.

Then

Q(y +h) = ((y +h)∗B z)(z∗B(y +h))

= (y∗B z +h∗B z)(z∗B y + z∗Bh)

=Q(y)+h∗B z + z∗Bh + (h∗B z)(z∗Bh).

If h∗y = 0 and ‖h‖ is small and y maximizes Q(y), we see that

h∗B z + z∗Bh = 0.

Replacing h by i h, we also find that

−h∗B z + z∗Bh = 0,

and therefore we must have h∗B z = 0. So h ∈ (B z)⊥ if h ∈ y⊥, implying that

y⊥ ≤ (B z)⊥ and hence that B z lies in 〈y〉.
A similar argument shows that if z is a unit vector that maximizes

〈y z∗,B〉〈B , y z∗〉, then B T y ∈ 〈z〉. Hence we assume that

B T y =λz, B z =µy . (10.4.1)

Then

λµy =λB z = BB T y , µλz =µB T y = B T B z

and so y and z are respectively eigenvectors of BB T and B T B . From

(10.4.1) we also find that

zT B T y =λ, yT B z =µ

and there λ=µ.

10.5 Eigenvectors and Optimization

We present a result which may appear to be of limited interest, but it pro-

vides an important reason why we should be interested in eigenvectors. It

also illustrates how self-adjoint operators can arise in practice.
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10.5.1 Lemma. Let L be a linear map from Rn to Rm , let U be a subspace of

Rn , and let u be a unit vector in U such that ‖Lu‖ is maximal. If h ∈U and

hT u = 0, then hT LT Lu = 0.

Proof. We have

‖L(u + th)‖2 = (u + th)T LT L(u + th) = uT LT Lu +2tuT LT Lh + t 2hT LT Lh.

Since 〈u,h〉 = 0, we have

‖u + th‖2 = ‖u‖2 + t 2‖h‖2 = 1+ t 2‖h‖2.

Assuming that t is small enough that t 2 is negligible, we find that

‖Lu‖2 − ‖L(u + th)‖2

‖u + th‖2 ≈−2thT LT Lu.

We may choose t to be positive or negative; as we have chosen the unit

vector u in U to maximize ‖Lu‖ it follows that if h is orthogonal to u, then

hT LT Lu = 0, and therefore Lu and h are orthogonal.

Now we present the application of this lemma to eigenvectors.

10.5.2 Corollary. Let L be a linear map from Rn to Rm , let U be a subspace

of Rn , and let u be a unit vector in U such that ‖Lu‖ is maximal. If U is

LT L-invariant, then u is an eigenvector of LT L, and its eigenvalue is non-

negative and real.

Proof. Suppose u is as stated. From the previous lemma we see that if h ∈U

and h ∈ u⊥, then hT LT Lu = 0. Therefore

U ∩u⊥ ⊆ (LT L)⊥,

from which we have

LT Lu ∈ span(u)+U⊥.

Therefore LT Lu = θu + v , where v ∈ U⊥. But U is LT L-invariant, and

therefore LT Lu ∈U . Hence

LT Lu −θu ∈U⊥∩U = {0}

and so u is an eigenvector for LT L.

Obviously Rn itself is LT L-invariant, and thus it follows that if u is a

unit vector in Rn that maximizes uT LT Lu, then u is an eigenvector for LT L

Since the associated eigenvalue is the maximum value of a non-negative

real function, the final claim holds.

We consider one important case where we are interested in maximizing

‖Lu‖ over unit vectors. Let A be an n ×n invertible matrix and consider the

system of linear equations

Ax = b. (10.5.1)
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If z is a vector then the solution to Ax = b + z is A−1b + A−1z. Thus we may

say that an error z in b leads to an error A−1z in the solution to (10.5.1).

Which vector z leads to the greatest error? It is clear that if, for exam-

ple, we replace z by 2z then the error is doubled, thus it makes sense to

consider

max
‖z‖=1

‖A−1z‖.

From our considerations above, the maximum value of this occurs when z

is an eigenvector of

(A−1)T A−1 = (A AT )−1.

The magnitude of the error will be given by the eigenvalue associated

with z. We will see that the eigenvalues of A AT are real and positive. If the

matrix M is invertible, then θ is an eigenvalue of M if and only if θ−1 is

an eigenvalue of M−1. It follows that the solution of (10.5.1) will be most

sensitive to errors in b when the least eigenvalue of A AT is small.

10.6 The Singular Value Decomposition

If the m ×n matrix A has rank k, then it can be shown that there is an m ×k

matrix X and a k ×n matrix Y such that rk(X ) = rk(Y ) = k and A = X Y T .

When we work over R (or C), we can prove a somewhat stronger version

of this, known as the singular value decomposition. This is extremely

important in practice.

10.6.1 Theorem. Let A be a non-zero real matrix with rank k. Then A =
Y ΣX T , where

(a) X T X = Ik ,

(b) Σ is a k ×k diagonal matrix Σ with positive diagonal entries,

(c) Y T Y = Ik .

Proof. Assume A is m ×n. Using induction on k, we construct an orthonor-

mal subset x1, . . . , xk of Rn and an orthonormal subset y1, . . . , yk of Rm such

that yi =σi Axi and

A =
k∑

i=1
σi yi xT

i .

This is equivalent to the statement of the theorem.

Let U0 denote Rn and let x1 be a unit vector in U0 such that ‖Ax1‖ is

maximal. Set σ1 equal to ‖Ax‖ and define

x1 := x, y1 =σ−1
1 Ax1.

Let U1 denote x⊥
1 . By Lemma 10.5.1 we see that if hT x1 = 0, then hT AT Ax1 =

and consequently A(U⊥
1 ) ⊆ A(U1)⊥.
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Suppose

A1 := A−σ1 y xT .

Since y lies in the column space of A, we see that col(A1) ⊆ col(A). Since

A 6= 0 we see that x1 6= 0 and y1 6= 0. Therefore Ax 6= 0, but

A1x = Ax −σ1 y xT x =σ1 y −σ1 y = 0.

Consequently rk(A1) < rk(A). As rk(σ1 y xT ) = 1 it follows that rk(A1) = k −1.

Note next that if x ∈ U1, then Ax = A1x and so A and A1 agree on U1.

Working now with A1 and U1, we conclude by induction on k that there

are orthogonal unit vectors x2, . . . , xk in Rn and orthogonal unit vectors

y2, . . . , yk in Rm , such that yi = A1xi and, if σi := ‖A1xi‖, then

A1 =
k∑

i=2
σi yi xT

i .

Our theorem follows immediately.

In numerical work, the following alternative version of the singular

value decomposition may be more useful. (It does not assume we know the

rank of A.)

10.6.2 Corollary. If A is a square matrix, there are orthogonal matrices X

and Y , and a non-negative diagonal matrix Σ such that A = Y ΣX T .

The matrices Y and X in the singular value decomposition Y ΣX T of

A are not unique in any useful sense. However Σ is determined up to a

permutation. Its entries are known as the singular values of A; there are

usually denoted by σ1, . . . ,σn , with the assumption that they form a non-

increasing sequence.

The easiest way to see that the singular values are determined by A is to

verify that they are the squares are the eigenvalues of A AT . To show this,

note that

A AT = Y ΣX T XΣY T = Y Σ2Y T ,

and therefore

A AT Y = Y Σ2.

It follows from this that the columns of Y are eigenvectors for A AT , and the

diagonal entries of Σ2 are its eigenvalues.

In a similar fashion we can show that the squares of the singular values

of A are the eigenvalues of AT A. Hence we see that A AT and AT A have the

same eigenvalues. (This actually holds over any field, although the proof at

hand only works over R or, with modest extra effort, over C.)

(1) Prove Corollary 10.6.2.

(2) Compute the singular values of a companion matrix. (You may work

with either CC T or C T C , but one is significantly easier. First show that

all but two of the singular values are equal to 1.)
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(3) Show that the sum of the singular values of a square matrix is a norm.

(4) If σ1(A) denote the largest singular value of A, show that it is a norm.

.

10.7 Least Squares

We consider the system of linear equations

Ax = b (10.7.1)

where A is m ×n. In ?? we considered the case where the rows of A are

linearly independent. Then the columns of A span Rm , and we want the

vector x with minimum norm such that Ax = b. The second, and more

commonly met situation, is when the columns of A are linearly indepen-

dent, and we want the vector x such that ‖b − Ax‖2 is minimal.

We draw attention to one difficulty. It is in fact a non-trivial numerical

problem to determine the rank of a real matrix, and so it may not be easy

to verify that the rows or columns of A are linearly independent. In fact,

the best way to determine the rank in finite precision arithmetic is to use

the singular value decomposition A = Y ΣX T , since rk(A) = rk(Σ). (Thus

determining the rank of A is reduced to determining the rank of a diagonal

matrix; in the presence of rounding errors and uncertainties in the data,

this still may require thought.) But rather than using the singular value

decomposition just to get the rank of A, we can use it to solve the least

squares problem.

10.7.1 Lemma. Let A be an m ×n real matrix with singular value decom-

position A = Y ΣX T , where Σ is k ×k and invertible. Then the vector z of

minimum norm, such that b − Az has minimum norm is given by

z = XΣ−1Y T b.

Proof. We note that the columns of Y form an orthonormal basis for col(A),

whence the matrix representing projection onto col(A) is Y Y T . Similarly,

the columns of X form an orthonormal basis for col(AT ), and therefore

X X T is the matrix representing projection onto col(AT ).

Consequently y = Y Y T b is the vector in col(A) closest to b. Suppose

Ax = y . Then

Y ΣX T x = Y Y T b

and, multiplying both sides on the left by Y T , we have

X T x =Σ−1Y T b.

Now X X T x is the projection of x onto col(AT ), and accordingly

z = XΣ−1Y T b

is the vector of minimum norm such that Az is closest to b.
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10.8 Legendre Polynomials

Let V be Pol(R), the vector space of all real polynomials, with inner product

〈p, q〉 =
∫ 1

−1
p(t )q(t )d t .

Define a linear mapping L : V →V by

L(p) = (1− t 2)p ′′−2t p ′.

If n ≥ 2 then

L(t n) = (1− t 2)n(n −1)t n−2 −2nt n =−n(n +1)t n +n(n −1)t n−2. (10.8.1)

It follows that

〈t m ,Lt n〉 =
∫ 1

−1
(n(n −1)t m+n−2 −n(n +1)t m+n)d t ;

when m +n is odd the integral here is zero, if m +n is even then it is[
2n(n −1)

m +n −1
− 2n(n +1)

m +n +1

]
=− 4mn

(m +n)2 −1
.

Hence

〈t m ,Lt n〉 = 〈Lt m , t n〉
for all m and n. It follows that for any polynomials p and q ,

〈p,Lq〉 = 〈Lp, q〉,

and therefore L is self-adjoint. (This can also be proved directly using

integration by parts.)

It follows that the eigenvalues of L are real, and eigenvectors with dis-

tinct eigenvectors are orthogonal with respect to the above inner product.

It is not hard to determine the eigenvalues of L. From (10.8.1) we see that

Poln(R) is L-invariant and further, if Ln denotes the restriction of L to

Poln(R) and β= {1, t , . . . , t n} is the standard basis for Poln(R), then

[Ln]β =



0 0 2

−2 0 6

−6 0 12

−12 0
. . .


This is a triangular matrix, and reveals that the eigenvalues of Ln are the

integers −m(m −1) for m = 1, . . . ,n.

As the eigenvalues are distinct, each eigenspace is 1-dimensional and is

thus spanned by a polynomial. The polynomial with eigenvalue −m(m −1)

will have degree m and is a solution of Legendre’s equation :

(1− t 2)p ′′−2t p ′+m(m −1)p = 0.
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We call pm the Legendre polynomial of degree m. The first five Legendre

polynomials are as follows:

p0 = 1

p1 = t

p2 = 3t 2 −1

p3 = 5t 3 −3t

p4 = 35t 4 −30t 2 +3.

It makes no harm if we replace pi by any non-zero scalar multiple of itself,

and it is customary to choose the multiple so that pi (1) = 1. (But we have

not done that here.)

There are a number of related examples (of self-adjoint linear operators

on P (R)). We summarize some of them here. The numbers λ0,λ1, . . . are the

eigenvalues of the operator.

(a) Chebyshev.

Lp = (1− t 2)p ′′− t p ′; 〈p, q〉 =
∫ 1

−1
p(t )q(t )

d tp
1− t 2

; λn =−n2.

(a) Laguerre.

Lp = t p ′′+ (1− t )p ′; 〈p, q〉 =
∫ ∞

0
p(t )q(t )e−t d t ; λn =−n.

(a) Hermite.

Lp = p ′′− t p ′; 〈p, q〉 =
∫ ∞

−∞
p(t )q(t )e−t 2/2 d t ; λn =−n.

In general, if

Lp = f p ′′+ g p ′

then we may write

Lp = w−1(w f p ′)′

where

w(t ) = 1

f (t )
exp

∫ t

α

g (u)

f (u)
du.

(The value of the lower limit α in this integral will be determined by con-

text.) Then L is self-adjoint relative to the inner product

〈p, q〉 =
∫

p(t )q(t ) w(t )d t .

To see this, compute in outline as follows:

〈Lp, q〉 =
∫

q(w f p ′)′ d t =−
∫

w f p ′q ′ d t =−
∫

w f q ′ p ′ d t

=
∫

p(w f q ′)′ d t

= 〈p,Lq〉.
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For this computation to be accurate, f (t )w(t ) must vanish at the endpoints

of the interval over which we integrate.

The eigenvectors of L will be polynomials only if w(t ) satisfies further

restrictions.

10.9 Computing Eigenvalues

How do people really compute the eigenvalues of symmetric matrices?

They do not use the method offered in most introductory linear algebra

course—compute the characteristic polynomial, find its zeros—that is

probably the fourth best method. Here we outline the second best.

So, suppose A is a real symmetric n × n matrix. We want to find an

orthogonal matrix L such that LT AL is diagonal. What we will actually do

is to describe how to find a sequence of orthogonal matrices S1, . . . ,Sr such

that all off-diagonal entries of

ST
r · · ·ST

1 AS1 · · ·Sr

are very small, we can then take the diagonal entries of this matrix to be the

eigenvalues of A.

The basic idea is to note that we can diagonalize symmetric 2× 2 ma-

trices. Using this we choose the matrix Si+1 so that it makes some off-

diagonal entry of ST
i · · ·ST

1 AS1 · · ·Si equal to 0. Unfortunately this will

usually make some off-diagonal entries non-zero, when they were already

zero. This will make us work harder, but will not prevent eventual success.

If M is a symmetric matrix then there is an orthogonal matrix L such

that LT ML is diagonal; if M is 2× 2 then we may assume that L has the

form (
c −s

s c

)
.

where c2 + s2 = 1. (We could, but do not, assume that c ≥ 0.) Now suppose

that A is a symmetric n ×n matrix, that B is the leading principal 2×2 sub-

matrix of A and that R is an orthogonal matrix such that RT BR is diagonal.

Let S denote the matrix (
R 0

0 In−2

)
.

Then

B = ST AS

is similar to A and B1,2 = 0. In general, if Ai , j 6= 0 then there is an orthogo-

nal matrix S such that the only non-zero off-diagonal entries of S are the i j

and j i entries, and (ST AS)i , j = 0. We call S a Givens rotation.

How does this help us. If A and B are n ×n matrices, define

〈A,B〉 = tr AB T .
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Then ‖A‖2 is the sum of the squares of the entries of A and, if L is orthogo-

nal,

‖LT AL‖2 = tr(LT AT LLT AT L) = tr(LT L A AT L) = tr(A AT ) = ‖A‖2.

Let sqo(A) denote the sum of the squares of the off-diagonal entries of A.

Note that, in passing from A to ST AS, the only diagonal entries that change

are the i i - and j j -entries and that the sum of the squares of these two

entries increases by 2(Ai , j )2. It follows that, if S and A are as above,

sqo(ST AS) = sqo(A)−2(Ai , j )2.

If sqo(A) = c, there are indices i and j such that

(Ai , j )2 ≥ c

n(n −1)

and hence there is a Givens rotation S such that

sqo(ST AS) ≤ c

(
1− 2

n(n −1)

)
.

This implies that, by successively applying Givens rotations, we can form a

matrix M , orthogonally similar to A and such that sqo(M) is as small as we

like. The diagonal entries of M will be the eigenvalues of A.

10.10 Jacobi: An Example

By way of example, suppose that

A =

 1 0.5 0.3333

0.5 0.3333 0.25

0.3333 0.25 0.2

 .

Then Jacobi’s method runs through the following iterations.

(
c

s

)
=

(
−0.47185

0.88167

)
; [1,2] →

0.065741 0 0.063132

0 1.2675 −0.41185

0.063132 −0.41185 0.2


(

c

s

)
=

(
−0.32269

−0.94650

)
; [2,3] →

 0.06574 −0.05975 −0.02037

−0.05975 0.05958 0

−0.02037 0 1.40801


(

c

s

)
=

(
−0.68867

−0.72507

)
; [1,2] →

0.002829 0 0.01403

0 0.12250 −0.01477

0.01403 −0.01477 1.40801


(

c

s

)
=

(
−0.99993

−0.01149

)
; [2,3] →

 0.00283 −0.00016 −0.01403

−0.00016 0.12232 0

−0.01403 0 1.40818


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(
c

s

)
=

(
−0.99995

−0.00998)

)
; [1,3] →

0.00269 0.00016 0

0.00016 0.12233 0

0 0 1.40832


(

c

s

)
=

(
−1.0

0.00135

)
; [1,2] →

0.00268 0 0

0 0.122327 0

0 0 1.40832


Here the diagonal entries are the eigenvalues of A, and further iterations do

not change them.

(1) Suppose that 〈Av , Aw〉 = 0 whenever 〈v , w〉 = 0. Prove, or disprove, that

A is a scalar multiple of an orthogonal matrix.

(2) Suppose Q2 =Q and Q =QT . Show that I −2Q is a symmetric orthogo-

nal matrix, and explain the connection to reflections.

(3) Prove that an involution is symmetric if and only if it is orthogonal.

(4) Show that each involution has the form I −2P , for some idempotent P .

(5) Show that, if A and A−1 are similar, there is an involution T such that

T AT = A−1.
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Spectral Decomposition

11.1 Self-Adjoint Operators

The spectral decomposition of an operator is a more concrete form of

diagonalizability. It is most useful when the operator is self-adjoint, so we

confine ourselves to that case.

Suppose S is an operator on the inner product space V and that the

minimal polynomial ψ of S is given by

ψ(t ) =
k∏

i=1
(t −θi ),

where the zeros θi are distinct. (Thus A is diagonalizable.) By the primary

decomposition theorem (Theorem 3.6.1), there are polynomials pi such

that

I =
k∑

i=1
pi (S), (11.1.1)

where

(a) pi (S) is idempotent,

(b) p(S)p j (S) = 0 if i 6= j , and

(c) S acts on col(pi (S)) as multiplication by θi .

Assume Ei := pi (S). Then SEi = θi Ei and, by (11.1.1),

S =∑
i
θi Ei . (11.1.2)

Equation (11.1.2) is known as the spectral decomposition of S.

One consequence of the spectral decomposition is that

Sn =∑
i
θn

i Ei ;

this can provide a simple way to compute powers of S.

If S is self-adjoint, then the operators Ei are self-adjoint, because each

Ei is a polynomial in S.
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We now offer a matrix view of the spectral decomposition. If A is a

diagonalizable n ×n matrix, then Fn has a basis consisting of eigenvectors

for A. Let L be the matrix with these eigenvectors as its columns. Then L is

an invertible matrix and there is a diagonal matrix D such that

AL = LD .

It follows that

A = LDLT .

We can write D as a sum of 01-diagonal matrices Di :

D =∑
i
θi Di ,

where θ1, . . . ,θm are the distinct eigenvalues of A and
∑

i Di = I . Accord-

ingly

A =∑
i
θi LDi L−1.

It is easy to verify that

(LDi L−1)2 = LDi L−1

and, if i 6= j , then Di D j = 0 and

LDi L−1 LD j L−1 = LDi D j L−1 = 0

11.2 Commutative Algebras

Two idempotents E and F are orthogonal if EF = 0. For example, if E is

an idempotent, then E and I −E are orthogonal idempotents. We can

define a partial ordering on the idempotents of a commutative algebra A

as follows. If E and F are idempotents in A , we declare that E ≤ F if F E = E .

This relation is reflexive, antisymmetric and transitive; therefore it is a

partial order. A minimal idempotent is a minimal element of the set of non-

zero idempotents, relative to this order. If E and F are idempotents, then

EF ≤ E ,F . It follows that if E and F are minimal, then they are orthogonal.

11.2.1 Theorem. Let B be a commutative matrix algebra with identity over

an algebraically closed field. Assume that if N ∈ B and N 2 = 0, then N = 0.

Then B has a basis of pairwise orthogonal idempotents.

Proof. As a first step, we show that each element of B is a linear combina-

tion of idempotents.

Assme the matrices in B have order n × n. Suppose A ∈ B and let

ψ(t ) =∏k
i=1(t −θi )mi be its minimal polynomial. There are idempotents Ei ,

summing to i , such that im(Ei ) is the root space associated with θi , and Fn

is the direct sum of these root spaces.

Further, the minimal polynomial of A on im(Ei ) is (t −θi )mi , and hence

we have

0 = (A−θi I )mi Ei = ((A−θi I )Ei )mi .
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If mi > 1, we set k = b(mi + 1)2c and N = ((A −θi I )Ei )k . Then N 6= 0 but

N 2 = 0. We conclude that zeros of the minimal polynomial of A are simple.

We also see that im(Ei ) is an eigenspace for A and as I = ∑
i Ei it follows

that

A = AI =∑
i

AEi =
∑

i
θi Ei .

Therefore A is a linear combination of idempotents belonging to B, and it

follows that B is spanned by idempotents.

The problem that remains is to show that minimal idempotents exist.

Suppose E and F are distinct idempotents and E ≤ F . Then

F (I −E) = F −E 6= 0

but E(I −E) = 0. Hence the column space of E must be a proper subspace

of the column space of F . Therefore if E1, . . . ,Em are distinct idempotents

and

E1 ≤ ·· · ≤ Em

then m ≤ n +1. We conclude that minimal idempotents exist.

Now we prove that each idempotent is a sum of minimal idempotents.

Suppose F is an idempotent and E is a minimal idempotent. If EF 6= 0,

then EF ≤ E and therefore EF = E . This also shows that distinct minimal

idempotents are orthogonal. Let F0 be the sum of the distinct minimal

idempotents E such that E ≤ F . Then F0 is an idempotent. If F0 6= F then

F −F0 is an idempotent and so there is a minimal idempotent below it,

which contradicts our choice of F0. We conclude that B is spanned by

minimal idempotents.

A matrix N is nilpotent if N k = 0 for some k. Theorem 11.2.1 asserts that

a commutative matrix algebra with identity has a basis of orthogonal idem-

potents if there are no non-zero nilpotent matrices in it. Since a non-zero

linear combination of pairwise orthogonal idempotents cannot be nilpo-

tent, this condition is necessary too. A commutative algebra is semisimple

if it contains no non-zero nilpotent elements.

11.3 Normal Operators

An operator A on an inner product space is normal if A A∗ = A∗A. We

consider examples. Clearly any self-adjoint operator is normal. Unitary

operators are a second important class. If A = L∗DL where D is diagonal

and L is unitary, then

A A∗ = L∗DLL∗DL = L∗DDL = L∗DDL = A∗A

and so any matrix that is unitarily similar to a diagonal matrix is normal.

Exercise: determine which complex 2×2 matrices are normal.

Exercise: If H is normal, show that we can write it as H = A + i B , where

A and B are Hermitian and commute.
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11.3.1 Theorem. Suppose A is a commutative subalgebra of Matv×v (C)

that is closed under conjugate transpose and contains the identity. Then A

has a basis of matrix idempotents E0, . . . ,Ed such that

(a) Ei E j = δi , j Ei .

(b) The columns of Ei are eigenvectors for each matrix in A .

(c)
∑d

i=0 Ei = I .

(d) E∗
i = Ei .

Proof. Suppose N ∈A and N 2 = 0. Then

0 = (N∗)2N 2 = (N∗N )2

and hence

0 = tr((N∗N )2) = tr((N∗N )∗(N∗N )).

If H := N∗N , then tr(H∗H) = 0 if and only if H = 0, so we deduce that

N∗N = 0. But then tr(N∗N ) = 0 and therefore N = 0. Hence A satisfies the

hypotheses of 11.2.1, and therefore it has a basis that consists of pairwise

orthogonal idempotents.

We show that the idempotents Ei are Hermitian. Since A is closed

under transpose and complex conjugation, E∗
i ∈ A . Therefore there are

scalars a0, . . . , ad such that

E∗
i =∑

j
a j E j

and so

E∗
i Ei = fi Ei .

Since tr(E∗
i Ei ) > 0 and tr(E j ) > 0, it follows that fi 6= 0. But E∗

i is a minimal

idempotent, and therefore f j = 0 if j 6= i . This implies that E∗
i is a scalar

multiple of Ei , but tr(Ei ) = tr(E∗
i ), and therefore E∗

i = Ei .

11.3.2 Theorem. If A is normal, then A is unitarily similar to a diagonal

matrix.
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Cospectral Graphs

We present some constructions of cospectral graphs, along with the related

theory.

12.1 K1,4, C4 ∪K1

The smallest pair of non-isomorphic cospectral graphs are K1,4 and C4 ∪K1.

Note that C4 is also K2,2 and recall that

φ(Km,n , t ) = t m+n−2(t 2 −mn).

(One way of seeing this is that the functions of the vertices of Km,n that sum

to zero on each colour class form an (m +n −2)-dimensional subspace of

eigenvectors with eigenvalue 0. The remaining eigenvectors are orthogonal

to those already in hand, so they are constant on colour classes. Hence the

corresponding eigenvalues are the eigenvalues of the quotient relative to

the colour partition, which is equitable.)

In particular we have that the graphs

K1,mn , Km,n ∪ (m −1)(n −1)K1

are cospectral. (You might prove that Km,n is determined by its spectrum.)

12.2 Direct Products

The direct product P3 ×P3 is the disjoint union of K1,4 and C4. This leads to

interesting consequences.

The direct product of two connected graphs is connected if at least one

of its components is not bipartite. The direct product of two connected

bipartite graphs is the disjoint union of two bipartite graphs. The direct

product of graphs X and Y has adjacency matrix A(X )⊗ A(Y ). If X and Y

are bipartite, we can assume that their adjacency matrices of the respective

forms (
0 B

B T 0

)
,

(
0 C

C T 0

)
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with tensor product
0 0 0 B ⊗C

0 0 B ⊗C T

0 B T ⊗C 0 0

B T ⊗C T 0 0

 .

This the adjacency matrix of the disjoint union of two graphs with adja-

cency matrices (
0 B ⊗C

B T ⊗C T 0

)
,

(
0 B ⊗C T

B T ⊗C

)
.

The square of these matrices are respectively(
BB T ⊗CC T 0

0 B T B ⊗C T C

)
,

(
BB T ⊗C T C 0

0 B T B ⊗CC T

)
.

12.2.1 Lemma. If M is an m ×n matrix and N is n ×m, then M N and N M

have the same non-zero eigenvalues with the same multiplcity.

Proof. First we show that

det(I −M N ) = det(I −N M).

We have (
I 0

−N I

)(
I M

N I

)
=

(
I M

0 I −N M

)
and (

I M

N I

)(
I 0

−N I

)
=

(
I −M N M

0 I

)
;

taking determinants of both sides of the first of these equations yields

det

(
I M

N I

)
= det(I −N M)

and from the second that

det

(
I M

N I

)
= det(I −M N ).

This shows that det(I − t M N ) = det(I − t M N ).

Now we deduce

t mφ(M N , t−1 = t m det(t−1 −M N ) = t n det(t−1 −N M) = tnφ(N M , t−1)

and therefore φ(M N , t ) = t m−nφ(N M , t ).
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12.3 The Partitioned Tensor Product

12.4 Subdivisions and Line Graphs

The incidence matrix of a graph X is the |V (X )| × |E(X )| 01-matrix with

ue-entry equal to one if the vertex u lies on the edge e. We usually denote it

by B . If D is the diagonal matrix of valencies of X , then

BB T = D + A(X )

and

B T B = 2I + A(L(X )).

The matrix D + A(X ) is the unsigned Laplacian of X , and we see that D +
A(X ) and 2I + A(L(X )) have the same non-zero eigenvalues with the same

multiplicities.

The bipartite graph with adjacency matrix(
0 B

B T 0

)

is the subdivision graph S(X ) of X . The square of this matrix is(
BB T 0

0 B T B

)

and therefore the spectrum of S(X ) is determined by the spectrum of L(X )

(or by the spectrum of D + A).

The graphs K1,3 and K3 ∪K1 both have line graph equal to K3; it follows

that there subdivision graphs are cospectral. These graphs are respectively

the subdivision graph of K1,3 and C6 ∪K1. So these graphs are cospectral,

what is surprising is that their complements are cospectral as well, and this

is the smallest pair of graphs that are cospectral with cospectral comple-

ments.

But nothing we have said implies that the complements are cospectral.

We address this deficiency.1 1 in an admittedly roundabout way

The incidence matrix of K1,3 can be taken to be

C1 =


1 1 1

1 0 0

0 1 0

0 0 1


and the incidence matrix of K3 ∪K1 can be taken to be

C2 =


0 0 0

0 1 1

1 0 1

1 1 0

 .
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12.5 Congruence

If we want to show that the matrices(
0 C1

C T
1 0

)
,

(
0 C2

C T
2 0

)

are similar, it is reasonable to look for orthogonal matrices L and M such

that (
L 0

0 M

)(
0 C1

C T
1 0

)(
LT 0

0 M T

)
=

(
0 LC1M T

MC T
1 LT 0

)
=

(
0 C2

C T
2 0

)
,

that is, such that LC1M T = C2. We are greedy and observe that if L is or-

thogonal and LC1 =C2, then our two subdivision graphs are cospectral.

12.5.1 Theorem. Let U and V be d ×m matrices. There is an orthogonal

matrix Q such that QU =V if and only if U T U =V T V .

Proof. Let the columns of U and V be respectively u1, . . . ,um and v1, . . . , vm .

Assume that rk(U ) = e and the u1, . . . ,ue is a basis for the column space of

U . Then v1, . . . , ve is a basis for the column space of V .

Since u1 and v1 have the same length, the matrix Q1 representing reflec-

tion in the hyperplane (u1 − v1)⊥ is an orthogonal matrix swapping u1 and

v1 and

(Q1U )T Q1U =U T U =V T V .

Now assume inductively that ui = vi for i = 1, . . . ,k, with 1 ≤ k ≤ e. If y

and z are two vectors such that 〈y , y〉 = 〈z, z〉 and

〈ui , y〉 = 〈ui , z〉, (i = 1, . . . ,k)

then y − z is orthogonal to u1, . . . ,uk and the reflection in (y − z)⊥ fixes

u1, . . . ,uk and swaps y and z. This implies that, if k < e, there is an orthog-

onal matrix Qk+1 such that the first k + 1 columns of Qk+1U and V are

equal.

To complete the proof, we observe that if the first e columns of U span

col(U ) and are equal to the first e columns of V , then U = V . The theorem

follows.

This theorem generalizes that fact that if the sides of two triangles have

the same length, the triangles are congruent: that is, there is a composi-

tion of a translation, a rotation and (possibly) a reflection that maps one

triangle to the other.

From this theorem we deduce that there is an orthogonal matrix Q such

that QC1 =C2. It is easy to verify that we take Q to be

1

2
J − I
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Since Q is symmetric it is an involution. We have(
Q 0

0 I

)(
0 C1

C T
1 0

)(
QT 0

0 I

)
=

(
QC1 0

0 C T
1 QT

)
=

(
0 C2

C T
2 0

)

Next we note that Q J = J and C2 = J −C1, from which it follows that the

complements of S(K1,3) and C6 ∪K1 are cospectral.

12.6 Local Switching

12.7 Extended Adjacency Algebras

It is an experimental fact that if two graphs are cospectral, their comple-

ments are likely to be cospectral. Johnson and Newman proved that if

graphs X1 and X2 are cospectral with cospectral complements, there is an

orthogonal matrix L such that

A(X2) = LT A(X1)L, A(X2) = LT A(X1)L.

This implies that LJ = J and that for any scalars α and β,

LT (αA(X1)+βA(X1)) =αA(X2)+βA(X2).

We will present a proof of the result of Johnson and Newman, and related

results concerning cospectral vertices.

Let z be a vector in Rn . Then

det(t I − A− zzT ) = det(t I − A)det(I − (t I − A)−1zzT )

= det(t I − A)(1− zT (t I − A)−1z)

and consequently

φ(A+ zzT , t )

φ(A, t )
= 1− zT (t I − A)−1z = 1−∑

r

zT Er z

t −θr
.

If z is the characteristic vector of a subset S of V (X ), then

zT (I − t A)−1z

is the generating function for the walks on X that start and finish on ver-

tices in S. So we have a relation between the characteristic polynomial

φ(A + zzT , t ), the generating function for walks starting and ending S, and

the sequence of numbers zT Er z. The latter are the squared lengths of the

projections of z into the eigenspaces of A. The set of eigenvalues

{θr : zT Er z 6= 0}

is the eigenvalue support of z.

The walk module 〈z〉A generated by z is the A-invariant subspace

spanned by the vectors Ak z for k ≥ 0. If A has spectral decomposition
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A = ∑
r θr Er , the non-zero vectors Er z form an orthogonal basis for 〈z〉A ,

and so dim(〈z〉A) is equal to the size of the eigenvalue support of z. If S is

the eigenvalue support of z, then the minimal polynomial of A acting on

〈z〉A is ∏
θr ∈S

(t −θr ).

We use A (z) to denote the algebra 〈A, zzT 〉 generated by A and zzT .

12.7.1 Lemma. The walk module 〈z〉A is an irreducible module for A (z).

Proof. Assume U is an A (z)-submodule of 〈z〉A . Since A and zzT are sym-

metric, U⊥ is also a submodule for A (z).

If z ∈ U , then U = 〈z〉A . If u ∈ U and zT U 6= 0, then zzT u 6= 0 and

therefore z ∈U . So we may assume that U ≤ z⊥, and therefore z ∈U⊥. But

this implies that U⊥ = 〈z〉A and U = 0.

[Johnson and Newman]
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Perturbation Theory

It seems reasonable that if A and B are square matrices of the same order

and ε is small, then we should be able to relate the eigenvalues of A + εB

to the eigenvalues of A. This can be done, provided that we restrict to the

case where A and B are Hermitian, and provided we are prepared to apply

considerable effort.

Sources: Kato. Lancaster and Tismenetsky. Avrachenkov, Filar and

Howlett.

13.1 Kato

We want information about the eigenvalues and eigenvectors of the matri-

ces A+ tB , where A and B are Hermitian and t ∈R. We call these Hermitian

pencils .

The authorative source from the information we want is Kato’s book.1. 1 Perturbation Theory for Linear Operators

Extracting the information we want is not entirely trivial. I am going to to

give a summary of the relevant results but, be warned, what I offer will be

paraphrases.

13.1.1 Theorem. Let A and B be n ×n Hermitian matrices. Then there is

an integer m and analytic functions θ1(u), . . . ,θm(u) such that θi (γ) is an

eigenvalue of A +γB (for each i ). There are corresponding orthogonal

projections F1(γ), . . . ,Fm(γ); these are analytic functions of γ and Fr (γ) is

the projection onto the θr (γ)-eigenspace of A+γB .

This theorem is a specialization of Theorem 1.8 on page 70 of Kato. It

implies the following.

13.1.2 Lemma. Let A and B be n ×n Hermitian matrices. Then there is

an integer m such that the matrix A +γB has at most m distinct eigenval-

ues, and there are only finitely many values of γ for which the number of

eigenvalues is less than m.

A warning: If B is Hermitian then B = LDL∗ for some unitary matrix L
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and some real diagonal matrix D . Hence

A+ tB = A+ tLDL∗ = L(L∗AL+ tD)∗

and we see that restricting B to be diagonal will not make our lives any

easier.

13.2 Basics

The first thing to note is that the zeros of a polynomial are continuous

functions of its coefficients. (The map from zeros to coefficients is differen-

tiable and invertible, so we can apply the inverse function theorem.)

If L is unitary then

L∗(A+γB)L = L AL∗+γL∗BL

and therefore image of a Hermitian pencil under unitary conjugation is a

Hermitian pencil. This means that we can always assume that one of the

matrices A and B in a Hermitian pencil is diagonal. Unfortunately this

does not simplify things, the diagonal case is as hard as the general case. If

A and B commute, then we can simultaneously diagonalize them, in which

case all difficulties vanish.

An issue here is that if we are working with two matrices A and B , then

we will likely be concerned with the structure of the algebra 〈A,B〉, and this

algebra has a distressing tendency to be the full matrix algebra:

13.2.1 Theorem. Let A be Hermitian d ×d and let z be an element of Cd . If

no eigenvector of A is orthogonal to z, then 〈A, zz∗〉 = Matd×d (C).

The condition on A and z is equivalent to assuming that the pair (A, z) is

controllable. For details and the proof of the theorem, see GS&CQW.

What if (A, z) is not controllable? If A has spectral decomposition

A =∑
r
θr Er

then the non-zero vectors Er z form an orthogonal basis for the A-module

M generated by z. Since this module contains z, it is actually a module for

〈A, zz∗〉. The orthogonal complement cM⊥ to M is spanned by eigenvec-

tors y of A such that z∗y = 0, and so zz∗ acts on M⊥ as the zero operator.

The module M itself is irreducible (under 〈A, zz∗〉), and therefore by a

theorem due to Burnside, 〈A, zz∗〉 acts on it as the full matrix algebra.

If A is the adjacency matrix of a strongly regular graph X and z = ea for

some vertex a, then dimM = 3, and is known as the standard module for

the Terwilliger algebra of X .
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13.3 Rank-1 Updates

We have

φ(A+w w T , t ) = det(t I − A−w w T ) = det(t I − A)det(I − (t I − A)−1w w T )

=φ(A, t )(1−wT (t I − A)−1w)

and from this we deduce:

13.3.1 Lemma. If A has spectral decomposition A =∑
r θr Er , then

φ(A+w w T , t )

φ(A, t )
= 1−∑

r

wT Er w

t −θr
.

The eigenvalue support of a vector w is the set

{θr : Er w 6= 0}.

Note that, since Er is a projection, Er w = 0 if and only if w∗Er w = 0.

The size of the eigenvalue support is the number of poles of the rational

function φ(A(w), t )/φ(A, t ).

13.3.2 Theorem. Let A be a Hermitian matrix, let w be a vector in Cn and

let

θ1 > ·· · > θk

be the eigenvalue support of w . Then

(a) the eigenvalues of A +γw w T interlace the eigenvalues of A; more

precisely θ1(γ) ≥ θ1 and if r > 1, then

θr−1(0) ≥ θr (γ) ≥ θr (0).

(b) The function θr (γ) is constant if and only if θr (0) is not in the eigen-

value support of x.

Suppose that z 6= 0 and

(A+w w T )z =λz.

Then

〈w , z〉w = (λI − A)z

and, if λ is not an eigenvalue of A, we see that 〈w , z〉 6= 0 and

z = 〈w , z〉(λI − A)−1w .

Therefore

z = 〈w , z〉∑
r

1

λ−θr
Er w .

Adding a loop at a vertex is a special case of a rank-1 update. We recall

that
φ(X \i , t )

φ(X , t )
=∑

r

eT
i Er ei

t −θr

and so from Lemma 13.3.1,

φ(A+γei eT
i , t )

φ(A, t )
= 1−γφ(X \i , t )

φ(X , t )
.
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13.4 Commutants

Let A be Hermitian with spectral decomposition A = ∑
r θr Er . Define a

map ΨA on Matn×n(C) by

Ψ(M) :=∑
r

Er MEr .

13.4.1 Theorem. If A is Hermitian, Ψ is orthogonal projection onto the

commutant of A.

Proof. As Er MEr commutes with A, it is immediate that the image of Ψ

lies in the commutant of A. If M commutes with A, it commutes with each

idempotent Er and accordingly

M = I M I =∑
r ,s

Er MEs .

If r 6= s, then Er MEs = MEr Es = 0, and therefore the commutant of A is the

image of Ψ.

It is also clear that Ψ2 =Ψ, so Ψ is idempotent. Now if M , N ∈ Matn×n(C),

then

〈N ,Ψ(M)〉 = tr N TΨ(M) =∑
r

tr(N T Er MEr )

=∑
r

tr(Er N T Er M)

= 〈Ψ(N ), M〉

and so Ψ is self-adjoint.

13.5 The Eigenvalues of a Hermitian Pencil

If A is diagonal, then its Schur idempotents are diagonal 01-matrices. If

the i -th eigenvalue of A is θi and has mutiplicity mi (for i = 1, . . . ,k), then

the commutant of A consists of the block-diagonal matrices with k blocks,

where the i -th block is mi ×mi . (Hence the dimension of the commutant

is
∑

i m2
i .) The orthogonal complement to the commutant consists of the

matrices Schur-orthogonal to the block-diagonal matrix

Jm1 ⊕·· ·⊕ Jmk .

If B commutes with A, we can express the eigenvalues of A+ tB in terms

of the eigenvalues of A and B . To help with determining the eigenvalues

of the pencil when A and B do not commute, we describe a more compli-

cated way of getting at the eigenvalues in the commutative case.

Assume A has spectral decomposition

A =∑
r
θr Er
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If B commutes with A, then each eigenspace of A is B-invariant and there-

fore has an orthogonal basis formed from eigenvectors of B . Let E be a

spectral idempotent of A and assume its rank is m and that the correspond-

ing eigenvalue is θ. There is an n ×m matrix U such that U∗U = Im and

UU∗ = E ; its column space is the eigenspace associated with E . The matrix

that represents the restriction of B to col(U ) is U∗BU and, if its eigenvalues

are

ν1, . . . ,νr

with respective multiplicities

µ1, . . . ,µr ,

the eigenvalues of the restriction of A+γB to col(U ) are

θ+γν1, · · · ,θ+γνr

with multiplicities as above. We will establish very similar expressions in

the case where A and B need not commute.

We assume A has spectral decomposition A = ∑
i θi Er , and that θi has

multiplicity mi . Assume Er = Ur U∗
r , as before. Let B0 be the orthogonal

projection of B onto the commutant of A and set B1 = B −B0. Then

B0 =
∑

i
Ei BEi .

and

Ei B1Ei = 0

for all i .

We now appeal to Theorem 11.7.1 of Lancaster & Tismenetsky “The The-

ory of Matrices”, which tells us that if
∑

i Ei BEi = 0, then the linear terms

in the series expansions of the eigenvalues of A + tB are zero. Equivalently,

the linear terms depend only on the eigenvalues of
∑

i Ei BEi .

13.6 Adding Loops to Strongly Regular Graphs

Let X be a strongly regular graph with parameters (n,k; a,c). We consider

the pencil

A+γei eT
i .

We assume X is primitive2 and that its eigenvalues are 2 X and X are connected

k > θ > τ.

As X is primitive, k is a simple eigenvalue. We denote the respective multi-

plicities of θ and τ by mθ and mτ. We know that

mθ =
(n −1)τ+k

τ−θ , mτ = (n −1)θ+k

θ−τ .



142 C H R I S G O D S I L

We will use ` to denote n −1−k; this is the valency of the complement of X .

We also have explicit formulas for the spectral idempotents of A:

Ek = 1

n
J

and

Eθ =
mθ

n

(
1+ θ

k
A− θ+1

`
A

)
, Eτ = mτ

n

(
1+ τ

k
A− τ+1

`
A

)
.

Hence the eigenvalues of A +γe1eT
1 are θ and τ (with multiplicities mθ −1

and mθ−1 respectively), and the three zeros of the rational function

1−γ
(

(Ek )1,1

t −k
+ (Eθ)1,1

t −θ + (Eτ)1,1

t −τ
)
= 1− γ

n

(
1

t −k
+ mθ

t −θ + mτ

t −τ
)

.

The walk module generated by ei has the vectors

ei , Aei , Aei

as an orthogonal basis and is invariant under e1eT
1 . The matrix represent-

ing the action of A on this module is0 k 0

1 a k −1−a

0 c k − c


and it follows that A+γe1eT

1 is represented3 by 3 as we might expectγ k 0

1 a k −1−a

0 c k − c

 .

Note that the walk-module is a module for 〈A,e1eT
1 〉, and it is irreducible

(by Theorem 13.2.1).

13.7 Adding Edges

We work with the pencil

A+γB

where B = ei eT
j +e j eT

i (with i 6= j ). Thus if i = 1 and j = 2,

B =



0 1 0 · · · 0

1 0 0 · · · 0

0 0 0 · · · 0
...

0 0 0 · · · 0

 .

13.7.1 Lemma. If B is a Hermitian matrix and E is a projection, then

n−(EBE) ≤ n−(B), n+(EBE) ≤ n+(B).
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Proof. Write B = B0 −B1 where B0 and B1 are positive semidefinite. Then

EBE = EB0E −EB1E

and so

n+(EBE) ≤ rk(EB0E) ≤ rk(B0) = n+(B)

and similarly n−(EBE) ≤ n−(B).

We note that EBE and BEE = BE have the same non-zero eigenvalues

with the same multiplicities. As only the first i -th and j -th rows of BE are

not zero, the non-zero eigenvalues of EBE are the eigenvalues of

C =
(

E j ,i E j , j

Ei ,i Ei , j

)
.

Since E = E T , we have Ei , j = E j ,i and the eigenvalues of C are

Ei , j ±
√

Ei ,i E j , j .

If A = A(X ) and i and j are cospectral, Ei ,i = E j , j ; if i and j are strongly

cospectral, then Ei , j =±Ei ,i and rk(C ) ≤ 1. The matrix(
Ei ,i Ei , j

E j ,i E j , j

)

is a principal submatrix of E and, with that, is positive semidefinite. Conse-

quently

|Ei , j |2 ≤ Ei ,i E j , j

and this implies that det(C ) ≤ 0.
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Control

We think a linear system as a kind of ‘black box’. At time intervals t = 1, . . .

it receives an input, returns an output and moves to a new state. The states

are elements of its state space, the inputs come from an input space and

the outputs belong to the output space. If these elements are represented

by vectors x(i ), u(i ) and y(i ) respectively, then they are related by the

system of equations

x(n +1) = Ax(n)+Bu(n),

y(n) =C x(n)+Du(n),

for all non-negative integers n. Thus the behaviour of the system is gov-

erned by the four matrices A, B , C and D , which we often write as a 2×2

matrix: (
A B

C D

)
.

We will call this the state-space description of our system. The state-space

matrix need not be square, but A must be.

What we have just described is more usually known as a discrete lin-

ear system. Since we will not consider continuous systems at any length,

dropping the adjective should not cause problems.

14.1 Buffalos

By way of a first example, we consider a model for the US buffalo popula-

tion, from J. J. Truxal “Introductory System Engineering”, (McGraw-Hill,

New York) 1972. In this section we describe the underlying uncontrolled

system; in the next section we consider the controlled version.

Let ci and bi respectively denote the number of female and male buffalo

at the start of year i . We assume that buffalo are mature at age 2, and that

each year five percent of the adults die. Female buffalo start breeding at

age 2; the number of female calves born in year i is 0.12ci−2, the number of
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males is 0.14ci−2. Thus the population is governed by the two recurrences:

cn = 0.95cn−1 +0.12cn−2

bn = 0.95bn−1 +0.14cn−2

We analyse the female population. If we define

Cn :=
(

cn

cn−1

)
,

then

Cn+1 =
(

0.95 0.12

1 0

)
Cn .

Suppose

A :=
(

0.95 0.12

1 0

)
.

Then the minimal polynomial of A is

t 2 −0.95t −0.12,

which has distinct roots. Hence we can compute the spectral decomposi-

tion of A, with the result that

An = (1.0629)nE1 + (−0.1122)nE2,

where

E1 =
(

0.9040 0.1021

0.8505 0.0960

)
, E2 =

(
0.0960 −0.1021

−0.8505 0.9040

)
.

(The matrices E1 and E2 are idempotent and E1E2 = E2E1 = 0.) From this

we learn that, in the long term, the number of female buffalo will increase

annually by 6.29%. The actual numbers at the end of year n will be closely

approximated by the vector

(1.0629)n−1(0.9040c2 +0.1021c1).

This shows that the size of the population is sensitive to the initial condi-

tions, even though the growth rate is not.

We now consider the males too. Suppose

Dn :=

 cn

cn−1

bn

 .

Then

Dn+1 =

0.95 0.12 0

1 0 0

0 0.14 0.95

Dn .

Here the coefficient matrix is block-triangular, and its minimal polynomial

is

(t −0.95)(t 2 −0.95t −0.12).



M O R E L I N E A R A LG E B R A 147

(1) Show that the male population grows as a power of 1.0629.

(2) What is the asymptotic ratio of males to females? (It can be determined

from an idempotent.)

14.2 Burgers

We continue with the model of the previous section, but we assume that

each year a certain number hn of the adult females are harvested. The

equations describing the female population become

cn = 0.95cn−1 +0.12cn−2 −hn

bn = 0.95bn−1 +0.14cn−2

which we write in matrix form as

Cn+1 = ACn −hn

(
1

0

)
.

Let us assume that hn = hcn , for some constant h. Then we can write the

resulting system as

Cn+1 = A(h)Cn ,

where

A(h) =
(

0.95−h 0.12

1 0

)
.

The minimal polynomial of Ah is

t 2 − (0.95−h)t −0.12. (14.2.1)

Given our model, we must have 0 ≤ h ≤ 0.95. Let θh and τh denote the

eigenvalues of A(h). Then θhτh = −0.12, since this is the constant term of

the minimal polynomial. It follows that θh and τh are distinct and therefore

A(h) is diagonalizable, for all h. For small values of h, we may assume

θh ≈ 1 and τh is small and negative. The population will grow as a power in

θh , and will be asymptotically constant if and only if θh = 1. If this happens,

then

1− (0.95−h)−0.12 = 0,

implying that h = 0.07. In this case the eigenvalues are 1 and −0.12, and

idempotent corresponding to 1 is(
0.8929 0.1071

0.8929 0.1071

)
.

(1) Explain why the female population can stay constant when we harvest

7% of the animals annually, even though the uncontrolled growth rate

is only 6.3%.
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14.3 Controllability

Consider the linear system given by(
A B

C D

)
,

where A is n ×n and B is n ×k. If the initial state of the system is x(0), then

we have the equations

x(1) = Ax(0)+Bu(0)

x(2) = A2x(0)+ ABu(0)+Bu(1)

which leads us to the general formula

x(n) = An x(0)+
n∑

i=1
An−i Bu(i −1).

Thus the state at time n is the sum of two terms, namely the state of the

uncontrolled system at time n and the state of the controlled system with

zero initial state. (This decomposition is an important property of linear

systems.)

Define the controllability matrix to be

R =
(
B AB · · · An−1B

)
.

Since A is n ×n, its minimal polynomial has degree at most n, and so if

i ≥ 0, then An+i is a linear combination of

I , A, . . . , An−1.

Therefore the column space of R is the sum of the subspaces Ar col(B),

where 0 ≤ r < n. It follows that if our initial state is zero, then the state of

the system is always an element of col(C M).

We say the pair (A,B) is controllable if, given any vector v in Fn and

starting with x(0) = 0, we can choose inputs u(0),u(1), . . . ,u(n −1) so that

x(n) = v . We will call the system itself controllable if (A,B) is.

14.3.1 Theorem. For a linear system, the following are equivalent:

(a) The pair (A,B) is controllable.

(b) The rows of the controllability matrix are linearly independent.

(c) The only A-invariant subspace that contains col(B) is Rn .

(d) No non-zero subspace of ker(B T ) is AT -invariant.

Proof. By the previous lemma, (a) and (b) are equivalent. The column

space of the controllability matrix is the smallest A-invariant subspace that
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contains the columns of B , hence (b) holds if and only if (c) holds. We show

that (c) and (d) are equivalent too.

Suppose rk(R) < n. Then there is a non-zero vector f such that f T R = 0,

and so

f T Ar B = 0, r = 0,1, . . . ,n −1.

Consequently f T Ar B = 0 for all non-negative r , and therefore the AT -

invariant subspace generated by f lies in ker(B T ).

Conversely, if the AT -invariant subspace generated by the non-zero

vector f in ker(B T ) is contained in ker(B T ), that f T Ar B = 0 for all r , and

rk(R) < n.

14.3.2 Corollary. If B is n ×1 and (A,B) is controllable, then the minimal

polynomial of A has degree n.

There is another concept related to controllability, sometimes called

controllability to the origin. Suppose our system starts in some state x(0)

and we wish to know if there is a sequence of inputs which will drive it to

the zero state.

Now the state at time r will be

Ar x(0)+
n∑

i=1
Ar−i Bu(i ).

Since
n∑

i=1
Ar−i Bu(i ) ∈ col(R),

we see that if there is a sequence of inputs that takes the state to zero in r

steps, then Ar x(0) must lie in col(R). If r ≥ n and Ar x(0) ∈ col)R), then

there is a sequence of inputs of length r that sends the system to zero.

Thus we see, for example, that if rkR = n, then we can bring the system

to rest in n steps. To be more precise, we investigate the range of A. We

note that

col(Ar )

is a nested sequence of A-invariant subspaces which is first strictly deceas-

ing, then constant. Since dim(col(A)) ≤ n, it follows that when r ≥ n,

col(Ar ) = col(An).

We conclude that our system can be brought to rest in n steps if and only if

An x(0) ∈ col(R). Further it can be brought to rest in n steps no matter what

the initial state is, if and only if

col(An) ⊆ colR.

We conclude that any controllable system is controllable to the origin,

but the latter condition is weaker.
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(1) Show that (A,B) is controllable if and only if R has a right inverse.

(2) Show that the column space of R is the smallest A-invariant subspace

of Fn that contains the columns of B .

(3) If A is invertible, show that (A,B) is controllable to the origin if and

only if it is controllable.

14.4 Observability

Consider the linear system given by the matrix(
A B

C D

)
.

We consider the problem of determining the initial state from the observed

values of y . We have

x(r +1) = Ax(r )+Bu(r ), y(r ) =C x(r )+Du(r ).

Since we know the values of the input vectors u(r ), our problem reduces to

that of reconstructing x(0) from the vectors C x(r ). Now

x(r +1) = Ar x(0)+
r∑

i=1
Ar−i Bu(i );

since the vectors Ar−i Bu(i ) are known, the final form of our problem is to

reconstruct x(0) from the sequence C Ar x(0) for r = 0,1, . . .. Since A is n ×n,

it follows that the first n values of this sequence determine the rest.

We say that the pair (C , A) is observable if the sequence

C x,C Ax, . . . ,C An−1x

determines x (in all cases). The system itself is observable if (C , A) is. De-

fine the observability matrix O by

O :=


C

C A
...

C An−1

 .

14.4.1 Theorem. The pair (C , A) is observable if and only if the columns of

the observability matrix are linearly independent.

Proof. If the columns of O are linearly independent, then it has a left in-

verse N . So NOx = x, and thus we recover x.

14.4.2 Corollary. The pair (C , A) is observable if and only if (AT ,C T ) is

controllable.

This implies for example, that (C , A) is observable if and only if no sub-

space of ker(C ) is A-invariant.



M O R E L I N E A R A LG E B R A 151

14.5 Feedback and Controllability

Consider the system

x(n +1) = Ax(n)+Bu(n).

If we take u to be given by

u(n) = K x(n)+ v(n),

then our system becomes

x(n +1) = (A+BK )x(n)+B v(n).

The K x(n) term is called feedback ; the behaviour of the original system is

governed by A, the behaviour of the system with feedback is governed by

the matrix A+BK . We show that feedback does not effect controllability.

14.5.1 Lemma. Suppose A is n ×n and B is n ×k. Then for any k ×n matrix

K , the pair (A,B) is controllable if and only if (A+BK ,B) is.

Proof. We show that col(R(A+BK ,B) ⊆ col(R(A,B). Since

A = (A+BK )+B(−K ),

it follows that these two column spaces are equal.

If v ∈ col(R), then Av ∈ col(R) and

BK v ∈ col(B) ⊆ col(R),

whence (A +BK )v ∈ col(R). It follows that col(R) is an (A +BK )-invariant

subspace that contains col(B), and therefore it contains the column space

of R(A+BK ,B).

14.5.2 Lemma. If (A,B) is controllable and b is a non-zero column of B ,

then there is a matrix K such that (A+BK ,b) is controllable.

Proof. Assume A is n ×n and that (A,B) is controllable. We aim first to find

columns b1, . . . ,bk of B and integers r1, . . . ,rk , such that the union of the

sets

S(bi ,ri ) := {bi , Abi , . . . , Ari−1bi }

is a basis for Fn . This is straightforward. Choose b1 equal to b and choose

r1 to be the greatest integer such that the vectors

b1, Ab1, . . . , Ar1−1b1

are linearly independent. Next, assume inductively that we have found

b1, . . . ,b j−1 and r1, . . . ,r j−1 such that⋃
i< j

S(bi ,ri )
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is linearly independent. The span of this set of vectors in A-invariant and

so, if this set contains fewer than n vectors, there must be a column of B

which it does not contain. Take b j to be such a vector, and let r j be the

greatest integer such that the span of S(b j ,r j ) contains no non-zero vectors

from the span of the above union.

There is a unique linear mapping L such that

L (A j bi ) =
bi+1, if j = ri −1;

0, otherwise.

Let L be the matrix representing L . We claim that the vectors

b, (A+L)b, . . . , (A+L)n−1b

are linearly independent.

Since L Ai b1 = 0 if i < r1 −1 and L Ar1−1b1 = b2, we see that if i > 1, then

(A+L)r1−i b = Ar1−i b = Ar1−i b1

and

(A+L)r1 b = Ar1 b1 +b2.

Starting from this, a reasonably easy induction argument, which we omit,

shows that the span of the m vectors

(A+L)i b, i = 0,1, . . . ,m −1

is equal to the span of the first m vectors from

S(b1,r1)∪·· ·∪S(bk ,rk ).

This proves our claim.

To complete the proof, we note that the image of L is spanned by

columns of B , and therefore there is a matrix K such that L = BK .

14.5.3 Corollary. Let b be a non-zero column of B . The pair (A,B) is con-

trollable if and only if there is a matrix K such that (A +BK ,b) is control-

lable.

Proof. The previous lemma shows that if (A,B) is controllable and b is a

non-zero column of B , then there is a matrix K such that (A +BK ,b) is

controllable. For the converse we note that if (A +BK ,b) is controllable,

then certainly (A +BK ,B) is controllable. By Lemma 14.5.1, this implies

that (A,B) is controllable.

(1) Let b be a non-zero element of colB . Show that (A,B) is controllable if

and only if there is a matrix K such that (A+BK ,b) is controllable.
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14.6 Canonical Forms

We consider first the general system

x(n +1) = Ax(n)+Bu(n),

y(n) =C x(n)+Du(n).

Suppose M is invertible and x(n) = M z(n) for all non-negative n. Then we

rewrite our system as

z(n +1) = M−1 AM z(n)+M−1Bu(n),

y(n) = MC z(n)+Du(n).

These two systems correspond respectively to the block matrices(
A B

C D

)
,

(
M−1 AM M−1B

MC D

)
.

We say two systems related in this way are equivalent. We will also say that

the pairs (A,B) and (M−1 AM , M−1B) are equivalent.

We now confine ourselves to the single-input case, where B is n × 1.

Suppose A is n ×n and set M =R(A,b). Then

AM =
(

Ab A2b · · · Anb
)
= MP ,

where F is the companion matrix of ψb , the minimal polynomial of A

relative to b. If (A,b) is controllable, then rk(M) = n, and so M is invertible.

It follows that M−1 AM = F . Since R(A,b)e1 = b, we also find that M−1B =
e1. We conclude that if a pair (A,b) is controllable, then our original system

is equivalent to the system (
F e1

C M D

)
.

where F is the companion matrix of the minimal polynomial of A. If we

also have a single output, that is, if C is 1×n, then C = cT and

cT M =
(
cT b cT Ab · · · cT An−1b

)
.

It follows that our system is determined by the minimal polynomial of A

and the entries of this vector.

From ??, we know that if F is a companion matrix of order n ×n, there

is an symmetric invertible matrix Q such that Q−1FQ = F T . We see that

Qen = e1, and therefore the pair (F ,e1) is equivalent to the pair (F T ,en).

The pairs (C ,e1) and (C T ,en) are called the controllability canonical forms

of the pair (A,b).

There are analogous canonical forms for observable pairs (cT , A), but

these can be deduced from our work above, applied to the controllable pair

(AT ,c).
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14.7 Eigenvalues and Controllability

In this section our matrices are real matrices, but our subspaces may be

complex. (For example, eigenspaces.)

14.7.1 Lemma. The pair (A,B) is controllable if and only if the rows of(
A−λI B

)
are linearly independent for all complex numbers λ.

Proof. First suppose z 6= 0 and

z∗
(

A−λI B
)
= 0. (14.7.1)

Then z∗Ar = λr z∗ and z∗B = 0, so z∗R = 0. Hence the rows of the control-

lability matrix are linearly dependent, and therefore (A,B) is not control-

lable.

On the other hand if (A,B) is not controllable, then by Theorem 14.3.1

there is an AT -invariant subspace of ker(B T ), and this subspace must

contain an eigenvector z of AT . If the eigenvalue belonging to z is λ, then

(14.7.1) is satisfied.

The spectrum of a matrix is the multiset formed by its eigenvalues, and

their algebraic multiplicities. The spectrum of a real-matrix is conjugate

closed—if θ is an eigenvalue, then its complex conjugate θ̄ is an eigenvalue

with the same algebraic multiplicity.

14.7.2 Theorem. Let A be an n ×n real matrix. The pair (A,B) is control-

lable if and only each conjugate-closed multiset of complex numbers with

size n occurs as the spectrum of some matrix A+BK .

Proof. Assume first that we can choose K so that A +BK has any given

conjugate-closed set of complex numbers as its eigenvalues.

Suppose there is a vector z such that

zT
(
B AB · · · An−1B

)
= 0.

Then, for all r and any K ,

zT (A+BK )r = zT Ar

and therefore

zT [(A+BK0)r − (A+BK1)r ] = 0.

Choose K0 so that all eigenvalues of A +BK0 lie inside the unit circle, and

choose K1 so that the eigenvalues of A +BK1 are the distinct n-th roots of

unity. Then

(A+BK1)ns = I

for all non-negative integers s, while

(A+BK0)ns → 0
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as s → ∞. It follows that z = 0, whence the rows of R(A,B) are linearly

independent, and (A,B) is controllable.

We turn to the converse. We first prove the result holds in the single-

input case. Suppose (A,b) is a controllable pair. We work with the equiva-

lent canonical form (F T ,en), where F T is the transpose of the companion

matrix of the minimal polynomial of A. If K is a 1×n matrix, then enK is

an n ×n matrix with its first n −1 rows zero, and with last row equal to K .

Therefore F T + enK is also the transpose of a companion matrix. By vary-

ing our choice of K , we can arrange to the last row of F T + enK to be any

desired vector, and so force F T + enK to have any desired conjugate-closed

set of complex numbers as its eigenvalues.

We consider the general case. Suppose (A,B) is controllable and b is a

non-zero column of B . Then by Lemma 14.5.2 there is a matrix K such that

(A+BK ,b) is controllable. By what we have just proved, for each conjugate-

closed set of complex numbers, there is a 1×n matrix K1 such that

A+BK +bK1

has this set as its eigenvalues. But b = Ber for some r , and so

BK +bK1 = BK +Ber K1 = B(K +er K1),

and so our result is proved.

14.8 Observers

Consider the discrete dynamical system given by the equations

x(n +1) = Ax(n)+Bu(n)

y(n) =C x(n)+Du(n).

We want to construct a second system which will accept both the input and

the output of the first system as its inputs, and as produce as its own out-

put at least an approximation to the state of our first system. To construct

such a system, we consider a second system based on the one above:

x̂(n +1) = Ax̂(n)+Bu(n)+L(y(n)− ŷ(n))

ŷ(n) =C x̂(n)+Du(n).

If this system has the property that x(n)− x̂(n) → 0 as n →∞, we call it an

asymptotic observer. If A is m ×m and x(n) = x̂(n) when n > m, we call it

an exact observer. The choice of L is up to us. We calculate

x(n +1)− x̂(n +1) = A(x(n)− x̂(n))−L(y(n)− ŷ(n))

= A(x(n)− x̂(n))−L(C x(n)−C x̂(n))

= (A−LC )(x(n)− x̂(n)).
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Now the initial difference x(0)− x̂(0) can be any vector, so we conclude that

we have an asymptotic observer if and only if A −LC is a contraction, and

an exact observer if and only if A−LC is nilpotent.

If A is n ×n and B is n ×m, we say that the pair (A,B) is stabilizable if

there is an m ×n matrix K such that all eigenvalues of A +BK lie inside

the unit circle. (In other terms, A +BK is a contraction.) Every controllable

pair is stabilizable. If C is `×n, we say that (C , A) is detectable if (AT ,C T )

is stabilizable or, equivalently, if there is a matrix L such that A +LC is a

contraction.

14.8.1 Theorem. An asymptotic observer exists if and only if (C , A) is de-

tectable. An observer exists if and only if (C , A) is observable.

14.9 Transfer Matrices

We introduce a very important tool in the study of discrete dynamical

systems: transfer matrices.

We first present this in a special case, coming from coding theory. We

suppose that a sequence (ui )i≥0 of binary vectors is encoded by a device

as a second sequence (yi )i≥0 of binary vectors. In the simplest case, we

have a matrix D and ui is mapped to Dui . But we are going to assume that

our device has a state xi (another binary vector) and that yi is computed

according to the system

xi+1 = Axi +Bui (14.9.1)

yi =C xi +Dui . (14.9.2)

Here A, B , C and D are binary matrices and A is square. (For a coding the-

orist it might be natural to assume D is n ×k; the matrix A is square.) The

first problem that arises is to reconstruct the inputs ui given the outputs yi

(and the four matrices A, B , C , D . In the real applications, the vectors yi are

corrupted by noise, and we also have the harder task of first determining

the uncorrupted values of the outputs.

We say that the system described by the four matrices is a convolutional

encoder. The space of possible output sequences is a convolutional code.

Convolutional codes are important in practice.

To make further progress, we introduce generating functions. A convolu-

tional encoder takes an input sequence

u0,u1,u2, . . .

and converts it to an output sequence

y0, y1, y2, . . . .

In any practical situation, the vectors ui will be zero for all sufficiently large

i , but we defer imposing this as a requirement. One standard way to deal
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with infinite sequences is to encode them as formal power series, and so

we define

U (z) := ∑
i≥0

z−i ui , Y (t ) := ∑
i≥0

z−i yi .

These can be viewed as formal power series in the variable z−1 with vectors

as coefficients, or as vectors whose entries are formal power series of F.

(We tend to prefer the latter view.) We say that U (z) is a generating function

for the sequence (ui )i≥0.

Next we assume that x0 = 0 and introduce the generating function X (t ).

The defining equations for our encoder give us

z X (z) = AX (z)+BU (z), Y (t ) =C X (z)+DU (z),

and consequently

Y (z) = (D +C (zI − A)−1B)U (z).

It follows that our encoder is completely specified by the proper rational

matrix

G(z) := D +C (zI − A)−1B .

If we have a discrete dynamical system over a field F, given by the matrix(
A B

C D

)
(14.9.3)

we define the transfer matrix of the system to be

D +C (zI − A)−1B .

The transfer matrix completely determines the response of our system to

a given input sequence (given that x0 = 0). If ei denotes the i -th standard

basis vector, then the generating function of the output sequence corre-

sponding to the input sequence

ei ,0,0, . . .

is the i -th column of G(z). This provides a very natural interpretation of

the columns of G(z), and shows that we can find the transfer matrix of a

system by determining its response to each of the above input sequences.

In particular it is not unusual to be given the transfer matrix of a system,

rather than the state-space description.

It may seem more natural to use formal power series in z rather than

z−1, but the above choice is standard in control theory.





Part III

Convexity





15

Norms

15.1 Convexity

We work over R. We say that a vector v is an affine combination of vectors

x1, . . . , xn if

v =∑
i

ai xi

and
∑

ai = 1. An affine combination is proper if it has at least two non-

zero coefficients. The set of all affine combinations of a set of vectors is the

affine hull of the set. The affine hull of x is x itself. The affine hull of {x, y}

(where x 6= y) is

{t x + (1− t )y : t ∈R}.

Geometrically this set is the unique line passing through the points repre-

sented by x and y . Note that this line contains 0 if and only if x and y are

linearly dependent.

If U is a subspace of V and then a coset of U is a set of the form

{a +u : u ∈U },

for some a in V .

15.1.1 Lemma. The affine hull of a set of vectors {x1, . . . , xm} is a coset of the

subspace spanned by x2 −x1, . . . , xm −x1.

An affine subspace is a set S that is closed under affine combinations.

We say that vectors x1, . . . , xm are affinely dependent if there are scalars

ai , not all zero, such that

∑
i

ai = 0,
∑

i
ai xi = 0.

If a set is not affinely dependent, it is affinely independent. Note that any

single vector, including the zero vector, is affinely independent.
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A vector v is a convex combination of vectors x1, . . . , xm if there are

scalars a1, . . . , am such that∑
i

ai = 1, ai ≥ 0 (i = 1, . . . ,m)

and

v =∑
ai xi .

Thus a convex combination is a non-negative affine combination. A convex

combination is proper if its has at least two non-zero coefficients. The con-

vex hull of a subset S is the set of all convex combinations of elements of S.

A set S is convex if any convex combinations of its elements is contained in

S, that is, if S is equal to its convex hull.

The convex hull of two distinct vectors consists of the line segment

that joins them. Hence a set S is convex if, whenever x and y belong to

S, so do all points on the line segment joining them. We also see that the

intersection of two convex sets is convex.

A real-valued function f on Rn is convex if

f (t x + (1− t )y) ≤ t f (x)+ (1− t ) f (y), 0 ≤ t ≤ 1.

(1) If a ∈Rn , show that f (x) := exp(aT x) is a convex function.

(2) Show that set of positive semidefinite matrices is the convex hull of the

matrices with rank 1.

(3) Suppose ai ≥ 0 and
∑

i ai = 1. If f is convex, prove that

f

(∑
i

ai xi

)
≤∑

i
ai f (xi ).

(4) Use the result of the previous exercise with f (x) = xp (p > 1) to show

that ∑
i
|xi yi | ≤

(|xi |p
)1/p (|yi |q

)1/q ,

where 1/p +1/q = 1. (This is Hölder’s inequality.)

15.2 Extreme Points

Let C be a convex set. A point x is C is extreme if it cannot be expressed

as the convex combination of points in C \x. The extreme points of a line

segment are its endpoints. Suppose C is convex and x ∈ C . Let ` be a

line through x. Then `∩C is a line segment. The interior points of this

line segment are not extreme. A closed convex set is the convex hull of its

extreme points. We will not prove this, but we consider two cases that will

be useful.

15.2.1 Lemma. Let S be the set of vectors x in Rn such that |xi | ≤ 1 for all i .

Then S is the convex hull of the vectors with all entries ±1.
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Proof. It is easy to verify that S is convex, we leave this as an exercise. We

show that it is the convex hull of the ±1-vectors.

We prove this by induction on n, asserting that it is trivial when n = 1.

Assume v ∈ S and that v1 = 1. Let v ′ be the vector we get by deleting the

first entry of v . Then v ′ lies in the set of vectors x in Rn−1 such that |xi | ≤ 1,

and so by induction it is a convex combination of the ±1-vectors in Rn−1. It

follows that v is a convex combination of those ±1-vectors in Rn with first

entry equal to 1. If v1 =−1, then −v ′ is a convex combination of ±1-vectors

x1, . . . , xm , and so v ′ is a convex combination of the vectors −x1, . . . ,−xm ,

but these are ±1-vectors too. It follows that if |vi | = 1, then v is a convex

combination of ±1-vectors.

Now suppose that |vi | < 1 for all i . Let v+ be the vector such that (v+)i =
1 if vi ≥ 0 and (v+)i =−1 if vi < 0. Then

((1− t )v++ t v)i =
1− t + t vi , if vi ≥ 0;

t −1+ t vi , otherwise.

from which we eventually deduce that w = (1− t )v++ t v ∈ S provided

0 ≤ t ≤ 2

1−|vi |
.

Choose t so that t = 2/(1− |v j |) for some j . Then |w j | = 1, and therefore

v is a convex combination of v+ and w . Since |w j | = 1, it is the convex

combination of ±1-vectors, and therefore v is too.

15.2.2 Lemma. Let S be the set of vectors x such that∑
i
|xi | ≤ 1.

Then S is the convex hull of the vectors ±ei for i = 1, . . . ,n.

(1) Show that if x is a proper convex combination of points from C , it is

the proper convex combination of two points.

(2) Let C be a convex set and let f be a convex function. If the point x0 in

C maximizes the value of f , show that it is an extreme point.

(3) Prove (??).

15.3 Norms

Let V be a vector space over F, where F is R or C. A norm on V is a function

from V to R, whose value on x is written ‖x‖, such that

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

(2) If c ∈R, then ‖cx‖ = |c|‖x‖.
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(3) If ‖x + y‖ ≤ ‖x‖+‖y‖.

The third axiom is called the triangle inequality. It implies that any norm is

a convex function on V . The set

{x : ‖x‖ ≤ 1}

is called the unit ball of the norm, but it need not be very round.

We consider some examples over R. If we have an inner product on V ,

then we can define a norm by

‖x‖ :=
√
〈x, x〉

The only difficulty here is to verify the triangle inequality. We note that

‖x + t y‖2 = 〈x + t y , x + t y〉 = 〈x, ,〉x +2〈x, y〉t +〈y , y〉t 2.

This is a quadratic in t which is non-negative for all t , and consequently

〈x, y〉2 −〈x, x〉〈y , y〉 ≤ 0,

which is usually called the Cauchy-Schwarz inequality. It follows that

〈x, x〉+2〈x, y〉t +〈y , y〉t 2 ≤ 〈x, x〉+2〈x, y〉t +〈y , y〉t 2

≤ 〈x, x〉+2‖x‖‖y‖t +〈y , y〉t 2

= (‖x‖+ t‖y‖)2.

We conclude that ‖x‖+ t y ≤ ‖x‖+‖t y‖, which yields the triangle inequality.

If our inner product is the dot product our norm is the usual Euclidean

norm or `2-norm and is denoted by ‖·‖2 or, sometimes, by ‖·‖. The unit

ball for the Euclidean norm is the unit ball.

If 〈·, ·〉 is a complex inner product, the function√
〈x, x〉

is a norm. Note that 〈x, x〉 is guaranteed to be real and non-negative.

Once we have a norm, we can declare that a sequence x0, x1, . . . of vec-

tors converges to x if the sequence of real numbers

‖x −x0‖, ‖x −x1‖, . . .

converges to 0. It is a somewhat surprising fact that if a sequence of vec-

tors in a finite-dimensional vector space converges with respect to one

norm, then it converges with respect to all. (This is false if the dimension is

infinite, as the exercises show.)

(1) Prove that a norm is a convex function.
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(2) Let V =C [0,1], the space of continuous functions on the interval [0,1].

If f ∈V , let ‖ f ‖ be the norm asssociated with the inner product

〈 f , g 〉 :=
∫ 1

0
f (x)g (x)d x

and let ‖ f ‖∞ be the norm defined by

‖ f ‖∞ = max{ f (x) : x ∈ [0,1]}.

(You may prove that this is a norm.) Define

gr (x) := (4x(1−x))r .

Prove that ‖gr ‖→ 0 as r →∞, but ‖gr ‖∞ = 1 for all r .

15.4 Dual Norms

We introduce two further norms. We define ‖x‖1 by

‖x‖1 := max
i

∑
i
|xi |

and ‖x‖∞ by

‖x‖∞ := max
i

|xi |.
These are known respectively as the `1 and `∞-norms on Rn . As we saw in

the previous section, the unit ball for the `1-norm is the convex hull of the

vectors ±ei and the unit ball for the `∞-norm is the convex hull of the ±1

vectors. (These definitions work over both R and C, we will only use them

over R though.)

If ‖·‖ is a norm, we define the dual norm ‖·‖∗ by

‖a‖∗ := max
‖x‖=1

xT a.

We leave the proof that this is a norm as an exercise. As another exercise,

we leave you to prove that ‖x‖∗∗ = ‖x‖, for any x.

By way of example, we determine the dual of the `∞-norm. Our prob-

lem is compute the maximum value of the function xT a over the vectors

x in the unit ball of the `∞-norm. This is linear in x, and hence convex;

therefore its maximum value occurs at an extreme point of this ball. By

Lemma 15.2.1, the extreme points are the ±1-vectors and hence ‖a‖∗∞ is

equal to the maximum value of xT a, as x ranges over the set of ±1-vectors.

Clearly this maximum is realized when xi ai > 0 for each i , and therefore

‖a‖∗∞ =∑
i
|ai | = ‖a‖1.

(1) Let V be the Euclidean space Rn . Determine the largest C and the

smallest D such that

C‖x‖∞ ≤ ‖x‖ ≤ D‖x‖∞.
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(2) If the function ‖·‖∗ is defined on Rn by

‖y‖∗ = max
‖x‖=1

xT y ,

show that it is a norm.

(3) Prove that ‖x‖∗∗ = ‖x‖, for any x.

(4) Prove that yT x ≤ ‖x‖‖y‖∗, and show that this bound is tight.

(5) Show that the `1-norm is dual to the `∞-norm, and vice versa.

15.5 Matrix Norms

Let B be an algebra over the reals. A norm on B is a function ‖·‖ from B to

R that is norm, when we view B as a vector space, and in addition satisfies:

‖AB‖ ≤ ‖A‖‖B‖.

If ‖·‖ is a norm on a vector space V then the unit ball

{x ∈V : ‖x‖ ≤ 1}

is a closed convex set. If ‖·‖ is a norm on an algebra then the unit ball must

be closed under multiplication, hence forms a semigroup.

Now suppose ‖·‖ is a norm on L(V ), viewed as a vector space. The unit

ball is compact and so, if A ∈ L(V ) then there is a constant γA such that, if

‖X ‖ ≤ 1,

‖AX ‖ ≤ γA .

If we define γ to be the maximum value of γA , where ‖A‖ ≤ 1, then

‖AB‖ = ‖A‖‖B‖γ.

From this it follows that γ−1‖·‖ is a norm on L(V ), viewed as an algebra.

We will refer to a norm on an algebra as an operator norm or matrix norm,

according as the elements of our algebra are linear mappings or matrices.

Let V be a normed vector space, with norm ‖ · ‖. If T is an endomor-

phism of V , we define the induced norm of T by

‖T ‖ = max{‖T x‖ : ‖x‖ = 1}.

Equivalently, it is the maximum value of ‖T x‖/‖x‖, for all non-zero vectors

x in V . It is straightforward to verify that this is a norm on L(V ), with the

useful properties:

‖T x‖ ≤ ‖T ‖‖x‖
and

‖ST ‖ ≤ ‖S‖‖T ‖.
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Unless explicitly stated otherwise, we use the same symbol to denote a

norm on Rn and the norm it induces on n ×n matrices. If ‖·‖ is an induced

norm, then ‖I‖ = 1.

If ‖·‖ is an induced norm then for any matrix A and vector x, we have

the very useful inequality:

‖Ax‖ ≤ ‖A‖‖x‖.

If ‖·‖a and ‖·‖b are any two norms on a vector space, we say that ‖·‖b

dominates ‖·‖a if, for all v in V ,

‖v‖a ≤ ‖v‖b .

A norm is minimal if it does not dominate any other norm. Generally

minimal norms are more useful than general norms.

15.5.1 Lemma. Every matrix norm dominates an induced norm.

Proof. Suppose ‖·‖ is a matrix norm. We use this to construct a norm on Rn

whose induced norm is dominated by ‖·‖.

Let a be a fixed non-zero vector in Rn . We define ‖·‖a by

‖b‖a := ‖baT ‖.

Then

‖Ax‖a = ‖AxaT ‖ ≤ ‖A‖‖x‖a

and the matrix norm induced by ‖·‖a is dominated by ‖·‖.

15.5.2 Theorem. Let ‖·‖ be a norm on Rn with dual norm ‖·‖∗. If A is a

square matrix then ‖A‖∗ = ‖AT ‖.

Proof. We have

‖Ax‖∗ = max
‖y‖=1

yT Ax = max
‖y‖=1

xT AT y

and so

‖A‖∗ = max
‖x‖∗=1

max
‖y‖=1

xT AT y .

Now

max
‖x‖∗=1

xT b = ‖b‖∗∗ = ‖b‖

and consequently

‖A‖∗ = max
‖y‖=1

‖AT y‖ = ‖AT ‖.

In the sequel any norm we use on matrices will be a matrix norm. If

(An)n≥0 is a sequence of matrices and we write that An → 0, we mean that

‖An‖→ 0, for some norm ‖·‖.

(1) Let ‖·‖ be a norm on Rn , and let ‖·‖ also denote the induced matrix

norm. Prove that ‖abT ‖ = ‖a‖‖b‖∗ and hence that bT a ≤ ‖abT ‖.

(2) Prove that if n ≥ 1, then ‖An‖1/n ≤ ‖A‖.
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15.6 Examples

The Euclidean or trace norm of a matrix is the norm associated with the

inner product

〈A,B〉 := tr AT B .

We denote this norm by ‖·‖2 or, sometimes, by ‖·‖. Note that ‖A‖2
2 is the

sum of the squares of the entries of A. We have

‖AB‖2
2 =

∑
i , j

∣∣∣∣∑
r

Ai ,r Br , j

∣∣∣∣2

≤∑
i , j

(∑
r
|Ai ,r |2

)(∑
r
|Br , j |2

)

=
(∑

i ,r
|Ai ,r |2

)(∑
r , j

|Br , j |2
)

= ‖A‖2
2 ‖B‖2

2.

We have ‖In‖ = n and so the trace norm is not an induced norm.

We turn next to induced matrix norms. First we note that

‖Ax‖2
2 = (Ax)T Ax = xT AT Ax

and therefore

max
‖x‖2=1

‖Ax‖2

is equal to
p
ρ, where ρ is the largest eigenvalue of AT A. (But since we

have not discussed eigenvalues at any length yet, we defer any further

discussion.)

Both of above norms have the useful property that, if Q is orthogonal,

then ‖Q A‖ = ‖A‖.

15.6.1 Lemma. Let A be a square matrix. Then

‖A‖∞ = max
i

‖eT
i A‖1.

Proof. The function x 7→ ‖Ax‖∞ is convex and hence realizes its maximum

at an extreme point of the unit ball relative to the `∞ norm. These extreme

points are the ±1-vectors. If x is a ±1-vector then

|(Ax)i | = |∑
j

Ai , j x j | ≤
∑

j
|Ai , j x j | ≤

∑
j
|Ai , j | = ‖eT

i A‖1.

Further, equality holds throughout if we choose x so that Ai , j x j ≥ 0. This

proves the lemma.

15.6.2 Lemma. Let A be a square matrix. Then

‖A‖1 = max
i

‖Aei‖1.

Proof. Since `1 and `∞-norms are dual, we can apply Theorem 15.5.2 to

the previous lemma, concluding that

‖A‖1 = ‖AT ‖∞ = max
i

‖eT
i AT ‖1 = max

i
‖Aei‖1.

(1) If ‖·‖ is the trace norm or the induced `2-norm, and Q is an orthogonal

matrix, show that ‖Q A‖ = ‖A‖
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15.7 Matrix Functions

We say a matrix is a function of a variable t if each element of the matrix is.

This makes sense over any field, but here we work over R or C. If the matrix

A(t ) is a function of t then
d

d t
A(t )

is the matrix we get by differentiating each entry of A(t ) with respect to t .

As an example, we consider the differential equation

f ′′+a f ′+b = 0. (15.7.1)

This is equivalent to the following pair of equations:

d

d t
f ′ =−a f ′−b,

d

d t
f = f ′,

which we can rewrite as

d

d t

(
f ′

f

)
=

(
−a −b

1 0

)(
f ′

f

)
.

We can solve this using the matrix exponential.

For any square matrix A we define

exp(t A) :=
∞∑

n=0

t n

n!
An .

But we need to see that this makes sense. We have

‖An‖∞ ≤ ‖A‖n
∞

and so, if a := ‖A‖∞, each entry of An is bounded in absolute value by an .

Therefore each entry of
m∑

n=0

t n

n!
An

converges as m →∞, for any value of t . Moreover we are entitled to differ-

entiate the series term-by-term, with the result that

d

d t
exp(t A) =

∞∑
n=1

t n−1

(n −1)!
An = A exp(t A).

Now define the vector F (t ) by

F (t ) =
(

f ′

f

)

and suppose

A :=
(
−a −b

1 0

)
.
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Then (15.7.1) becomes
d

d t
F (t ) = AF (t )

and it is easy to see that this has the solution

F (t ) = exp(t A)F (0).

Although this method of solving differential equations is very important,

it is of limited use as a tool for solving particular equations. It is computa-

tionally difficult to compute exp(A) because, even though

1

n!
An → 0

as n → ∞, for moderate values of n this ratio can be very large. The diffi-

culty is essentially the same as attempting to compute exp(100) using the

power series for the exponential.

(1) Show that

exp t (A+B) = exp(t A)exp(tB)

if and only if AB −B A = 0.

(2) If S is skew symmetric, show that exp(S) is orthogonal.

(3) If

H :=
(

0 1

−1 0

)
,

show that exp(πH) =−I .

15.8 Powers

We have seen the exponential series in a matrix A is well-defined and

useful. We will find useful to consider other power series with matrix argu-

ments. Our next result provides a basic tool.

15.8.1 Lemma. If A is a non-zero matrix and ‖·‖ is a matrix norm, then the

sequence ‖An‖1/n converges to a limit ρ. Further ρ ≤ ‖An‖1/n for all n.

Proof. By way of abbreviation, let f (n) = ‖An‖1/n . Note first that

‖Akm‖ ≤ ‖Am‖k ,

and therefore f (km) ≤ f (m). Assume n = km +`, where 0 ≤ `< m. Then

f (km +`) ≤ f (km)
km

km+` f (`)
`

km+` ≤ f (m)
km

km+` f (`)
`

km+`

Given ε> 0 and fixed m, it follows that for all but finitely many n, we have

f (n) ≤ (1+ε) f (m).
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We say that f (m) is a record for f if, when k < m,

f (m) < f (k).

Consider the sequence of records for f . If it is finite, let ρ denote its last

member. If it is not finite, then it is a strictly decreasing sequence, bounded

below by 0 and therefore it has a limit, which we denote by ρ. From the

previous paragraph it follows that if ε > 0, then f (n) ≤ (1+ ε)ρ for all but

finitely many values of n. Consequently the sequence ‖An‖1/n converges to

ρ and ρ ≤ ‖An‖1/n for all n.

This lemma does not guarantee that ρ−n An converges. For example, if

A =
(

cosθ −sinθ

sinθ cosθ

)
then

An =
(

cosnθ −sinnθ

sinnθ cosnθ

)
and, using the trace norm

‖An‖ = ‖A‖ = 2.

Therefore ‖An‖1/n = 1 but, nonetheless, the sequence (An)n≥0 does not

converge except in special cases.

The quantity

l i mn→∞‖An‖1/n

is known as the spectral radius of A.

We want to work with the geometric series∑
r≥0

t r Ar .

15.8.2 Lemma. The series
∑

r≥0 t r Ar converges if and only if t n An → 0 as

n →∞. If it does converge, its limit is (I − t A)−1.

Proof. We have

(I − t A)(I + t A+·· ·+ t n−1 An−1) = I − t n An .

Suppose I − t A is not invertible. Then there is a non-zero vector u such that

(I − t A)u = 0. Therefore t Au = u and t r Ar u = u for all r . So t n An does not

converge to 0 and, since

(I + t A+·· ·+ t n−1 An−1)u = nu,

the series
∑

r≥0 t r Ar does not converge.

Hence we may suppose that I − t A is invertible and consequently

I + t A+·· ·+ t n−1 An−1 = (I − t A)−1(I − t n An).

The lemma follows immediately.
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15.8.3 Corollary. Let ρ be the spectral radius of A. The series
∑

r t r Ar

converges (to (I − t A)−1) if |t | < ρ−1 and diverges if |t | > ρ−1.

Proof. We observe that t n An converges to 0 if and only if ‖t n An‖ does.

By Lemma 15.8.1 we see that t n An → 0 if |t | < ρ−1 and that it does not

converge if |t | > ρ.

This result shows that ρ−1 is the radius of convergence of the series∑
n t n An .

15.9 Contractions

We call a linear map T a contraction relative to the norm ‖·‖ if ‖T n‖→ 0 as

n increases. Our first result shows that being a contraction is independent

of the norm we use.

15.9.1 Lemma. The linear map T is a contraction if and only if its spectral

radius is less than 1.

Proof. Let ρ be the spectral radius of T . Let ‖·‖ be an operator norm, and

suppose ε> 0. By Lemma 15.8.1, for all sufficiently large values of n,

ρn ≤ ‖T n‖ ≤ (ρ+ε)n .

The result follows at once.

While this result has its uses, it does not provide an effective means

of deciding if a particular map is a contraction. But contractions are im-

portant, and so we need effective ways of recognizing them. If there is an

operator norm such that ‖T ‖ < 1, then since

‖T n‖ ≤ ‖T ‖n ,

it follows that T is a contraction. Our work in this section shows that, if T is

a contraction, there is a norm ‖·‖ such that ‖T ‖ < 1.

If B is a positive definite matrix then the bilinear form

〈u, ,〉v = uT B v

is an inner product, and
p

uT Bu is a norm. (See Lemma 16.2.2.)

15.9.2 Lemma. A matrix A is a contraction if and only if there is a positive

definite matrix B such that B − AT B A is positive definite.

Proof. Suppose first that B is positive definite and B − AT B A is positive

definite. Then for any non-zero vector v ,

0 < vT (B − AT B A)v = vT B vT − vT AT B Av .

If ‖·‖B denotes the norm determined by B , this shows that, for any non-

zero vector v ,

‖Av‖B < ‖v‖B
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and therefore ‖A‖B < 1.

To complete the proof, we show that if C is positive definite and the

equation

X − AT X A =C (15.9.1)

has a positive definite solution X , then A is a contraction. If X satisfies

(15.9.1), then

X =C + AT X A

AT X A = AT C A+ (AT )2X A2

(AT )2X A2 = (AT )2C A2 + (AT )3X A3,

which leads us to conjecture (and you to prove, by summing enough of

these equations) that

X − (C + AT C A+·· ·+ (AT )n−1C An−1) = (AT )nC An .

Since the right side of this identity goes to 0 as n increases, we conclude

that

X = ∑
r≥0

(AT )r C Ar

is a solution to (15.9.1). Because C is positive definite, vT C v > 0 for all

non-zero vectors v , and therefore

vT (AT )r C Ar v > 0

for all non-zero vectors v . Consequently X is positive definite.

Equation (15.9.1) is known as Stein’s equation. It is a system of linear

equations in the entries of X , and so can readily be solved. Since all we

need of C is that it be positive definite, we may choose C = I . The proof

of the lemma shows that if A is a contraction, then Stein’s equation has

a unique solution. Therefore we could determine if A is a contraction by

solving X − AT X A = I , and then testing whether the solution X is positive

definite. (This can be decided by Cholesky factorization.)

(1) If C is symmetric and X − AT X A = C has a solution, show that it has

symmetric solution.

(2) Read up on Kronecker products (in Corollary ??), and then show that, if

A does not have distinct eigenvalues whose product is equal to 1, then

X − AT X A = I has a solution.

15.10 Projections

We study subspaces and projections in Rn ; our results extend to any inner

product space. Suppose U is a k-dimensional subspace of Rn , and let Y

be an n ×k matrix whose columns form a basis for U . The Gram-Schmidt
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algorithm implies that there is a k ×k upper-triangular matrix P such that

the columns of Y P are orthogonal. As Y and Y P have the same column

space, it follows that the columns of Y P form an orthonormal basis for U .

For our purposes we may as well assume that we chose Y so that Y T Y =
Ik , without further ado. If we define

P = Y T Y

then we see that P is symmetric and

P 2 = Y T Y Y T Y = Y T Y = P .

Hence P represents orthogonal projection onto its column space. As

rkP = rkY = k and as the column space of P is contained in the column

space of Y , it follows that the column space of P equals U . So P represents

orthogonal projection onto U . One consequence of this is that the proper-

ties of the collection of k-dimensional subspaces of Rn are mirrored by the

properties of the n ×n orthogonal projections with rank k.

Our projections are symmetric and there is a natural inner product on

the space of symmetric matrices:

〈A,B〉 = tr(AB).

If Pi = Y T
i Yi where Yi is n ×k and Y T

i Yi = Ik then

〈P1,P2〉 = tr(Y1Y T
1 Y2Y T

2 ) = tr(Y T
2 Y1Y T

1 Y2)

= tr((Y T
1 Y2)T (Y T

1 Y2))

≥ 0.

Further

〈P1 −P2,P1 −P2〉 = tr(P 2
1 −P1P2 −P2P1 +P 2

2 )

= tr(P1 +P2 −2P1P2)

= 2k −2〈P1,P2〉.

Thus the value of k − tr(P1P2) can be viewed as a measure of how close the

subspaces represented by P1 and P2 are.

If P and Q are projections defining two subspaces U and V of Rn and x

is a unit vector in Rn then ‖P x −Qx‖ is a measure of distance of U from V .

Now

‖P x −Qx‖2 = xT (P −Q)2x,

whence all information of this sort is contained in the matrix (P −Q)2. The

maximum value over all unit vectors x of

‖P x −Qx‖2 = xT (P −Q)2x

is the largest eigenvalue of the (real symmetric) matrix (P −Q)2. Our next

result bounds this.
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15.10.1 Lemma. Let P and Q be projections. Then ‖P x −Qx‖ ≤ ‖x‖ and, if

equality holds, x = P x +Qx and 〈P x,Qx〉 = 0.

Proof. The vectors P x and (I −P )x are orthogonal, so the points repre-

sented by the vectors 0, P x and x are the vertices of a right-angled triangle

with hypotenuse joining 0 to x. Thus (why??) they lie on the circle with

this hypotenuse as a diameter. Similarly the vectors 0, Qx and x form a

second right-angled triangle, and also lie on a circle. Now, if two triangles

in Rn share a side then the distance between their third vertices is maximal

when they lie in the same plane (and on opposite sides of their shared side).

Hence ‖P x −Qx‖ ≤ ‖x‖; if equality holds then the two triangles are copla-

nar, the two circles coincide and P x and Qx must be diametrically opposed

on the circle. Since the origin is on a circle with the line segment from P x

to Qx as a diameter, P x, 0 and Qx form a right triangle and P x must be

orthogonal to Qx. Further, 0, P x, x and Qx form the vertices of a rectangle;

by the parallelogram rule for addition of vectors in the plane, x = P x+Qx.

(1) Show that if P and Q are projections and rkP = rkQ, then tr(P −Q)3 = 0.

(2) Show that (P −Q)2 commutes with P and Q.

15.11 Contractions

In this section, we derive the characterization of contractions in terms of

eigenvalues. If M is a square matrix, we use ‖M‖1 to denote the induced

`1 norm of M—this equals the maximum value of the `1-norms of the

columns of M , as we saw in ??.

15.11.1 Theorem. Let A be a square matrix. If |θ| < 1 for all eigenvalues θ of

A, then A is a contraction.

Proof. As a first step, we prove the theorem when A is lower triangular.

Suppose A is n×n and let D t be the n×n diagonal matrix with (D t )i ,i = t i−1.

Let ∆ denote the diagonal matrix with ∆i ,i = Ai ,i . The i j -entry of D−1
t AD t

is t j−i Ai , j and so

lim
t→∞D−1

t AD t =∆.

In particular, given ε > 0, we can choose t large enough that ‖D−1
t AD t‖1

lies within ε of ‖∆‖1. Consequently, if |θ| < 1 for each eigenvalue θ, then we

can choose t so that ‖D−1
t AD t‖1 < 1.

This implies that

‖D−1
t AnD t‖1 → 0

as n →∞. Since

‖An‖1 = ‖D−1
t D−1

t AnD t D t‖ ≤ ‖D−1
t ‖1‖D−1

t AnD t‖1‖D t‖1,

it follows that ‖An‖1 → 0 as n →∞.
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If A is not triangular, then A = LT L−1, where T is triangular. Since

‖An‖ ≤ ‖L‖1‖T n‖1‖L−1‖1

and

‖T n‖1 = ‖L−1 AnL‖1 ≤ ‖L−1‖1‖An‖1‖L‖1,

we see that A is a contraction if and only if T is. To complete the proof, we

recall that A and T have the same eigenvalues.

There is another proof of this result using root vectors.

15.11.2 Lemma. Let A be an n ×n matrix over C, let θ be an eigenvalue of A

and let v be a root vector for θ. If |θ| < 1, then Am v → 0 as m →∞.

Proof. Since v is a root vector for θ, we have (A−θI )n v = 0. Then

Am = (A−θI +θI )m

and so using the binomial theorem, we find that

Am v = θm−n+1
[( m

n −1

)
(A−θI )n−1

+
(

m

n −2

)
(A−θI )n−2θ+·· ·+θn−1I

]
v .

Hence we have

Am v = θm−n+1P (m)v ,

where P (m) is a matrix whose entries are polynomials in m with degree at

most n −1. Since |θ| < 1, it follows that

θm−n+1P (m) → 0

as m →∞.

Now suppose A is an n ×n matrix with all eigenvalues inside the unit

circle. Since each vector in Cn is a linear combination of root vectors, it

follows that for any vector v ,

Am v → 0

as m →∞.

We have two methods now for determining if a square matrix A is a

contraction. We can solve Stein’s equation, as discussed in Section 15.9,

or we can compute the spectral radius from the eigenvalues of A. This

second alternative is useful if A is symmetric, or if A is real and its entries

are positive.
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15.12 Perron

We say a real matrix M is non-negative if all its entries are non-negative.

We write M ≥ N is M − N is non-negative. We say M is positive if all its

entries are positive. If M is a real matrix of any order, then we define |M | to

be the matrix we get by replacing each entry by its absolute value.

15.12.1 Lemma. Let A be an n ×n matrix with spectral radius ρ, and sup-

pose A is real and all its entries are positive. Suppose that θ is an eigen-

value such that |θ| = ρ and let x be an eigenvector wih eigenvalue θ. Then

|x| is an eigenvector for A with eigenvalue ρ.

Proof. We have

ρ|x| = |θx| = |Ax| ≤ |A| |x|
and therefore

A|x| ≥ ρ|x|.
First, suppose there is a non-negative non-zero vector z such that Az ≥

σz and σ> ρ. Then

An z ≥σn z

and therefore

‖An‖ ≥σn

for all n. This implies that the spectral radius of A is at least σ, which con-

tradicts the fact that the spectral radius equals ρ.

Now suppose that z is a non-negative non-zero vector such that Az ≥ ρz

and, for some index k, we have

eT
k Az > ρeT

k z.

Consider the vector z + tek , where t is small. Then

A(z + tek ) ≥ ρz + t Aek .

Since all entries of A are positive, it follows that, if i 6= k, then

eT
i A(z + tek ) > ρeT

i z = ρeT
i (z + tek ).

On the other hand

eT
k A(z + tek ) = eT

k Az + teT
k Aek > ρeT

k z + teT
k Aek

= ρeT
k (z + tek )+ t (Ak,k −1).

It follows that the are positive values of t such that

eT
k A(z + tek ) > ρeT

k (z + tek )

and, for these values of t , we have

A(z + tek ) > ρz + tek .

Since this is impossible, we are forced to conclude that Az = ρz.
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15.12.2 Theorem. Let A be a real square matrix with positive entries. Then

the spectral radius of A is an eigenvalue of A with algebraic multiplicity 1,

and the corresponding eigenspace is spanned by an eigenvector with all

entries positive. If θ is an eigenvalue of A not equal to ρ, then |θ| < ρ.

Proof. We have seen that there is an eigenvector x with eigenvalue ρ and

all its entries non-negative. We show that the entries of any non-negative

eigenvector with eigenvalue ρ must all be positive. Suppose ρy = Ay and

y ≥ 0. Then

ρeT
i y = eT

i Ay =∑
j

Ai , j y j .

However all entries of A are positive and y is non-negative and not zero, so

the above sum is positive. As ρ > 0, it follows that eT
i y > 0.

Next we show that ρ has geometric multiplicity 1. Assume Ay = ρy ,

where y is not a scalar multiple of x. Then there is a real number t such

that x+t y ≥ 0 and some entry of x+t y equals 0. But x+t y is an eigenvector

for A with eigenvalue ρ, and so we have a contradiction. We conclude that

ρ has geometric multiplicity 1.

Finally we show that ρ has algebraic multiplicity 1. Suppose that

(A −ρI )2w = 0 and w is not in ker(A −ρI ). Then, replacing w by −w if

needed, we may assume that x = (A −ρI )w is a positive eigenvector for

A with eigenvalue ρ. Note now that AT is a positive matrix with spectral

radius ρ. (It has the same minimal polynomial as A, hence has the same

eigenvalues.) Let y be a positive eigenvector for AT with eigenvalue ρ.

Then yT (A−ρI ) = 0, and consequently

yT x = yT (A−ρI )w = 0.

But y and x are positive, and therefore yT x > 0. Thus we conclude that, if

(A−ρI )2w = 0 then w = 0. Therefore the algebraic multiplicity of ρ is 1.

Now suppose that θ is an eigenvalue of A distinct from ρ, and let x be an

eigenvector for θ. Then, using the triangle inequality,

|θ| |xi | = |(Ax)i | =
∣∣∣∑

j
Ai , j x j

∣∣∣≤∑
j
|Ai , j x j | = (A|x|)i .

This implies that |θ| ≤ ρ. If equality holds, then∣∣∣∑
j

Ai , j x j

∣∣∣≤∑
j
|Ai , j x j |.

Thus we have n possibly complex numbers z j := Ai , j such that∣∣∣∑
j

z j

∣∣∣≤∑
j
|z j |,

which implies that there is a root of unity ξ such that ξz j is real and posi-

tive for all j . Therefore ξx is a positive eigenvector and θ = ρ.
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If yT A = ρyT and Ax = θx, where θ 6= ρ, then yT x = 0. This implies that

any non-negative eigenvector for A must be an eigenvector for ρ.

15.12.3 Lemma. Let A be a real square matrix with all entries positive, and

let x be a positive eigenvector for A with eigenvalue ρ, such that 1T x = 1. If

u is a non-zero non-negative vector, then

lim
n→∞

Anu

1T Anu
= x.

Proof. Let x be a positive eigenvector for A with eigenvalue ρ, and let y be a

positive eigenvector for AT with eigenvalue ρ. Let B be defined by

B := A− ρ

yT x
x yT .

If Az = θz and θ 6= ρ, then yT z = 0 and B z = θz. Also B x = 0 and therefore

if θ is an eigenvalue of B , then |θ| < ρ. Consequently ρ−1B is a contraction.

Let E be given by

E := 1

yT x
x yT .

Then E 2 = E and AE = E A and BE = EB = 0. Accordingly

(B +ρE)n = B n +ρnE

and, for any vector u,

Anu −ρnEu = B nu.

Therefore, since ρ−1B is a contraction, ρ−nB nu → 0 as n → ∞ and,

provided yT u 6= 0.

lim
n→∞

Anu

1T Anu
= lim

n→∞
ρ−n Anu

ρ−n 1T Anu
= 1

1T Eu
Eu = 1

1T x
x.

(1) Let A be a positive square matrix. Show that there is a non-negative

vector x such (I − A)x is non-negative and not zero if and only if A is a

contraction.
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Positive Semidefinite Matrices

16.1 Gram Matrices

The Gram matrix G of a subset x1, . . . , xn of U is the matrix with entries

given by

Gi , j = 〈xi , x j 〉.
If aT = (a1, . . . , an)T , then

aT Ga =
〈∑

i
ai xi ,

∑
i

ai xi

〉
and therefore aT Ga > 0 for any non-zero vector a. We say a matrix G is

positive definite if it is self-adjoint and aT Ga > 0 for any non-zero vector a;

if it is self-adjoint and aT AGa ≥ 0 for all a, then G is positive semidefinite.

We have just seen that Gram matrices are positive semidefinite.

16.1.1 Lemma. A set of vectors in an inner product space is linearly inde-

pendent if and only if their Gram matrix is invertible.

Proof. Suppose G is the Gram matrix for x1, . . . , xn . Then the entries of Ga

are the inner products

〈xr ,
∑

r
ar xr 〉

Hence if U is the span of the vectors x1, . . . , xn , then Ga = 0 if and only if∑
r ar xr = 0. Thus ker(G) is zero if and only if x1, . . . , xn are linearly indepen-

dent.

16.2 Factorizing Positive Semidefinite Matrices

If H is a matrix with linearly independent columns, then the product H T H

is the Gram matrix for a basis of col(H) and therefore it is positive definite.

Our next result provides a converse to this.

16.2.1 Theorem. If G is a positive definite matrix, there is a lower triangular

matrix L with diagonal entries equal to 1 and a diagonal matrix D with

positive diagonal entries, such that LGLT = D .
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Proof. If G is positive definite, then eT
i Gei > 0 for all i ; hence the diagonal

entries of G are positive.

Since L and G are invertible, D = LGLT is necessarily invertible. We

must show that L exists. We write G in partitioned form:

G =
(

a bT

b G1

)
.

If we also define

L1 =
(

1 0

−a−1b I

)
then

L1GLT
1 =

(
a 0

0 G1 −a−1bbT

)
.

Note that a 6= 0, because G is positive definite. It follows from the exercises

below that G1 − a−1bbT is positive definite. By induction, we have that

there is a lower triangular matrix L2 with diagonal entries equal to 1 such

that

L2(G −a−1bbT )LT
2

is diagonal. Taking L to be given by

L :=
(

1 0

0 L2

)
L1,

our result follows.

This result implies that G = L−1DL−T . Since the diagonal entries of D

are positive, there is a unique non-negative diagonal matrix D1/2 such that

(D1/2)2 = D and therefore

G = (L−1D1/2)(L−1D1/2)T .

A factorization of a positive-definite matrix G in the form M M T , where M

is lower triangular with positive diagonal entries, is known as a Cholesky

factorization. Any reasonable software package for linear algebra will have

a command to compute the matrix M from G .

If G is presented as a matrix X T X and LGLT = D , then

(X LT )T (X LT ) = D ,

whence we see that the columns of X LT are orthogonal (with respect to

the dot product). Thus they form an orthogonal basis for col(X ), and so

we may use the Cholesky decomposition to find orthogonal bases. We

illustrate this in the next section.

We record an important property of positive definite matrices—it is

basically a reformulation of the definition.
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16.2.2 Lemma. If A is a positive definite matrix, the bilinear form

〈x, y〉 = xT Ay

is an inner product.

Proof. Exercise.

(1) If G is positive definite and the columns of L are linearly independent,

show that LGLT is positive definite.

(2) Show that a principal submatrix of a positive definite matrix is positive

definite.

(3) Prove that if G has Cholesky factorizations M M T and N N T , then

M = N .

16.3 Computing Cholesky

The Cholesky decomposition of a positive definite matrix can be useful,

in particular it may be used to find orthogonal bases. In this section we

describe an algorithm for computing the Cholesky factorization using

elementary row operations. (But outside linear algebra courses, we rec-

ommend using methods based on the QR-factorization, which we address

later. Our point is that we can carry out Gram-Schmidt by using Gaussian

elimination.)

As a first step, we need to to note one consequence of Theorem 16.2.1.

This result shows that if G is positive definite, then by successively sub-

racting multiples of higher rows from lower rows, we can convert G to an

invertible upper triangular matrix. The product of the elementary matrices

corresponding to these operations is the lower triangular matrix L. Our

next result asserts that if we use elementary operations as described to

bring G to row echelon form, we obtain the Cholesky factorization of G .

16.3.1 Lemma. Let G be a positive definite matrix. If K is lower triangular

with diagonal entries equal to 1 and KG is upper triangular, then KG =
DK −T , where D is a diagonal matrix with positive diagonal entries.

Proof. Suppose that K is lower triangular with diagonal entries equal to 1,

and that KG = DM , where D is diagonal and M is upper triangular, with

diagonal entries 0 or 1. Then

KGK T = DMK T .

Here the left side is a symmetric matrix, while the right side is the product

of three upper triangular matrices, and is therefore upper triangular. It

follows that MK T is diagonal. Since KGK T is invertible, both D and MK T

are invertible. Therefore MK T = I . Finally KGK T is positive definite and

equal to D . So D is positive definite, and therefore its diagonal entries are

positive.
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Suppose we are given a Gram matrix G . If we bring the partitioned

matrix (
G I

)
to row-echelon form, then the resulting matrix equals(

LG L
)

.

As noted at the end of the previous section, if G = X T X , then the columns

of X LT are orthogonal (with respect to the dot product). The i -th column

of X LT is a linear combination of the first i columns of X and consequently

the columns of X LT are the orthogonal set we would compute using the

usual approach to Gram-Schmidt. (Using exact arithmetic—in fact we have

developed the so-called modified Gram-Schmidt method.)

We first illustrate this in Rn , with the dot product. The row echelon form

of the partitioned matrix

M =
(

X T X X T
)

is (
LX T X LX T

)
and so the transposes of the rows of LX T are an orthogonal basis for the

column space of X . Suppose for example that

x1 =

1

1

0

 , x2 =

0

1

1

 , x3 =

1

0

1

 .

Let X be the matrix with x1, x2 and x3 as its columns. Then

M =

2 1 1 1 1 0

1 2 1 0 1 1

1 1 2 1 0 1


has row echelon form 2 1 1 1 1 0

0 3
2

1
2 − 1

2
1
2 1

0 0 4
3

2
3 − 2

3
2
3

 .

Hence

X LT =

1 − 1
2

2
3

1 1
2 − 2

3

0 1 2
3


and its columns are an orthogonal basis for col(X ).



M O R E L I N E A R A LG E B R A 185

16.4 Polynomial Examples

We consider the situation where we want to find an orthogonal basis for an

inner product space of polynomials. By way of example, we take V to be

the space of all polynomials, with inner product:

〈p, q〉 :=
∫ ∞

0
p(x)q(x)e−x d x.

Let U be the subspace consisting of the polynomials with degree at most

n, let p0, . . . , pn be basis for U and let G be the Gram matrix of this basis.

(Thus the rows and columns of G are indexed by 0,1, . . . ,n, rather than

1, . . . ,n—good news for C programmers anyway.)

If [q] denotes the coordinate vector of q in U relative to the given basis,

then

[p]T G[q] = 〈p, q〉.
Suppose LGLT = D . Then

eT
i LGLT D = eT

i De j

whence the columns of LT are the coordinate vectors of an orthogonal

basis for U .

Turning to a concrete case, suppose U is the space of polynomials with

degree at most three. We start with the basis 1, x, x2, x3. It can be shown

(by integration by parts) that∫ ∞

0
xne−x d x = n!,

and therefore the Gram matrix of this set of polynomials is

G =


1 1 2 6

1 2 6 24

2 6 24 120

6 24 120 720

 .

Let M be given by

M =


1 1 2 6 1 0 0 0

1 2 6 24 0 1 0 0

2 6 24 120 0 0 1 0

6 24 120 720 0 0 0 1

 .

We convert the first four columns to an upper triangular matrix:
1 1 2 6 1 0 0 0

0 1 4 18 −1 1 0 0

0 0 4 36 2 −4 1 0

0 0 0 36 −6 18 −9 1

 ,

and thus obtain the following set of four orthogonal polynomials:

1, x −1, x2 −4x +2, x3 −9x2 +18x −6.



186 C H R I S G O D S I L

16.5 Positive Semidefinite Matrices

We develop some further properties of positive semidefinite matrices.

16.5.1 Lemma. If A and B are positive semidefinite, so is A +B . If A is

positive and B is positive definite, then A+B is positive definite.

We leave the proof as an exercise. Note that it implies that if A is positive

semidefinite, then A+ I is positive definite.

16.5.2 Lemma. A self-adjoint matrix is positive semidefinite if and only

if its eigenvalues are non-negative. It is positive definite if and only if its

eigenvalues are positive.

Proof. If x is an eigenvector of A with eigenvalue θ, then xT Ax = θxT x, and

therefore if A is positive semidefinite, its eigenvalues are non-negative. If A

is positive definite then 0 is not an eigenvalue.

Suppose we have the spectral decomposition

A =∑
θ

θEθ .

Each projection Eθ is positive semidefinite, because

xT Eθx = xT E 2
θx = xT E T

θ Eθx = ‖Eθx‖2.

If each eigenvalue of A is non-negative, it follows that xT Ax is a sum of

non-negative terms θxT Eθx, and therefore xT AX ≥ 0.

If the eigenvalues of A are positive, we see that xT Ax = 0 if and only if

xT Eθx = 0 for each eigenvalue θ. Hence

0 =∑
θ

xT Eθx = xT

(∑
θ

Eθ

)
x = xT I x,

and therefore x = 0. Consequently A is positive definite.

Note that In has 2n distinct square roots, that is, there are 2n matrices S

such that S2 = I . However it has only one positive semidefinite square root.

This is typical:

16.5.3 Corollary. If A is positive semidefinite, there is a unique positive

semidefinite matrix S such that S2 = A.

Proof. Using the spectral decomposition we have

A =∑
θ

θEθ ,

where the sum is over all eigenvalues of A. If A is positive semidefinite, its

eigenvalues are non-negative and we may define S by

S =∑
θ

p
θEθ .
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Since the eigenvalues of S are non-negative, it is positive semidefinite.

We turn to uniqueness. Let T be a positive semidefinite square root

of A and suppose x is an eigenvector for A. If Ax = 0 then T 2x = 0, so

xT T T x = 0 and therefore T x = 0. Assume now that Ax =σ2x, where σ> 0,

then

0 = (T 2 −σ2I )x = (T −σI )(T +σI )x.

If the subspace spanned by x is T -invariant, it follows that T x = ±σx and

x is an eigenvector for T . Otherwise x and T x span a T -invariant subspace

on which T acts wih minimal polynomial t 2 −σ2. If (T −σI )x 6= 0 then

y = (T −σI )x is an eigenvector for T +σI with eigenvalue −σ. Therefore if

T is positive semidefinite and Ax =σ2x, then T x =σx.

Thus we have shown that, if Ax =σ2x then T x =σx. Since the eigenvec-

tors of A span, this shows that T is determined by A.

The next result is known as the polar decomposition of a matrix. It

is analogous to the fact that each complex number is the product of a

positive real number and a complex number with norm 1.

16.5.4 Theorem. If A is a square matrix, there is a positive semidefinite

matrix M and an orthogonal matrix Q such that A = MQ.

Proof. We use the singular value decomposition, which yields that

A = Y ΣX T ,

where X and Y are orthogonal and Σ is positive semidefinite. Hence

A = Y ΣY T Y X T ,

where Y ΣY T is positive semidefinite and Y X T is orthogonal.

Note that A AT = (MQ)(MQ)T = M 2; hence the positive definite factor

in the above theorem is unique, and the orthogonal factor is unique if A is

invertible.





17

Channels

We concern ourselves with linear maps from the space Md of d×d complex

matrices to the the space Me of e ×e matrices. Special classes of such maps

are known to physicists as channels and we will address these too.

17.1 Matrix Maps

Suppose A is a k ×` matrix and B is an m ×n matrix over a field F. Then the

map

Φ : M 7→ AMB

on `×m matrices is linear, with domain Mat`×m(F) and codomain Matk×n(F).

More generally, if

Φ(M) :=∑
r

Ar MBr

then Φ is a linear map from Mat`×m(F) to Matk×n(F), and it is not hard to

show that all such linear maps can be represented in this form.

We assume henceforth that we are working over C. We denote Matd×d (C)

and Mate×e (C) by Md and Me respectively, and we note that any linear

map Φ from Md to Me can be expressed in the form

Φ(M) =∑
r

Ar MB∗
r .

A linear map Ψ : Me → Md is adjoint to Φ if, for all matrices M and N

we have

〈Ψ(N ), M〉 = 〈N ,Φ(M)〉.

Since

〈N ,Φ(M)〉 =∑
r

tr(N∗Ar MB∗
r ) =∑

r
tr(B∗

r N∗Ar M) =∑
r
〈A∗

r N Br , M〉

and it is easy to verify that

Ψ(N ) =∑
r

A∗
r N Br .
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As is traditional, we use Φ∗ to denote the adjoint of Φ. (Which is a truly

unfortunate choice! Φ∗(X ) 6=Φ(X )∗.)

A linear map Φ on a matrix algebra is unital if it maps I to I . It is trace

preserving if tr(Φ(M)) = tr(M) for all M . Now

Φ(I ) =∑
r

Ar B∗
r ,

whence Φ is unital if and only
∑

r Ar B∗
r = I . We also see that

tr(Φ(M)) =∑
r

tr(Ar MB∗
r ) = tr

(
M

(∑
r

B∗
r Ar

))
and therefore Φ is trace preserving if and only if

∑
r B∗

r Ar = I .

If
∑

r Ar B∗
r = I , then

I = I∗ =∑
r

Br A∗
r

and thus Φ∗ is trace preserving if and only if Φ is unital. (Similarly Φ∗ is

unital if and only if Φ is trace preserving.)

17.2 Norms

A Banach space is a complete normed vector space. If V and W are Banach

spaces and L : V →W is linear, the operator norm of L is

sup
‖v‖=1

‖Av‖.

and we denote it by ‖L‖. If the norm of L is finite we say that L is bounded

and we use B(V ,W ) to denote the set of bounded operators from V to W .

When V = W (as will usually be the case), we write simply B(V ). Note that

an operator is bounded if and only if is continuous. You may show that

‖LM‖ ≤ ‖L‖‖M‖,

whence it follows that B(V ) is an algebra. Note that ‖I‖ = 1.

A norm on an algebra is sub-multiplicative if

‖AB‖ ≤ ‖A‖‖B‖.

Operator norms are necessarily sub-multiplicative, as you may verify.

If our Banach space V is Cd , we can express the norm of an operator in

B(V ), (i.e., of a d ×d matrix) using singular values.

17.2.1 Theorem. Let A be a d × e matrix over Cwith d ≥ e. Then there is a

d ×d matrix U , a diagonal n ×n matrix Σ and an e ×e matrix V such that:

(a) UU∗ = Id , V V ∗ = Ie .

(b) Σ is real and non-negative.

(c) A =U∗
(
Σ

0

)
V .
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The diagonal entries of Σ are the singular values of A, we set σi = Σi ,i

with the assumption that

σ1 ≥ ·· ·σe .

17.2.2 Lemma. If A ∈Md , then σ1(A) = ‖A‖.

Proof. Assume A has singular value decomposition A =U∗ΣV . We have

‖Ax‖2 = x∗A∗Ax = x∗V ∗ΣUU∗ΣV x = x∗V ∗Σ2V x

and so ‖Ax‖2 =σ2
1.

The Hilbert-Schmidt norm on an operator A on a Hilbert space is

defined to be tr(A∗A)1/2. (If the underlying Hilbert space is infinite-

dimensional, it may be be infinite for some operators; the operators for

which it is finite are said to be trace-class.) If A has singular value decom-

position U∗ΣV , then

tr(A∗A) = tr(V ∗ΣUU∗ΣV ) = tr(V ∗Σ2V ) = tr(Σ2).

Thus the sum of the squares of the singular values of A is equal to 〈A, A〉.

17.3 Positive Maps

A linear map Φ : Md → Me is positive if Φ(M)< 0 whenever M < 0. We

note some examples:

(a) Φ(M) = I ◦M ,

(b) Φ(M) =∑
r Vr MV ∗

r ,

(c) Φ(M) = M T .

There is no known characterization of positive maps; this is less of an

issue that it might be, because only a special class of positive maps is of

interest in quantum computing: the so-called completely positive maps.

(We will discuss these in Section 17.5.)

A linear map Φ : Md →Me is Hermitian preserving if Φ(M∗) =Φ(M)∗.

17.3.1 Lemma. A positive linear map is Hermitian preserving.

Proof. First we show that positive maps take Hermitian matrices to Hermi-

tian matrices. By the spectral decomposition a Hermitian matrix is a linear

combination of positive semidefinite matrices and so a positive linear map

sends a Hermitian matrix to a linear combination of positive semidefinite

matrices. Since positive semidefinite matrices are Hermitian, our claim

follows.

Next, if M is a square complex matrix, we have

M = 1

2
[(M +M∗)− i (i M − i M∗)]
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and this shows that M is a linear combination of Hermitian matrices. If A

and B are Hermitian and M = A+ i B

Φ(M∗) =Φ(A− i B) =Φ(A)− iΦ(B) =Φ(M)∗.

Our next goal is to show that if Φ is positive, then ‖Φ‖ = ‖Φ(I )‖.

17.3.2 Lemma. Assume Φ is positive. If A is normal, then

Φ(A)Φ(A)∗4Φ(A A∗).

Proof. Let A =∑
r λr Fr be the spectral decomposition of A. Then(
Φ(A∗A) Φ(A)

Φ(A∗) I

)
=∑

r

(
λrλr λr

λr 1

)
⊗Φ(Fr )

where the right side is positive semidefinite. Now noting the identity(
I −C

0 I

)(
B C

C∗ I

)(
I 0

−C∗ I

)
=

(
B −CC∗ 0

0 I

)
,

we conclude that

04Φ(A∗A)−Φ(A)Φ(A∗) =Φ(A∗A)−Φ(A)Φ(A)∗.

The next result is known as the Russo-Dye theorem.

17.3.3 Theorem. If Φ is positive, then ‖Φ‖ ≤ ‖Φ(I )‖.

Proof. We first prove that if Φ is unital, then ‖Φ‖ = 1.

Assume ‖M‖ ≤ 1. Then

‖M M∗‖ ≤ ‖M‖‖M∗‖ = ‖M‖2 ≤ 1

and therefore the matrices I −M M∗ and I −M∗M are positive semidefinite.

The matrix

M̂ =
(

M −(I −M M∗)1/2

(I −M∗M)1/2 M∗

)
is unitary (check this!).

Assume M is d×d . The map that sends a 2d×2d matrix to its leading d×
d block is linear, unital and positive. (It is a compression.) If Ψ denotes the

image of this compression under Φ, then Ψ is positive and unital. Hence

we may apply Lemma 17.3.2 to conclude that

Ψ(M̂)Ψ(M̂∗)4Ψ(M̂ M̂∗) =Ψ(I ) = I ;

this immediately implies that Φ(M)Φ(M)∗4 I .

Now suppose Φ is not unitary, but D =Φ(I ) is invertible. Then

Ψ := D−1/2ΦD−1/2
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is positive and unitary and

‖Φ(M)‖ = ‖D1/2Ψ(M)D1/2‖ ≤ ‖D‖‖Ψ(M)‖ ≤ ‖D‖‖M‖.

It follows that ‖Φ‖ ≤ ‖Φ(I )‖.

Finally, if D is not invertible, we consider the maps

Φε =Φ+εI ;

since ‖Φε‖ ≤ ‖Φε(I )‖ the full result follows by continuity.

There is a simpler proof that, if Φ is a positive linear functional, then

‖Φ‖ = ‖Φ(I )‖. For this we need the dual norm ‖·‖∗ to the operator norm ‖·‖.

The operator norm is the largest singular value, the dual norm is the sum of

all singular values. Thus the dual norm of a positive semidefinite matrix is

its trace. If Φ is a postive linear functional, there is a positive semidefinite

matrix Q such that Φ(A) = 〈Q, A〉. Now

‖Φ(A)‖ = |〈A,Q〉| ≤ ‖A‖‖Q‖∗ = ‖A‖ tr(Q)

and as

tr(Q) = 〈Q, I 〉 =Φ(I ),

we conclude that ‖Φ‖ = ‖Φ(I )‖.

A linear functional ϕ on a C∗ algebra is a state if it is positive and has

norm 1.

A square matrix M is a contraction if ‖M‖ ≤ 1 The matrix M̂ defined

above is referred to as a unitary dilation of M . Our argument shows that

any contraction of order n ×n is a principal submatrix of a unitary matrix

of order 2n ×2n. Conversely, any principal submatrix of a unitary matrix is

a contraction (and this is straightforward to prove).

17.4 Contractions and Positive Maps

We are going to prove the unital maps with norm one are positive. We will

work at a more general level. An operator system is a *-closed subspace of a

matrix algebra that contains I .

17.4.1 Theorem. Let S be an operator system and let Φ : S → Me be a

unital linear map with norm one. Then Φ is positive.

Proof. We first prove the result under the assumption that Φ is a linear

functional (i.e., e = 1). If Φ is a linear functional on S, by the Hahn-Banach

theorem it can be extended to a linear functional on Md with the same

norm. Therefore there is a matrix M in Md such that

Φ(X ) = 〈M , X 〉

for all X in S We have

1 =Φ(I ) = 〈M , I 〉 = tr(M).
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Now

‖Φ‖ = sup
‖X ‖=1

〈M , X 〉

and hence if ‖Φ‖ = 1, then whenever ‖X ‖ = 1,

〈M , I 〉 ≥ 〈M , X 〉

and so

〈M , I −X 〉 ≥ 0.

The singular values of a positive semidefinite matrix are its eigenvalues

(and its norm is its largest eigenvalue). So if M < 0, then I −‖M‖−1M < 0.

Suppse Y ∈S and Y < 0. If ν= ‖Y ‖, then ‖I −ν−1Y ‖ ≤ 1, whence

0 ≤ 〈M , I − (I −ν−1Y )〉 = ν−1Φ(Y )

and we conclude that Φ(X ) if X is positive.

We now show that the theorem holds for arbitrary linear maps. If x is a

unit vector in Me , define a linear functional φx on S by

φx (A) = 〈x,Φ(A)x〉.

This is a unital linear functional and since

|φx (A)| ≤ ‖Φ(A)‖ ≤ ‖A‖,

we see that ‖φx‖ ≤ 1. Consequently φx is positive, and thus we have shown

that if AS< 0, then for each unit vector x,

0 ≤φx (A) = 〈x,Φ(A)x〉.

Therefore Φ is positive.

17.5 Completely Positive Maps

A linear map Φ : Md → Me is completely positive if Im ⊗Φ is positive for

all (positive integers) m. With the exception of transpose, all the examples

of positive maps we have met are completely positive. We will give one

concrete class of examples, after the following remarks.

Working from the assumption that Im ⊗Φ is positive can take some

getting used to, so we offer an alternative viewpoint. If F is an md ×md

matrix with blocks of order d ×d , we can identify (I ⊗Φ)F with matrix we

get by applying Φ to each of the blocks of F . (The key is that I ⊗Φ is an

operator on Matmd×md (C), it is not a matrix.)

17.5.1 Lemma. If Φ(M) = ∑
r Ar M A∗

r for M in Md , then Φ is completely

positive.
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Proof. Assume F is md ×md . If we define Ψr by Ψr (M) =Vr MV ∗
r , then

(Im ⊗Ψr )F = (I ⊗Vr )F (I ⊗Vr )∗.

(Note that here Im ⊗Φ is an operator, the other terms are all matrices.) If

F < 0, then (I ⊗Vr )F (I ⊗Vr )∗< 0. As
∑

r Ψr =Φ, the lemma follows.

Aside from providing a wide range of examples of completely positive

maps, the significance of this lemma is that all completely positive maps

arise from this construction. This result is due to Choi, and we turn to its

proof.

We use Ei , j to denote the elementary matrix ei e∗j (of order d ×d). If

Φ : Md →Me

is linear, we define its Choi matrix Γ(Φ) to be the de ×de matrix with d 2

blocks of order e ×e, where the i j -block is Φ(Ei , j ). If M is d ×d , then

M =∑
i , j

Mi , j Ei , j

from which we see that Φ is determined by its Choi matrix.

17.5.2 Lemma. If Φ : Md → Me is completely positive, its Choi matrix is

positive semidefinite.

Proof. If z is the vector in Cd 2
given by

z =


e1
...

ed


then (I ⊗Φ)zz∗ is the Choi matrix of Φ. As zz∗ < 0, it follows that if Φ is

completely positive, its Choi matrix is positive semidefinite.

To get some practice, show that the Choi matrix of transpose operating

on Mat2×2(C) is not positive semidefinite.

17.5.3 Theorem. If Φ : Md → Me is completely positive, there are e ×d

matrices A1, . . . , Ade such that

Φ(M) =∑
r

Ar M A∗
r .

Proof. Let Γ denote Γ(Φ); since this is positive semidefinite we may write

as a sum

Γ=∑
r

wr w∗
r .

The vector wr is formed from e blocks, each of length d . Let Wr be the e ×d

matrix with the i -th block of wr as its i -th column. Then the i j -block of

the matrix wr w∗
r is equal to Wr Ei , j W ∗

r , and therefore the i j -block of Γ is

equal to ∑
r

Wr Ei , j W ∗
r ,

and this is the value of Φ(Ei , j ).
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17.5.4 Corollary. The map Φ is completely positive if and only if its Choi

matrix is positive semidefinite.

We note that a map Φ : Md → Me is Hermitian preserving if and only if

its Choi matrix is Hermitian. Hence it is diagonalizable, and it follows that

we can write it in the form

Γ=∑
r
λr wr w∗

r

where each λr ’s is an eigenvalue of Γ and wr is the corresponding eigen-

vector. Following the proof of Choi’s theorem we deduce the following (due

to Hill).

17.5.5 Theorem. A map Φ : Md → Me is Hermitian preserving if and only

there are matrices Wr and real numbers λr such that

Φ(M) =∑
r
λr Ar M A∗

r .

17.6 States

Recall that a state is positive linear functional with norm one.

If τ is a linear functional on an algebra A, then the map

(x, y) 7→ τ(x∗y)

is semilinear. Our next result is known as Schwarz’s inequality .

17.6.1 Lemma. If τ is a state on the algebra A and x, y ∈ A, then

|τ(x∗y)|2 ≤ τ(x∗x)τ(y∗y).

Proof. For any complex numbers a and b, we have

(
a b

)(
τ(x∗x) τ(x∗y)

τ(y∗x) τ(y∗y)

)(
a

b

)
= τ((ax +by)∗(ax +by)) ≥ 0,

whence we see that the matrix(
τ(x∗x) τ(x∗y)

τ(y∗x) τ(y∗y)

)(
a

b

)

is positive semidefinite and therefore its determinant is non-negative.

We point out that if τ is a linear functional, the map

(x, y) 7→ τ(x∗y)

is sesquilinear. If τ is positive, it is Hermitian preserving and accordingly

τ(y∗x) = τ((x∗y)∗) = τ(x∗y)∗

and so we have an inner product if the form is non-degenerate.
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17.6.2 Theorem. If τ is a linear functional of norm one on an algebra A,

then τ is a state if and only if τ(1) = 1.

Proof. Assume τ is a state on A. Since τ is positive and ‖1‖ = 1, we have

0 ≤ τ(1∗1) = τ(1) ≤ ‖τ‖‖1‖ = 1.

Thus τ(1) ≤ 1, to show that τ(1) ≥ 1 we choose x in A such that ‖x‖ ≤ 1.

Then 1−xx∗ is positive semidefinite and so

0 ≤ τ(1−xx∗) = τ(1)−τ(xx∗)

and hence τ(xx∗) ≤ τ(1). Using the previous lemma, we find that

|τ(x)|2 = |τ(1∗x)|2 ≤ τ(x∗x)τ(1∗1) ≤ τ(1)2 ≤ 1.

Therefore |τ(x)| ≤ 1 if ‖x‖ ≤ 1 and so ‖τ‖ ≤ 1.

Now assume τ(1) = 1. We claim that if h ∈ A is Hermitian, that τ(h) ∈ R.

For otherwise there is a Hermitian element h of A such that

τ(h) = a + i b

where a,b ∈R and b 6= 0. Then

τ(b−1(h −a)) = i

and if we set z = b−1(h −a) and c ∈R,

(c +1)2 = |i + ci |2 = ‖τ(z + ci 1)‖2 ≤ ‖τ‖2‖c + zi 1‖2 = ‖z + ci 1‖2.

As z is Hermitian,

‖z + ci 1‖2 = ‖(z + ci 1)∗(z + ci 1)‖ = ‖z2‖+c2

from which it follows that 2c + 1 ≤ ‖z2‖. This forces us to the conclusion

that τ(h) is real if h is Hermitian.

Finally, if h is positive semidefinite and ‖h‖ ≤ 1, then ‖1−h‖ ≤ 1 and so

τ(1−h) ≤ 1. Since

τ(h) = τ(1− (1−h)) = τ(1)−τ(1−h) = 1−τ(1−h),

it follows that τ(h) ≥ 0. We conclude that τ is positive.

17.7 Positive Definite Block Matrices

We consider md ×nd matrices, viewed as m×n with d ×d blocks as entries;

equivalently as m ×n matrices over the algebra of d ×d matrices. The

following theorem is not deep, but it will simnplify our calculations.

17.7.1 Theorem. Let A be a matrix of order nd ×nd . The following state-

ments are equivalent:
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(a) A< 0.

(b) There are nd ×d matrices X1, . . . , Xm such that A =∑
i Xi X ∗

i .

(c) For any nd ×d matrix Y , we have Y ∗AY < 0.

Proof. If A < 0, then A = M M∗ for some nd ×nd matrix M . By viewing M

as a block matrix, we find that (a) implies (b). Similarly it is easy to see that

(b) implies (c). If z ∈Cd , then

z∗Y ∗AY z = (Y z)∗A(Y z)< 0,

whence Y ∗AY < 0.

17.8 Conditional Expectations

We will consider linear maps from an algebra to a subalgebra. The grown-

up version of these results are stated in terms of C∗-algebras, but we re-

strict ourselves to *-closed subalgebras of full matrix algebras, i.e., to

*-closed subalgebras of Matn×n(C). We point out that our algebras (and

subalgebras) always have an identity element.

First some remarks about block matrices. Suppose A is md×md , viewed

as an m ×m matrix with blocks of size d ×d . Let [A]i , j denote the i j -block

of A. If A< 0, then A =C∗C , for some md ×md matrix C and we can view

C in turn as a block matrix (with blocks of size d ×d). Then

[A]i , j =
m∑

r=1
[C ]∗r ,i [C ]r , j ,

from which it follows that there are d ×md matrices D1, . . . ,Dm such that

A =∑
r

D∗
r Dr .

If B is md ×d with d ×d blocks, then

B∗AB =∑
i , j

∑
r

[B ]∗i C∗
r ,i Cr , j [B ] j =

∑
r

(∑
i

Cr ,i Bi

)∗(∑
j

Cr , j B j

)
< 0.

Suppose A and B are algebras as above and A ≤B. Then B is a bimod-

ule over A (an algebra is just an up-market ring). A linear map E : B → A

is a bimodule map if, given a1 and a2 in A and b in B, we have

E(a1ba2) = a1E(b)a2.

We say E is a conditional expectation from B onto A if E(a) = a for all a in

A and it is:

(a) completely positive and contractive,

(b) a bimodule map.
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The following result is a form of Tomiyama’s theorem (which holds for

matrices over C∗-algebras).

17.8.1 Theorem. Suppose A and B are algebras and A ≤ B. Let E : B →
A be a linear map such that E(a) = a for all a in A. Then if E is a contrac-

tion, it is a conditional expectation.

Proof. Assume E is a contraction. We first prove that this implies E is a

bimodule map. Since any element of a ∗-closed matrix algebra is a linear

combination of projections, it well suffice to prove that if p is a projection

in A, then E(pb) = pE(b) and E(bp) = E(b)p for all b in B .

So assume p in A is a projection and that p⊥ := 1B −p. Since E acts on A

as the identity, for all b in B .

pE(p⊥b) = E(pE(p⊥b)).

Hence, for any t in R,

(1+ t )2‖pE(p⊥b)‖2 = ‖pE(p⊥b + t pE(p⊥b))‖2

≤ ‖p⊥b + t pzE(p⊥b)‖2

≤ ‖p⊥b‖2 + t 2‖pE(p⊥b)‖
and therefore

‖pE(p⊥b)‖2 +2t‖pE(p⊥b)‖2 ≤ ‖p⊥b‖2

for all real t . This implies that pE(p⊥b) = 0, and the same reasoning shows

that (1A −p)E(p⊥b) = 0.

As 1A is a projection,

0 = 1AE(1⊥A b) = E(1⊥A b).

Accordingly

E(px) = pE(pb) = pE(b −p⊥b) = p(Eb)

for each projection p in A and each b in B . Swapping sides, we also find

that E(bp) = E(b)p and hence E is a bimodule map.

Since E is a unital linear map with norm 1, it is positive by Theorem 17.4.1.

It remains for us to prove that it is completely positive, which means we

must show that if M ∈ Matm×m(B) and M < 0, then (I ⊗E)(M)< 0.

If M < 0, there are matrices X1, . . . , Xm with entries from B such that

M =∑
i

Xi X ∗
i .

Then

((I ⊗E)M)i , j = E(Xi X ∗
j ).

Now if Y1, . . . ,Ym are matrices in B, we have∑
i , j

Y ∗
i E(Xi X ∗

j )Y j =
∑
i , j

E(Y ∗
i Xi X ∗

j Y j ) = E
((∑

i
X ∗

i Yi

)∗∑
j

X ∗
j Y j

)
and, since E is positive, the last term is positive. (Note that here we have

made use of Theorem 17.7.1) and of the fact that E is a bimodule map.)





Part IV

Geometry
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Lines and Frames

We study some geometric questions related to the geometry of lines.

18.1 Equiangular Lines

We work in the vector space V , which is Rd or Cd with the usual Euclidean

inner product. If x and y are nonzero vectors, the cosine of the angle be-

tween the lines spanned by x and y is

|〈x, y〉|
‖x‖‖y‖ .

We will often work with the squared cosine

〈x, y〉〈y , x〉
〈x, x〉〈y , y〉 .

A set of lines in V is equiangular is the cosine of the angle between any two

distinct lines is the same.

18.1.1 Theorem. The maximum size of a set of equiangular lines in Cd is

d 2; in Rd it is
(d+1

2

)
.

Proof. Suppose we have lines spanned by unit vectors x1, . . . , xm . Define

matrices P1, . . . ,Pm by

Pr = xr x∗
r .

Then Pr represents orthogonal projection onto the line spanned by xr , and

if r 6= s,

〈Pr ,Ps〉 = tr(Pr Ps ) = 〈xr , xs ,〈〉, xs〉xr = |〈xr , xs〉|2.

We assume that α= |〈Pr ,Ps〉|. We see also that 〈Pr ,Pr 〉 = 1 for all r .

The projections Pr lie in the space of Harmitian matrices. If G is their

Gram matrix, then

G = (1−α2)I +α2 J .

We can prove, in a number of ways, that G is invertible, which implies that

the matrices P1, . . . ,Pm form a linearly independent set in the space of

Hermitian matrices. We complete the proof by noting that this space has

dimension d 2 (over C) and the dimension in the real case is
(d+1

2

)
.
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In R2 it is easy to find three lines with pairwise cosine 1/2, and the diago-

nals of the icosahedron give six lines with pairwise cosine 1/
p

5. Examples

of sets of size
(d+1

2

)
are known in Rd when d = 7 and d = 23. In the complex

case, examples of tight sets are known for d in {1, . . . ,15,19,24,35,48}.

18.2 Tight Frames

Suppose we have a set of equiangular lines of maximum size. Then the

associated projections P1, . . . ,Pm form a basis for the space of Hermitian

matrices. Hence there are scalars cr such that

I =∑
r

cr Pr .

If we multiply both sides by Pk and take traces, we get

1 = (1−α2)ck +α2
∑

r
cr .

It follows that c1 = ·· · = cm and hence that

I = d

m

∑
r

Pr .

In a slightly different format, we have established that if x1, . . . , xm are unit

vectors spanning a set of equiangular lines of maximum size, then∑
r

xr x∗
r = m

d
I .

Such a set of vectors is an example of a tight frame.

We will see that tight frames are more common than set of lines meeting

the absolute bound. Consider a set of projections P1, . . . ,Pm corresponding

to a set of equiangular lines with squared cosine α2, and define

M =∑
r

Pr − m

d
I .

Then

0 ≤ 〈M , M〉 = 〈∑
r

Pr ,
∑

r
Pr 〉− 2m

d
〈∑

r
Pr , I 〉+ d 2

m2 tr(I )

= m +m(m −1)α2 − m2

d
.

If equality holds we have

α2 = m −d

md −d
.

This yields the following, sometimes known as the relative bound.

18.2.1 Theorem. If there is a set of m lines in Fd with squared cosine α2,

where dα2 < 1, then

m ≤ d −dα2

1−dα2 .

If equality holds, then a set of unit vectors spanning the lines forms a tight

frame.
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Note that if we have d 2 lines in Cd , then α2 = (d + 1)−1, and for
(d+1

2

)
lines in Rd , then α2 = (d +2)−1.

18.3 Another Gram Matrix

Suppose x1, . . . , xm form a tight frame in dimension d . Then∑
r

xr x∗
r = m

d
I .

If U is the d ×m matrix with the vectors x1, . . . , xm as its columns then we

have

UU∗ =∑
r

xr x∗
r = m

d
I ,

which implies that the rows of U are orthogonal (and of the same length).

Set H =U∗U . Then

H 2 =U∗UU∗U = m

d
U∗U = m

d
H

and therefore the minimal polynomial of H divides

t
(
t − m

d

)
.

(If the minimal polynomial is a proper divisor of this polynomial that H = 0

or H = I .) We can write H as I +αS, where S is Hermitian with diagonal

entries zero and all off-diagonal entries have absolute value 1. (In the real

case, this means the off-diagonal entries are ±1.) The eigenvalues of S are

1

α

(m

d
−1

)
, − 1

α

with respective multiplicities d and m −d .

18.4 The Orthogonal Group

Let V be a vector space with a bilinear form. We say that an endomorphism

A of V preserves the form if 〈Ax, Ay〉 = 〈x, y〉, for all x and y . If the form is

symmetric and the characteristic of our field is odd, then

〈x, y〉 = 1

2
(〈x + y , x + y〉−〈x, x〉−〈y , y〉.

Hence A preserves the form if and only if 〈Ax, Ax〉 = 〈x, x〉 for all x.

Now assume V is Rn and that our form is the dot product. A matrix

which preserves dot product is called orthogonal. If v and w are orthogo-

nal vectors in V and A is orthogonal, then Av and Aw are orthogonal.

18.4.1 Lemma. A matrix A is orthogonal if and only if AT A = I .

Proof. If v1, . . . , vn is an orthogonal basis for V , then so is Av1, . . . , Avn .

Since the standard basis e1, . . . ,en for V is orthogonal, it follows that
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Ae1, . . . , Aen is an orthogonal set of vectors. Therefore the columns of an

orthogonal matrix A form an orthogonal basis. This also implies that

AT A = I .

Since A is square, we see that AT = A−1 and A AT = I . Conversely, if AT =
A−1, then

〈Av , Aw〉 = (Av)T Aw = vT AT Aw = v t w = 〈v , w〉.

We see from this result that, if A is orthogonal, then it columns form

an orthonormal set. Also, if A is orthogonal, then AT = A−1 and therefore

A AT = I . Hence the rows of A also form an orthonormal set.

We consider the complex version of orthogonal matrices. A complex

matrix is unitary if it preserves the complex dot-product. This means that

y∗x = (Ay)∗(Ax) = y∗A∗Ax

for all x and y , and hence that

A∗A = I .

A real matrix is unitary if and only if it is orthogonal.

We turn to examples of orthogonal matrices. Any permutation matrix is

orthogonal, and a diagonal matrix A is orthogonal if and only if Ai ,i = ±1

for all i . The matrices (
cosθ −sinθ

sinθ cosθ

)
are orthogonal, for any value of θ. It is easy to verify that the product of two

orthogonal matrices is orthogonal, and that the inverse of an orthogonal

matrix is orthogonal. Therefore the set of all orthogonal matrices is an

example of a group, known as the orthogonal group.

18.5 Skew-Symmetric to Orthogonal

We define a matrix A to be skew symmetric if AT = −A and Ai ,i = 0 for all

i . (The last condition is only needed if our field has characteristic two.) The

set of n ×n skew-symmetric matrices is a subspace of the space of square

matrices.

18.5.1 Lemma. If S is a real skew-symmetric matrix, then (I −S)−1(I +S) is

orthogonal.

Proof. We first show that I −S is invertible for all real t . Suppose x 6= 0 and

Ax = θx. Then

θxT x = xT Ax = (AT x)x = (−Ax)T x = (−θx)T x =−θxT x.
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It follows that 0 is the only possible real eigenvalue for S. Therefore I −S is

invertible for all real t and we can define

M := (I −S)−1(I +S).

The matrices I +S and I −S commute, and from this it follows that I +S and

(I −S)−1 commute. Hence we find that

M T = (I +ST )(I −ST )−1 = (I −S)(I +S)−1

= (I +S)−1(I −S)

= M−1.

Therefore M is orthogonal.

The matrix M above is sometimes known as the Cayley transform of S.

Note that, since tS is skew-symmetric if S is, the matrix

(I − tS)−1(I + tS)

is orthogonal for real t .

(1) If H is hermitian and S = i H , show that (I −S)−1(I +S) is unitary.

18.6 Reflections

Suppose a is a fixed non-zero vector in V . Define the map ρa by

ρa(v) = v −2
〈a, v〉
〈a, a〉a.

Note that ρa is the sum of two linear mappings (the identity and a scalar

multiple of the orthogonal projection onto the line spanned by a) and

therefore it is linear. We check that

ρa(a) =−a

and, using this, that

ρ2
a = I .

If v ∈ a⊥, then ρa(v) = v . It follows that ρa corresponds to the geometric

operation of reflection in the hyperplane perpendicular to a.

We have

〈ρa(v),ρa(v)〉 = 〈v , v〉−4
〈a, v2〉
i paa

+4
〈a, v〉
〈a, a〉

2

〈a, a〉 = 〈v , v〉.

Therefore ρa is orthogonal. The matrix Ra representing it is given by

Ra = I − 2

〈a, a〉aaT .
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If v and w have the same length then

〈v −w , v +w〉 = 0.

Therefore Rv−w fixes v +w and maps v −w to w − v . Consequently

Rv−w (2v) = Rv−w ((v +w)+ (v −w)) = 2w ,

and so, after a very modest amount of extra work, we find that Rv−w swaps

v and w .

18.6.1 Theorem. Every non-identity orthogonal matrix is a product of at

most n matrices Ra .

Proof. If A is a matrix, let F (A) be the subspace

{v ∈V : Av = v}.

We prove by induction that A is the product of at most dim(V )−dim(F (A))

matrices Ra .

Suppose A is orthogonal and dim(F (A)) = k. If k = dimV , then A = I .

Suppose k < dimV , and let v be a vector in V such that Av 6= v . If w := Av

and Ax = x, then 〈v , x〉 = 〈w , x〉 and so 〈v − w , x〉 = 0. Therefore F (A) ⊆
(v − w)⊥, and Rv−w fixes each vector in F (A). Now Rv−w swaps v and

W , whence the product Rv−w A fixes each vector in F (A), and fixes v . As

v ∉ F (A), we see that

dim(F (Rv−w A)) > dim(F (A)).

The lemma follows.

A matrix A is an involution if A2 = I . Diagonal matrices with diago-

nal entries equal to ±1 provide a fairly trivial class of examples. If P is an

idempotent then

(I −2P )2 = I −4P +4P = I ,

and thus I −2P is an involution.

18.6.2 Theorem. Every orthogonal matrix is the product of two involutions.

Proof. We actually prove a stronger result: A and A−1 are similar if and only

if A is the product of two involutions. Since any square matrix is similar to

its transpose, orthogonal matrices satisfy this condition.

Suppose S2 = T 2 = I and A = ST . Then (ST )(T S) = I and

S−1 AS = S AS = S(ST )S = T S.

Therefore a product of two involutions is similar to its inverse.

So assume now that A and A−1 are similar and let F be the Frobenius

normal form of A. By ??, there is a permutation matrix T such that T 2 = I

and

F−1 = T F T .
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Then I = F T F T , whence F T and T are involutions whose product is F .

As any matrix that is similar to an involution is an involution, the general

result follows.
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Isoclinic Subspaces, Covers and Codes

19.1 Isoclinic Subspaces

Let U and V be two k-dimensional subspace of an inner product space

W , and let P and Q be the corresponding orthogonal projections. Then P

maps the unit sphere in V to an ellipsoid in U . The shape of this ellipsoid is

determined by the extreme points of the function

‖P v‖2 = v∗P∗P v = v∗P v ,

where v runs over the unit vectors in V . We say that V is isoclinic to U is

there is a constant λ such that

v∗P v =λv∗v .

If V is isoclinic to U with parameter λ, then

x∗Q∗PQx =λx∗Q∗QX =λx∗Qx

for all x in w . Hence we see see that U and V are isoclinic with parameter λ

if and only if

QPQ =λQ.

Thus we have translated a geometric condition into a linear algebraic one.

Our next result shows that is a symmetric relation.

19.1.1 Lemma. The subspace U is isoclinic to V if and only if V is isoclinic

to U .

Proof. Let R be a matrix whose columns form an orthonormal basis for

U , and let S be a matrix whose columns form an orthonormal basis for V .

Then

RR∗ = P , SS∗ =Q

and

QPQ = SS∗RR∗SS∗ = S(S∗RR∗S)S∗.
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If QPQ =λQ, then it follows that

λSS∗ = S(S∗RR∗S)S∗

and therefore

λI = S∗S(S∗RR∗S)S∗S = S∗RR∗S.

Hence R∗SS∗R =λI and so

λP =λRR∗ = R(R∗SS∗R)R∗ = PQP .

Note that tr(PQP ) = tr(QPQ), and so if rk(P ) = rk(Q) and QPQ = λP ,

then PQP = λP . A consequence of the proof is that U and V are isoclinic if

and only the matrix λ−1/2R∗S is orthogonal.

As exercises, prove that if P and Q are projections then (P −Q)2 com-

mutes with P and Q. Also if U and V are isoclinic with parameter λ, then

(P −Q)3 = (1−λ)(P −Q).

This implies that the eigenvalues of P −Q are

0, ±
p

1−λ;

since tr(P −Q) = 0, the non-zero eigenvalues have equal multiplicity.

19.2 Matrices

We investigate sets of pairwise isoclinic k-subspaces in Rn . Let U be the

column space of the matrix

R =
(

Ik

0

)
.

Suppose S is the n ×k matrix

S =
(

Y

Z

)
where S∗S = Ik . Then the column spaces of R and S are λ-isoclinic if and

only if

λI = S∗RR∗S = Y ∗Y .

Since

I = S∗S = Y ∗Y +Z∗Z

we then have Z∗Z = (1−λ)I . If

T =
(

λ1/2I

λ−1/2Z Y ∗

)

then T =λ−1/2SY ∗, so col(T ) = col(S) and T ∗T = I .
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19.2.1 Lemma. If V is λ-isoclinic to the column space of(
Ik

0

)

then V is the column space of a matrix(
λ1/2Ik

λ−1/2Z

)

where Z∗Z = (1−λ)I .

Assume Y ∗Y = Z∗Z = (1−λ)I . Then the column spaces of the matrices(
λ1/2Ik

λ−1/2Y

)
,

(
λ1/2Ik

λ−1/2Z

)

are ν-isoclinic if and only if the matrix

ν−1/2(λI +λ−1Y ∗Z )

is orthogonal.

19.3 Equiangular Subspaces

Suppose that P1, . . . ,Pm are projections onto e-dimensional subspaces of

d-dimensional vector space. We say that they are equiangular if there is a

scalar α2 such that

tr(Pi P j ) =α2

whenever i 6= j . We note that

tr(P −Q)2 = 2e −2tr(PQ)

where tr(P −Q)2 is the Euclidean distance between the matrices P and Q.

So we could have used “equidistant” in place of “equiangular”.

19.3.1 Lemma. An equiangular set of projections is linearly independent.

Proof. Suppose we have scalars c1, . . . ,cm such that

0 =∑
i

ci Pi .

Then

0 =∑
i

tr(Pr Pi ) = cr e +α2
∑
i 6=r

ci = e(cr −α2)+α2
∑

i
ci .

From this we deduce that cr is independent of r and hence that cr = 0 for

all r .
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The projections Pi are Hermitian and so, if we work over C, they lie in a

real vector space of dimension d 2. Over R they lie in a space of dimension

d(d + 1)/2. These upper bounds are known as the absolute bounds. The

bound supplied by the following theorem is the relative bound.

19.3.2 Theorem. If the projections P1, . . . ,Pm are equiangular with angle α2

and dα2 ≤ e, then

m ≤ d(e −α2)

e2 −dα2 ,

equality holds if and only if ∑
i

Pi = me

d
I .

Proof. We set

S :=∑
i

(
Pi − e

d
I
)

Then S = S∗ and therefore tr(S2) ≥ 0, which yields

0 ≤∑
i

tr
(
Pi − e

d
I
)2 + ∑

i 6= j
tr

[(
Pi − e

d
I
)(

P j − e

d
I
)]

= m
(
e − e2

d

)
+m(m −1)

(
α2 − e2

d

)
.

Our bound follows from this. If equality holds that tr(S2) = 0 and therefore

S = 0.

If P and Q are projections onto isoclinic spaces with parameter λ, then

λe = tr(λP ) = tr(PQP ) = tr(PQ) =α2.

Thus λ=α2/e and our expression for m becomes

m = d(1−λ)

e −dλ
.

This bound (for equi-isoclinic subspaces) is due to Lemmens and Seidel.

They also note that the absolute bound cannot be tight if e > 1, because

the projections Pi lie in the subspace of mappings Q such that P1QP1 is a

scalar multiple of P1 and this has codimension e(e +1)/2.

A set P1, . . . ,Pm of projections with rank e such that∑
Pi = me

d

is known as a tight fusion frame. If e = 1, it is a tight frame.

If Ri is a matrix whose columns form an orthonormal basis for im(Pi ),

then

Pi = Ri R∗
i .

So if
∑

i Pi = (me/d)I , then

me

d
I =∑

i
Ri R∗

i .
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If R denotes the d ×me matrix(
R1 . . . Rm

)
then

RR∗ =∑
i

Ri R∗
i = me

d
I

and accordingly R∗R is a scalar multiple of a projection of order me ×me.

(It has a block decomposition where the i j -block is R∗
i R j ; this block is a

scalar multiple of an orthogonal matrix.

19.4 Error Correction

Let C be an e-dimensional subspace of Cd . A matrix A in U (d) is de-

tectable if for any two vectors x and y in C , we have 〈x, y〉 = 0 if and only if

〈x, Ay〉 = 0. We note that A−1 = A∗ is detectable if and only if A is.

If x, y ∈C , then

〈x, Ay〉 = 〈P x, AP y〉 = 〈x,PAP y〉

and hence PAP maps C to itself. Therefore A is detectable if and only if

PAP maps x⊥∩C into itself, for each x in C .

19.4.1 Theorem. Let C be an e-dimensional subspace of Cd , where e ≥ 3. A

matrix A is detectable if and only if U and AU are isoclinic.

Proof. Let P represent orthogonal projection onto U and assume A is

detectable. Then PAP fixes C and fixes the subspace x⊥ ∩C for each x

in C . Thus it fixes each hyperplane in C , and therefore it must be a scalar

matrix. If the columns of R are an orthonormal basis for C , we have

αI = PAP = RR∗ARR∗

and hence R∗AR =λI . Now

PA∗PAP = RR∗A∗RR∗ARR∗ =αᾱP

and we conclude that C and AC are isoclinic.

We turn to the converse. Assume A ∈U (d) and C and AC are isoclinic.

Assume further that R is a d × e matrix whose columns form an orthonor-

mal basis for C . Then RR∗ represents projection onto C and A∗RR∗A

represents projection onto AC . Therefore

λRR∗ = RR∗A∗RR∗ARR∗

and accordingly

λI = R∗A∗RR∗AR.

This implies that λ−1/2R∗AR is unitary. Assume x = Rw and y = Rz. Then

x, y ∈C and x ⊥ y , then x∗Ay = 0 (because A is unitary). We conclude that

A is detectable.
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19.5 Isoclinic Subspaces from Covers

Two subsets of Cd are congruent if there is a unitary mapping that takes

the first subset to the second. If the subsets are finite, and are given as the

columns of matrices M and N , then they are congruent if and only if there

is a unitary matrix A and a permutation matrix P such that AMP = N .

19.5.1 Lemma. Two spanning sets of vectors x1, . . . , xm and y1, . . . , ym are

congruent if and only if their Gram matrices are permutation equivalent.

Proof. Let U1 and U2 be the matrices with the vectors x1, . . . , xm and

y1, . . . , ym repectively as columns. Reordering the columns of U1 as needed,

the two sets of vectors are congruent if and only if there is an orthogonal

matrix Q such that QU1 =U2. If such Q exists,

U T
2 U2 =U T

1 QT QU1 =U T
1 U1

and the Gram matrices are equal.

So now we assume that U T
1 U1 =U T

2 U2. Since our vectors span, the rows

of U1 are linearly independent and hence U1 has a right inverse R. Then

I = RT U T
1 U1R = RT U T

2 U2R

and therefore Q =U2R is orthogonal.

Next, since U1R = I , the matrix RU1 is idempotent and, as U1RU1 =U1,

it acts as the identity on the row space of U1.

We now note that, since U T
1 U1 =U T

2 U2, the row spaces of U1 and U2 are

equal. Therefore

QU1 =U2RU1 =U2.

A set of vectors x0, . . . , xr in Rd forms a regular r -simplex if its Gram

matrix is a non-zero scalar multiple of r Ir − Jr . The vectors x0, . . . , xr are the

vertices of the simplex. The span of a regular r -simplex has dimension r −1.

Any two regular r -simplices are congruent, in fact any bijection from the

vertices of one simplex to the vertices of the other extends to an orthogonal

mapping (by the previous lemma).

Suppose C and D are subspaces with dimension e, with associated pro-

jections P and Q respectively. Then C and D are isoclinic if the restriction

of P to D is a scalar multiple of an orthogonal operator.

We can construct isoclinic subspaces from antipodal distance regular

graphs. Suppo0se X is distance-regular on n vertices. Assume θ is an eigen-

value of X with multiplicity d and corresponding spectral idempotent E .

If u ∈ V (X ), then the map u 7→ Eeu assigns a vector in Rm to each vertex

of X —we call it a representation of X on the θ-eigenspace of X . Since X is

distance regular, Eu,v is determined by the distance between x and y in X ,

in particular the vectors Eeu all have same length (namely
p

d/n).
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19.5.2 Theorem. Let X an antipodal distance-regular graph with fibres

of size r and let θ be an eigenvalue of X that is not an eigenvalue of the

quotient. Then the images of the fibres under the representation on the

θ-eigenspace are pairwise isoclinic subspaces of dimension r − 1. The

parameter of isoclinism is determined by the distance between the fibres in

X .

Proof. Let F be a fibre with vertices 1, . . . ,r , set E = Eθ and yi = Eei for i ∈ F .

Let F denote the span of the vectors E ai .

As ∑
i

yi = (Ad + I )y1

we see that ∑
i

yi = E(Ad + I )y1.

Since r−1(Ad + I ) is an idempotent, representing projection onto the space

of vectors constant on the fibres of X , it follows that E(I +Yd ) = 0. We con-

clude that vectors yi sum to zero and, since the vertices in F are pairwise

equidistant, their image is a regular simplex.

Suppose b is a vertex in X at distance i from F and that 2i < D . Set

x = Eeb . Assume b is at distance i from a1; then it is at distance D − i from

each of a2, . . . , ar . Accordingly

0 = 〈x,
r∑

i=1
yi 〉 = 〈x, y1〉+ (r −1)〈x, y2〉

and similarly

0 = 〈y1,
r∑

i=1
yi 〉 = 〈y1, y1〉+ (r −1)〈y1, y2〉

Now we calculate that

x − 〈y1, x〉
〈y1, y1〉

y1

is orthogonal to the vectors y1 − yi for i = 2, . . . ,r , and therefore the vector

〈y1, x〉
〈y1, y1〉

y1

is the projection of x onto F .

Since each vertex in the fibre of x is at distance i from a vertex in F , we

deduce that orthogonal projection P onto F maps the regular simplex

spanned by the fibre of X onto α = 〈y1, x〉/〈y1, y1〉 times the image of F .

Therefore the restriction of α−1P to the span of the fibre of x is an orthogo-

nal mapping, and so the spans of two fibres at distance i are isoclinic.

If 2i = d , then x is at the same distance from each vertex in F , whence

〈x, yi 〉 = 0 and therefore the images of distinct fibres are orthogonal

subspaces—still isoclinic.
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If X is a distance-regular antipodal r -fold cover of Y , then fibres in the

preimage of a clique in Y give rise to a set of equi-isoclinic subspaces of

dimension r −1.

A distance-regular antipodal r -fold cover of Kn,n has diameter four.

It follows that that the images of the fibres corresponding to vertices in

one of the colour classes are pairwise orthogonal. The eigenvalues of this

cover are the eigenvalues of Kn,n and ±pn, each with multiplicity (r −1)n.

Hence the images of the fibres in a given colour class form an orthogonal

decomposition of R(r−1)n into n subspaces of dimension (r −1).

19.6 Equi-isoclinic Subspaces and Unitary Covers

Let C1, . . . ,Cm be a set of pairwise λ-isoclinic e-dimensional subspaces of

Cd , and let R1, . . . ,Rm be d × e matrices such that R∗
i Ri = Ie and Pi = Ri R∗

i

is the projection onto Ci . Let G be the me ×me block matrix with i j -block

equal to R∗
i R j ; we might privately think of G as a kind of Gram matrix.

We see that G∗ =G . The projections P1, . . . ,Pm form a tight fusion frame

if and only if G is a scalar times an idempotent. The subspaces C1, . . . ,Cm

are pairwise isoclinic if and only if each block is a scalar times a unitary

matrix. If the subspaces are pairwise λ-isoclinic, then each off-diagonal

block of λ−1/2(G − I ) is unitary. Thus a set of m pairwise equi-isoclinic

d-dimensional subspaces determines a map d from the arcs of the com-

plete graph Km into the unitary group into the unitary group, such that

f (i , j ) f ( j , i ) = 1 for each arc i j . We call it a unitary arc function on Km . We

extend f to a function on the walks in Km : if w = v0 · · ·vn is a walk, then

f (w) = f (v0v1) · · · f (vn−1vn).

If A1, . . . , Am are matrices from U (d), then the function

(i , j ) 7→ A∗
i f (i , j )Ai

is a function on the arcs that takes the same value on closed walks that f

does. The corresponding block matrix G is similar to G . It follows that we

may assume that f takes the value I on the arcs from a spanning tree, in

which case we say the function is normalized. In particular we may assume

that

f (1, i ) = I = f (i ,1)

for all i 6= 1.

The reduced closed walks at a given graph form the fundamental group

of the graph; a normalized unitary arc function determines a homomor-

phism from the fundamental group into the unitary group. Hence it gives a

unitary representation of the fundamental group.
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19.7 Lines from Subspaces

If x and y are unit vectors and 〈x, y〉〈y , x〉 =λ

xx∗y y∗xx∗ = x〈x, y〉〈y , x〉x∗ =λxx∗

and so the spans of x and y are 1-dimensional λ-isoclinic subspaces.

19.7.1 Lemma. Let C and D be a pair of λ-isoclinic subspaces and let x

and y be unit vectors such that x ∈ C and y ∈ D and |〈x, y〉|2 = λ. If P

represents orthogonal projection onto C , then P y = 〈x, y〉x.

Proof. Set γ= 〈x, y〉. We have

〈P y −γx,P y −γx〉 = 〈P y ,P y〉−γ〈P y , x〉− γ̄〈x,P y〉+γγ̄〈x, x〉.

Here, because C and D are λ-isoclinic,

〈P y ,P y〉 =λ〈y , y〉 =λ,

and

γ〈P y , x〉 = γ〈y ,P x〉 = γ〈y , x〉 =λ,

similarly γ̄〈x,P y〉 = γ̄〈x, y〉 =λ. Hence 〈P y −γx,P y −γx〉 = 0.

The following result is an extension of a result from Lemmens and

Seidel. It gives a necessary condition for a set of equi-isoclinic subsapces to

contain a set of equiangular lines.

19.7.2 Theorem. Let C1, . . . ,Cm be a set of pairwise λ-isoclinic subspaces

in Cd , with associated projections P1, . . . ,Pm . Let R1, . . . ,Rm be matrices

with orthonormal columns such that Pi = Ri R∗
i . Let f denote the cor-

responding unitary arc function. If z1, . . . , zm are unit vectors such that

zi ∈Ci and

〈zi , z j 〉〈z j , zi 〉 =λ, i 6= j ,

then for any closed walk w on Km starting at vertex 1, the vector R∗
1 z1 is an

eigenvector for f (w).

Proof. We have f (i , j ) = R∗
i R j for each arc (i , j ). Now

P1Pi1 · · ·Pik P1z1 = z1z∗
1 zi1 z∗

i1
· · ·zik z∗

ik
z1 = γz1

and

P1Pi1 · · ·Pik P1z1 = R1R∗
1 (Pi1 · · ·Pik )R1R∗

1 z1,

it follows that R∗
1 z1 is an eigenvector for the product

f (1, i1) · · · f (ik ,1).

This result tells us that if a set of equi-isoclinic subspaces contains a

set of equiangular lines, then the group generated by the arc function on

closed walks has a 1-dimensional invariant subspace. Equivalently it has a

non-trivial linear representation.
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Forms

20.1 Semilinear Forms

A semilinear form on a vector space V is a map from V ×V to the underly-

ing field. It maps the pair (x, y) to 〈x, y〉, and saisfies the following:

(a) For each vector a, the map x 7→ 〈a, x〉 is linear.

(b) For each vector b, the map x 7→ 〈x,b〉 is semilinear.

It follows that for all vectors x and y and all scalars a,

〈ax, y〉 = aσ〈x, y〉.

The standard inner product on Cd is semilinear; in this case σ is complex

conjugation. For a wider class of examples, take a square matrix A and

define

〈x, y〉 = (xσ)T Ay .

(For a matrix or vector M , we use Aσ to denote the result of applying σ to

each entry of M .)

Since the map ψa : x 7→ 〈a, x〉 is a linear map from V to the 1-dimensional

space Fwe see that either ψa is onto and its kernel has codimension 1 in V ,

or ψa is the zero map and its kernel is V . We denote the kernel of ψa by x⊥.

The radical of V (relative to our form) is the set of vectors a such that ψa is

the zero map. It is a subspace of V . We say that the form is non-degenerate

if its radical is zero. The radical of an inner product is zero.

If U ≤V , we define

U⊥ =∩u∈U u⊥.

This is again a subspace of V .

20.1.1 Lemma. If U ≤ V and our form is non-degenerate, then dim(U )+
dim(U⊥) = dim(V ).

Let u1, . . . ,uk be a basis for U and define a map ρ : U → Fk by

ρ(x) =
(
〈u1, x〉 . . . 〈uk , x〉

)
.
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We see that ρ is linear and that ker(ρ) =U⊥. If ρ is not surjective, there are

scalars a1, . . . , ak such that

0 =
k∑

r=1
ar 〈ur , x〉 = 〈

k∑
r=1

ar ur , x〉.

Since our form is non-degenerate, it follows that
∑k

r=1 ar ur = 0 and, since

u1, . . . ,uk is a basis, ar = 0 for all r . We conclude that ρ is surjective, and the

lemma follows from the rank-nullity theorem.

We say that a subspace U of V is isotropic if U ≤ U⊥. The the zero

subspace is the only isotropic subspace of an inner product space.

20.2 The Classification of Forms

There are three classes of semilinear forms.

For the first, the associated automorphism is not trivial, and

〈y , x〉 = (〈x, y〉)σ.

In this case we have a Hermitian form. For a Hermitian form there is a

matrix H such that (Hσ)T = H and

〈x, y〉 = (xσ)T H y .

Otherwise σ is trivial. The next possibility is that

〈y , x〉 = 〈x, y〉.

In this case we have a symmetric form, for which there is always a symmet-

ric matrix A such that 〈x, y〉 = xT Ay . Finally we may have an alternating

form, where

〈x, x〉 = 0

for all x. Here

0 = 〈x + y , x + y〉 = 〈x, x〉+〈x, y〉+〈y , x〉+〈y , y〉

and since 〈x, x〉 = 〈y , y〉, it follows that

〈y , x,=〉−〈x, y〉

For an alternating form there is a matrix S such that ST =−S and all diago-

nal entries are zero; then 〈x, y〉 = xT Sy .

Alternating forms are also known as symplectic forms. In odd charac-

teristic it is reasonable to describe the matrix S as skew symmetric. In even

characteristic, S is symmetric with zero diagonal.

Under natural geometric assumptions it can be shown (with some

effort) that the above three families of semilinear forms are the only inter-

esting possibiities.
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We say two forms 〈,〉1 and 〈,〉2 are equivalent if if there is an invertible

matrix M such that

〈x, y〉2 = 〈M x, M y〉1.

This raises the problem of determining the equivalence classes of forms of

a given type on vector space.

Over finite fields it can be shown that there is only one class of non-

degenerate Hermitian forms, and only one class of non-degenerate al-

ternating forms. It cannot be shown that there is only one class of non-

degenerate symmetric forms—because this is false.
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Groups

For each bilinear form 〈,〉, we have the group of matrices M that preserve

the form, that is, the matrices M such that

〈x, y〉 = 〈M x, M y〉.

We spend some time with these groups.





Part V

Algebras
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Lie Algebras

We study Lie algebras because they force themselves on us when we study

the Terwilliger algebra of the binary Hamming scheme. As we will see,

there are other combinatorial applications. Additionally we will work with

the universal enveloping algebra of a Lie algebra, which provides a useful

example of an infinite dimensional algebra.

22.1 Basics

A Lie algebra over a field F is a vector space with a multiplication [a,b] such

that

(a) [b, a] =−[a,b].

(b) For all a, b and c, we have the Jacobi identity :

[a, [b,c]]+ [b, [c, a]]+ [c, [a,b]] = 0.

The only fields we will use in this context are R and C, whence we see that

[a, a] = 0 for all a. We call [a,b] the Lie bracket or commutator of a and b,

and we abbreviate [a, [b,c]] to [a,b,c]. A Lie algebra is abelian if [a,b] = 0

for all a and b.

Note that a Lie algebra is not an algebra in the sense we have used

elsewhere—the multiplication is not even associative in general.

We offer examples:

(a) g l (n,F), the Lie algebra of all n ×n matrices over F, where

[A,B ] := AB −B A.

(b) The real skew symmetric matrices of order n×n form a Lie algebra over

R.

(c) R3 with the cross product. We will use a ∧b to denote the cross prod-

uct.
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(d) A derivation of a commutative algebra A over F is a map δ : A → F

such that

δ( f g ) = δ( f )g + f δ(g ).

You may check that the product of two derivations is not in general a

derivation, but their Lie bracket is, and further the set of derivations

of A is a Lie algebra. By way of a more specific example take A to

be the polynomial ring F[x1, . . . , xd ] and note that, for each i , partial

differentiation with respect to xi is a derivation.

The construction in (a) can be usefully generalized: if A is an algebra

over F, then the multiplication

[a,b] := ab −ba

gives us a Lie algebra. Thus if V is a vector space, then End(V ) is a Lie

algebra under this operation. For fixed a in A , the map from A to itself

given by

x : 7→ [a, x]

is a derivation (as you should check).

A subspace of a Lie algebra L is subalgebra if it is closed under the Lie

bracket. You could check that the subspace of skew symmetric matrices is a

subalgbra of g l (n,F). A subspace U of L is an ideal if [a,u] ∈U , for all u in

U . The subspace of strictly upper triangular matrices is an ideal in the Lie

algebra formed by the set of all upper triangular matrices.

If L is a Lie algebra and S,T are subsets of L , then we define [S,T ] to

be the subspace of L spanned by the set

{[x, y] : x ∈ S, y ∈ T }.

In particular the subspace [L ,L ] is a subalgebra of L , called the commu-

tator subalgebra .

For example, suppose L = g l (V ). Then for any A and B in L , we have

tr[A,B ] = tr(AB)− tr(B A) = 0.

So the commutator of g l (V ) consists of matrices with zero trace. It can

be shown that it contains all matrices with zero trace. It is known as the

special linear Lie algebra and is denoted by sl (V ). You may show that sl (V )

is equal to its commutator subalgebra.

22.2 Enveloping Algebras

The construction of the Lie algebra g l (V ) from the algebra End(V ) can be

generalized: if A is an algebra and a,b ∈L , we can define their Lie bracket

by

[a,b] := ab −ba.
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This leads us to ask which Lie algebras arise in this way, and the answer is

that they all do. Let us denote the Lie algebra we get from A by LieA . The

universal enveloping algebra of L is essentially the smallest algebra U

such that L = LieU . Of course the adjective ‘universal’ indicates that a cat-

egory theorist has escaped. What we should say is that U is defined by the

condition that if ψ : L → LieA for some algebra A , then ψ can be factored

into a Lie homomorphism from L to LieU and a Lie homomorphism from

LieU to LieA induced by an algebra homomorphism from U to A .

We consider a particular example, using the the Lie algebra sl (2,R). The

elements of this are the 2× 2 matrices of trace zero, which form a vector

space of dimension three, with basis

X =
(

0 1

0 0

)
, Y =

(
0 0

0 1

)
, H =

(
1 0

0 −1

)
.

We note that

[X ,Y ] = H

and that

[H , X ] = 2X , [H ,Y ] =−2Y .

The universal enveloping algebra of sl (2,F) is the quotient of the free poly-

nomial algebra in variables X , Y modulo the relations

X Y −Y X −H = 0, H X −X H −2H = 0, HY −Y H +2Y = 0.

Note that this is an infinite-dimensional algebra—it can be shown that the

elements X k Y `H m form a basis.

22.3 Posets

A poset is ranked if all elements covered by an element have the same

height. If P is ranked then the i -th level number is the number of elements

with height i . Thus the poset formed by the subsets of {1, . . . ,n}, ordered

by inclusion, is ranked and the i -th level number of
(n

i

)
. If P is ranked with

height d and the i -th level number is wi , we say that P is rank symmetric

if wi = wd−i for all i , and we say P is unimodal if the sequence of level

numbers is unimodal. The lattice of subsets of {1, . . . ,n} is rank symmetric

and unimodal.

An antichain in a poset P is set of elements such that no two are com-

parable. (Equivalently it is a coclique in the comparability graph of P .)

The elements of given height in a poset form an antichain, and we say P is

Sperner if the maximum size of an antichain is equal to the maximum level

number. More generally we call P strongly Sperner if the maximum size of

a subset that does not contain a chain of length k + 1 is equal to the sum

of the k largest level numbers. A Peck poset is a ranked poset that is rank
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symmetric, unimodal and strongly Sperner. The lattice of subsets of a finite

set is Peck.

We use P to denote the the vector space RP . We can represent subsets of

P by their characteristic vectors, which belong to P. If a ∈ P we will often

denote the characteristic vector of a by a. The subspace of P spanned by

the (characteristic vectors of) the elements of height i will be denoted by

P(i ).

Suppose P is a finite ranked poset. An element of End(P) is a raising

operator if for each element a of P , the support of Ra is a subset of the

elements of P that cover a. Similarly we define lowering operators . If R is a

raising operator then RT is lowering. Both raising and lowering operators

are nilpotent: if P has height d and R is a raising operator, then Rd+1 = 0.

The following result is due to Stanley and Griggs.

22.3.1 Theorem. Let P be a rank-symmetric poset with height h. Then

P is Peck if and only if there is an order-raising operator R such that the

mappings

Rh−i �P(i ) : P(i ) →P(h − i ), i = 0, . . . ,
⌊h

2

⌋
are invertible.

Using the above result, Proctor showed the following.

22.3.2 Theorem. A ranked poset is Peck if and only if it has raising and

lowering operators R and L such that the Lie algebra generated by R and L

is isomorphic to sl (2,C).

We derive an important consequence of these results.

22.3.3 Corollary. If P1 and P2 are Peck posets, then so is P1 ×P2.

Proof. If 1 and P2 are Peck then the vector spaces P1 and P2 are modules for

sl (2,C). Now

CP1×P2 =P1 ⊗P2

and therefore CP1×P2 is a module for sl (2,C). We conclude that P1 ×P2 is

Peck.

If U and V are modules for an algebra A then U ⊗V is a module for

A ×A , but it is not in general a module for A . However it is module for A

when A is an enveloping algebra of a Lie algebra (and when A is a group

algebra).

22.4 Representations of Lie Algebras

A linear map ψ from a Lie algebra L1 to a Lie algebra L2 is a homomor-

phism if

ψ([a,b]) = [ψ(a),ψ(b)].
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A representation of a Lie algebra L is a homomorphism into g l (n,F). More

generally ψ could be a homomorphism into End(V ) for some vector space

V ; in this case we may say that V is a module over L . A subspace of V

that is invariant under the operators in ψ(L ) is a submodule . (Calling V

a module for L is a courtesy, since modules are defined over rings—if we

wish to be precise, it is a module for the enveloping algebra.)

If L is a Lie algebra and A ∈L , we define the adjoint map adA by

adA(X ) := [A, X ].

This is a linear map, and is a derivation of the enveloping algebra. By Ja-

cobi’s identity

adA([X ,Y ]) = [A, [X ,Y ]] =−[X , [Y , A]]− [Y , [A, X ]]

= [X , [A,Y ]]+ [[A, X ],Y ].

We also have, by appeal to Jacobi

(adX adY −adY adX )(Z ) = [X , [Y , Z ]]− [Y , [X , Z ]]

= [X , [Y , Z ]]+ [Y , [Z , X ]]

= [[X ,Y ], Z ]

= ad[X ,Y ](Z ),

which shows that adA is a homomorphism from L into the Lie algebra

End(L).

An element A of L is ad-nilpotent if adA is nilpotent. We observe that

adA(X ) = [A, X ],

(adA)2(X ) = [A, [A, X ]],

(adA)3(X ) = [A, [A, [A, X ]]]

and in general, (adA)k+1(X ) = [A, (adA)k (X )]. If A ∈ g l (n,F), then we may

represent the linear map adA by

A⊗ I − I ⊗ A.

It follows that if Ak = 0, then (adA)2k = 0. In particular if A in g l (V ) is

nilpotent then adA is nilpotent. Thus we have the fortunate conclusion

that nilpotent elements of g l (V ) are ad-nilpotent.

22.5 Bilinear Forms

Suppose ψ is a representation of the Lie algebra L in End(V ). A bilinear

form β on V is invariant if

β(ψ(X )u, v)+β(u,ψ(X )v) = 0
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for all u and v from V . By way of example, if V is L itself then

β(X ,Y ) := tr(adX adY )

is a symmetric bilinear form, known as the Killing form . We check that it is

invariant.

β([A, X ],Y ) = tr(ad[A,X ] adY )

= tr([adX ,adY ]adY )

= tr(adA adX adY −adX adA adY )

Similarly

β(X , [A,Y ]) = tr(adX adA adY −adX adY adA)

from which we see that β is invariant. (Thus the adjoint of adX relative to

the Killing form is −adX .)

Suppose L is a Lie algebra with a non-degenerate invariant bilinear

form. If X1, . . . , Xd is a basis for L , there is a dual basis Y1, . . . ,Yd such that

β(Xi ,Y j ) = δi , j .

The Casimir element of the universal enveloping algebra is defined to be

d∑
i=1

Xi Yi .

22.5.1 Theorem. Let L be a Lie algebra with a non-degenerate invariant

bilinear form β. Then the Casimir element is independent of the choice of

basis for L , and lies in the center of the universal enveloping algebra.

Proof. Let X1, . . . , Xd be a basis for L with dual basis Y1, . . . ,Yd and let ∆

be the Casimir element defined using this pair of bases. Let U1, . . . ,Ud and

V1, . . . ,Vd be a second pair of dual bases. Then there are scalars ρi , j and

σi , j such that

Ui =
∑
k
ρi ,k Xk ,

V j =
∑
`

σ j ,`Y`.

We have ∑
i

Ui Vi =
∑

i ,k,`
ρi ,kσi ,`Xi Yi (22.5.1)

Since β(Xi ,Y j ) = δi , j , we have

δi , j =β(Ui ,V j ) =∑
k
ρi ,kσ j ,k

So if we define matrices R and S by R := (ρi , j ) and S := (σi , j ) then RST = 0.

Consequently SRT = 0 and therefore

δk,` =
∑

i
ρi ,kσi ,`.
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Hence (22.5.1) implies that
∑

i Ui Vi =∆.

We now prove ∆ lies is central. Suppose A ∈ L . There are scalars αi , j

and βi , j such that

[A, Xi ] =∑
j
αi , j X j

and

[A,Yi ] =∑
j
βi , j Y j

Since β is invariant,

0 =β([A, Xi ],Y j )+β(Xi , [A,Y j ]) =αi , j +β j ,i .

This implies that∑
i

[A, Xi ]Yi =
∑
i , j
αi , j X j Yi =−∑

i , j
β j ,i X j Yi =−∑

i
Xi [A,Yi ].

Now we compute that

A∆=∑
i

AXi Yi =
∑

i
[A, Xi ]Yi +

∑
i

Xi AYi

and

∆A =∑
i

Xi Yi A =−∑
i

Xi [A,Yi ]+∑
i

Xi AYi ,

whence we conclude that A∆=∆A.

22.5.2 Lemma. If ∆ is the Casimir element of the Lie algebra L and ϕ is a

representation of L , then tr(ϕ(∆)) = dim(ϕ(L )).

22.6 An Example

We compute the Casimir element for sl (2,C), relative to the form

β(X ,Y ) := tr(adX adY ).

Recall that X , H and Y form a basis, where

X =
(

0 1

0 0

)
, H =

(
1 0

0 −1

)
, Y =

(
0 0

0 1

)
,

and

[X ,Y ] = H , [H , X ] = 2X , [H ,Y ] =−2Y .

It follows that

adX =

0 −2 0

0 0 1

0 0 0

 , adY =

 0 0 0

−1 0 0

0 2 0

 , adH =

2 0 0

0 0 0

0 0 −2

 .
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If

A =
(

a b

c −a

)
,

then

adA =

2a −2b 0

−c 0 b

0 2c −2a


and now it is easy verify that if

β(A, X ) =β(A, H) =β(A,Y ) = 0,

then A = 0. Therefore β is nondegenerate.

Next we calculate that

β(X ,Y ) =β(Y , X ) = 4, β(H , H) = 8

and all other inner products are zero. So the dual basis to (X , H ,Y ) is(1

4
Y ,

1

4
X ,

1

8
H

)
and the Casimir element is

∆ := 1

4
(X Y +Y X + 1

2
H 2).

Using the fact that

[A,BC ] = [A,B ]C +B [A,C ],

it is not hard to verify directly that ∆ is central.

22.7 Irreducible Modules

We construct a family of irreducible modules for sl (2,C), by constructing

irreducible modules for its enveloping algebra.

22.7.1 Lemma. Let U denote the enveloping algebra of sl (2,C), with gener-

ators X , Y and H , and suppose V is a module for U with finite dimension.

If v is an eigenvector for H in its action on V , then there are integers k and

` such that X k v = 0 and Y `v = 0.

Proof. Suppose H v =λv . Recalling that [H , X ] = 2X , we have

H X v = (X H +2X )v =λX v +2X v = (λ+2)X v .

Hence if X v 6= 0 and λ is an eigenvalue of H , then λ+2 is also an eigenvalue

of H . A similar calculation shows that if Y v 6= 0, then Y v is an eigenvector

for H with eigenvalue λ−2.
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Note that X Y v is an eigenvector for H with eigenvalue λ, consistent

with the fact that H and X Y commute.

If V is a module for U , an element v of V has weight λ if H v = λv . If

H v = λv and also X v = 0, we say that v is a highest weight vector of weight

λ. The eigenspaces of H are often called weight spaces . We have seen that

every finite-dimensional module for U must contain a highest weight

vector; the following theorem completely specifies the structure of the

cyclic U -module generated by a highest weight vector.

22.7.2 Theorem. Suppose V is a module for U and v is a highest weight

vector in V with eigenvalue λ. Let d be the least non-negative integer such

that Y d v = 0. Then λ= d −1, the cyclic U -module generated by v is simple

and the vectors

v ,Y v , . . . ,Y d−1v

form a basis for it. Further, for k = 0,1, . . . ,d −1,

HY k v = (d −1−2k)Y k v , X Y k v = k(d −k)Y k−1.

Proof. The adjoint map adH is a derivation of U whence

[H ,Y k ] = [H ,Y ]Y k−1 +Y [H ,Y k−1]

and a trivial induction yields that

[H ,Y k ] =−2kY k .

If H v =λv , we have

HY k v = [H ,Y k ]v +Y k H v =−2kY k v +λY k v = (λ−2k)Y k v .

Let d be the least integer such that Y d v = 0. Then the vector space V1

spanned by the vectors

v ,Y v , . . . ,Y d−1v

has dimension d , and these vectors for a basis for it. Since these vectors are

all eigenvectors for H , we see that V1 is invariant under both Y and H . We

prove that it is X -invariant.

We have

[X ,Y k ] = [X ,Y ]Y k−1 +Y [X ,Y k−1]

Since X v = 0, it follows that

X Y k v = [X ,Y k ]v = HY k−1v +Y [X ,Y k−1]v

and so by induction we have

X Y k v = HY k−1v +Y HY k−2v +·· ·+Y k−1H v .

Since the vectors Y k v are eigenvectors for H , this implies that X Y k v =
ck Y k−1v , for some constant ck and therefore V1 is a module for U . We have

ck = (λ+2−2k)+ (λ+4−2k)+·· ·+λ= kλ− (k2 −k) = k(λ−k +1).
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We see that cd is the sum of the eigenvalues of H on V1 and so cd = tr(H).

As H = X Y −Y X we have tr(H) = 0, and therefore λ= d −1.

It remains to prove that V is simple. Suppose V1 is a non-zero submod-

ule of V . Then V1 contains a highest weight vector u, and since u is an

eigenvector for H it must be a non-zero scalar multiple of one of the vec-

tors Y i v . Since X u = 0, we see see that u is a non-zero scalar multiple

of v . Hence the cyclic module generate by u is equal to V and therefore

V1 =V .

This result implies that the U module generated by a highest weight vec-

tor v is determined by its dimension (or by the eigenvalue of v). Also note

that any simple module is isomorphic to one of the modules described in

this theorem, since any module contains a highest weight vector.

22.7.3 Corollary. If C is the Casimir element of sl (2,C), then C Y k v = (d 2 −
1)Y k v .

Proof. From above we have

X Y Y k v = (k +1)(d −k −1)Y k v

Y X Y k v = k(d −k)Y k v

H Y k v = (d −1−2k)Y k v

and the claim follows easily from these.

22.8 Semisimple Elements

We derive two useful identities that hold in the enveloping algebra of

sl (2,C). We define

Hk := H +kI

and we define Hk;r recursively by Hk;0 = I and

Hk;i+1 := Hk;i Hk−i+1.

22.8.1 Lemma. We have

X mY n =
m∧n∑
r=0

r !

(
m

r

)(
n

r

)
Y n−r X m−r Hn−m;r

Proof. First prove by induction that if n ≥ 1, then

X nY = Y X n +nX n−1Hn−1 (22.8.1)

and then, by a second induction, derive the lemma.

22.8.2 Lemma. In a finite dimensional representation of U (sl (2,C)), if

X k = 0 then
k−1∏

r=−k+1
(H − r I ) = 0.
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Proof. We do not give a complete proof, but offer a generous hint and leave

the details as an exercise.

Suppose V is a finite-dimensional representation for U . The idea is to

prove that, if X k = 0, then for i = 1, . . . ,k we have

X k−i Hk−1;2i−1 = 0.

Setting i = k in this yields the result.

For convenience we prove the above claim in the case k = 4. We have the

following equations:

X 4Y = Y X 4 +4X 3H3;1 (22.8.2)

X 4Y 2 = Y 2X 4 +8Y X 3H2;1 +12X 2H2;2 (22.8.3)

X 4Y 3 = Y 3X 4 +12Y 2X 3H1;1 +36Y X 2H1;2 +24X H1;3 (22.8.4)

X 4Y 4 = Y 4X 4 +16Y 3X 3H0;1 +72Y 2X 2H0;2 +216Y X H0;3 +24H0;4 (22.8.5)

Since X 4 = 0 we see that (22.8.2) implies

X 3H3;1 = 0.

Now multiply (22.8.3) on the right by H3; since X Hi = Hi−2X , we get

0 = 8Y X 3H3H2 +12X 2H1H2H3

and since Y X 3H3 = 0, we deduce that

X 2H3;3 = 0.

Next multiply (22.8.4) on the right by H2H3 and deduce that since

Y X 2H1;2H2H3 = Y X 2H0H1H2H3 = Y X 2H3;3H0 = 0,

that

X H3;5 = 0.

Finally multiply (22.8.5) on the right by H1;3 to deduce that

H3;7 = 0.

Recall that H , X Y and Y X all commute.

22.8.3 Lemma. If 1 ≤ k ≤ n, then

X nY k =
(k−1∏

i=0
(Y X + (n − i )H−n+i+1)

)
X n−k

Proof. From (22.8.1) we have

X nY = Y X n +nX n−1Hn−1 = Y X n +nH−n+1X n−1 = (Y X +nH−n+1)X n−1

and use induction on k.
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22.8.4 Theorem. In a finite-dimensional representation of U (sl (2,C))), the

images of H , X Y and Y X are semisimple.

Proof. Since H and X Y commute and Y X = X Y −H , it is enough to show

that H and Y X are semisimple. By 22.7.1, there is an integer k such that

X k = 0. From 22.8.2 it follows that H is semisimple, and so the underlying

vector space V is a direct sum of eigenspaces of H . Suppose Vλ is one of

these eigenspaces, where λ is the eigenvalue of H .

By 22.8.3 we have

0 = X k Y k = (Y X +k(H − (k −1)I ) · · · (Y X +H)

and if z ∈Vλ, then

0 = (Y X +k(λ− (k −1)I ) · · · (Y X +λ)z.

Hence the minimal polynomial of Y X on Vλ has only simple zeros, and

therefore Y X is semisimple on Vλ. We conclude that Y X must be semisim-

ple.

22.9 Semisimple Modules

22.9.1 Theorem. Any finite dimensional module for U (sl (2,C)) is semisim-

ple.

Proof. Let U denote U (sl (2,C)), let M be a finite-dimensional U -module,

and let C be the Casimir element of U . Since C is central and semisimple,

M is the direct sum of eigenspaces of C , and so to prove the theorem it will

suffice if we show that any eigenspace for C semisimple.

Hence we assume that M itself is an eigenspace for C . Since H also is

semisimple, M is the direct sum of weight spaces Mσ and, if N ≤ M , then N

is the direct sum of its weight space Nσ, where

Nσ = N ∩Mσ.

We have

dim(Mσ) = dim(Nσ)+dim(Mσ/Nσ).

Note that M/N is a U -module and

(M/N )σ = Mσ/Nσ.

Next assume we have the composition series for M :

0 = M0 < M1 < ·· · < Mr = M .

Then

dim(Mσ) =
r∑

i=1
dim(Mi /Mi−1)σ
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but Mi /Mi−1 is a simple U -module and consequently dim(Mi /Mi−1)σ = 1.

We conclude that dim(Mσ) = r and that dim(M) is r times the number of

eigenvalues of H . The cyclic U -submodule of M generated by a non-zero

element is simple and, since all non-zero elements of M are eigenvectors

for C with the same eigenvalue, all these simple modules have the same

dimension.

Choose a basis x1, . . . , xd for M . Then

M = x1U +·· ·+xd U .

where each submodule xi U contains a simple submodule Si (say). (We do

not assume that this is a direct sum.) Since dim(Mσ) = r , we have d = r .

Since x1, . . . , xr is a basis, the sum

S1 +·· ·+Sr

is direct and therefore dim(M) is bounded below by r times the number

of eigenvalues of H . But we saw that equality holds, and therefore M is a

direct sum of simple modules as required.

This proof follows Jantzen 1. 1
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Terwilliger Algebras

Let A be an association scheme with d classes and let π be an equitable

partition of its vertex set with e classes. Define the diagonal 01-matrix Fi

by setting (Fi )u,u = 1 if u lies in the i -th class of π. Then the matrices Fi are

symmetric idempotents and ∑
i

Fi = I .

We will study the algebra generated by A together with the matrices Fi .

If u is a vertex in the scheme and the i -th cell of π consists of the ver-

tices x such that (u, x) lies in the i -th relation, the algebra we get is the

Terwilliger algebra of the scheme relative to the vertex u.

23.1 Modules

Our basic task is to determine the irreducible modules of the Terwilliger

algebra. Suppose A is an association scheme with d classes A0, . . . , Ad

and vertex set V , and assume |V | = v . Let T denote the Terwilliger algebra

of this scheme and suppose W is an irreducible T-module. Since W is

invariant under A , it must have basis that consists of eigenvectors for A .

Similarly it must have basis that consists of eigenvectors for the matrices

Fi , that is, vectors whose supports are subsets of the cells of the partition π.

The subspace spanned by the characteristic vectors of the cells of π is

T-invariant and has dimension equal to |π|, the number of cells of π. We

call it the standard module It is a cyclic T-module, generated by 1. You may

prove that it is irreducible.

This may seem an encouraging start to determining the irreducible

modules for the Terwilliger algebra, but unfortunately further progress will

require much more effort. Since T is transpose-closed, Rv decomposes into

an orthogonal sum of irreducible T-modules. Hence if W is irreducible and

is not the standard module, we may assume that it is orthogonal to it. Thus

each element of W will be orthogonal to the vectors Fi 1—it sums to zero

on the cells of π.
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23.1.1 Lemma. If W is an irreducible module for an algebra B and f is an

idempotent in B, then W f is an irreducible module for f B f .

Proof. We may assume dim(W ) ≥ 2, or there is nothing to prove. Since

W f f B f =W f B f ≤W f ,

we see that W f is a module for f B f .

Suppose U is an f B f -submodule of W f . Each element of U can be

written as w f where w ∈ W and as f 2 = f , it follows that U f = U . Since

U f B is a B-submodule of W , it is either zero or equal to W . If it is equal to

W , then

U =U f B f =W f

and therefore W f is irreducible for f B f .

To complete the proof, we show that U f B cannot be zero. The key is to

note that the set

{u ∈W : uB = 0}

is a B-submodule of W . Since W is simple and not zero, it follows that this

set must be the zero module. Consequently U f B cannot be zero.

Note that f B f is a subspace of B and is closed under multiplication,

but fails to be a subalgebra because it does not contain I (in general). How-

ever

f B f + (I − f )B(I − f )

is a subalgebra of B.

When we want to use 23.1.1, we will have two possible sources of idem-

potents: the matrices Fi and the principal matrix idempotents E j .

23.2 Thinness

Let T be the Terwilliger algebra for an association scheme A and let W be a

T-submodule of Rv . We say that W is thin if for each i we have

dim(Fi W ) ≤ 1.

We also say that W is dual thin if for each j ,

dim(E j W ) ≤ 1.

We generalise the concept of thinness. Suppose B is an algebra. We say

that a set of idempotents F1, . . . ,Fr is a resolution of the identity if they are

pairwise orthogonal (Fi F j = 0 when i 6= j ) and∑
i

Fi = I .

A module W for B is thin relative to the resolution F1, . . . ,Fr if dim(Fi W ) ≤
1 for all i .

Being thin is not easy, but it is a desirable property that holds in many

interesting cases.
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23.2.1 Lemma. If A is an association scheme then the standard modules

are thin and dual thin,

Proof. Exercise.

23.2.2 Theorem. If the algebra B is self-adjoint, then it is thin relative to

the resolution F1, . . . ,Fr if and only if the subalgebra

F1BF1 +·· ·+Fr BFr

is commutative.

23.2.3 Lemma. Suppose T is the Terwilliger algebra of an association

scheme relative to some vertex. If each matrix in

F0TF0 +·· ·+FeTFe

is symmetric, or if Aut(X )1 is generously transitive on each cell of π, then T

is thin.

Proof. For the first, two symmetric matrices commute if and only if their

product is symmetric. The second condition implies that each FiTFi is the

Bose-Mesner algebra of a symmetric association scheme.

23.3 Jaeger Algebras

We define some endomorphisms of Matv×v (C). If A is a v × v matrix define

the operators X A and YA on Matv×v (C) by

X A(M) := AM , YA(M) = M A∗

and if B is a v × v matrix, then we define ∆B by

∆B (M) := B ◦M .

Note that

YA(YB (M)) = MB∗A∗ = M(AB)∗ = YAB (M),

which explains the A∗ in the definition of YA . Also X A and YB commute, for

any A and B .

If A is an association scheme, we define J2 to be the algebra gener-

ated by the matrices X A for A in C[A ]. We define J3(A ) to be the algebra

generated by the operators

X A , ∆B , A,B ∈C[A ].

We obtain J4(A ) by adjoining the right multiplication operators YA as well

The vector space Matv×v (C) is a module M for J3, and the subspace

of matrices with all but the i -th column zero is a submodule, which we

denote by M(i ). We see that M is the direct sum of the modules M(i ).

Our first result shows that J3(A ) is a kind of global Terwilliger algebra.
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23.3.1 Lemma. The algebra generated by the restriction to M(i ) of the

operators in J3 is isomorphic to the Terwilliger algebra of A relative to the

i -th vertex.

Proof. We have

X A(ei eT
j ) = (Aei )eT

j

and

∆B (ei eT
j ) = (Bi , j ei )eT

j .

So X A is represented on M( j ) by the matrix A, and ∆B by the diagonal

matrix formed from the vector Be j .

We say that a J3-submodule U of Matv×v (C) is thin if the subspaces ∆Ai

are 1-dimensional, and say that it is dual thin if the subspaces XE j U are

1-dimensional.

23.3.2 Lemma. If A is metric, then a thin submodule of Matv×v (C) is dual

thin; if A is cometric then a dual thin submodule of Matv×v (C) is thin.

Proof. Suppose A is metric relative to the Schur idempotent A1. If C is a

v × v matrix, then

(A1(Ai ◦C ))◦ A j = 0

if |i − j | > 1. Hence if M is submodule of Matv×v (C), then

A1(Ai ◦M) ≤ Ai−1 ◦M + Ai ◦M + Ai+1 ◦M . (23.3.1)

Now let r denote the least positive integer such that Ar ◦M 6= 0, and let

d be the greatest positive integer such that Ar+d−1 ◦M 6= 0. From (23.3.1)

it follows that if r ≤ i ≤ r +d − 1 then Ai ◦ M 6= 0. We also see that M is

generated by the subspace Ad ◦M as an X A1 -module. In other terms,

M = 〈A1〉(Ad ◦M).

If E j is a matrix idempotent, then

E j M = E j 〈A1〉(Ar ◦M) = E j (Ar ◦M)

If M is thin, then dim(Ar ◦M) = 1 and therefore dim(E j M) ≤ 1 for all j .

Therefore M is dual thin.

Suppose A is cometric relative to E1 and let s be the least integer such

that Es M 6= 0. Then each column of a matrix in E j M lies in col(E j ), and so

if C ∈ M , then each column of E1 ◦ (Ei M) is the Schur product of a column

of E1 with a vector in col(Ei ). Hence by ??? we have

E1 ◦ (Ei M) ≤ Ei−1M +Ei M +Ei+1M .

Given this, it is easy to prove the second part of the theorem.
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Hamming Schemes

24.1 The Binary Hamming Scheme

The Hamming scheme H(d ,2) is a metric and cometric association scheme.

The matrix A = A1 is the adjacency matrix of the d-cube, and its eigenval-

ues are the integers

d −2i , i = 0, . . . ,d

with respective multiplicities (
d

i

)
.

The automorphism group of the Hamming scheme is vertex-transitive, and

so the Terwilliger algebra is the same for each vertex.

We can write

A = R +L

where L = RT and R is the natural raising operator on the lattice of subsets

of {1, . . . ,d}. (So L is the natural lowering operator.)

24.1.1 Theorem. The Terwilliger algebra of the binary Hamming scheme is

a quotient of the enveloping algebra U (sl (2,C)).

Proof. View the vertices of the Hamming scheme as subsets of {1, . . . ,d}.

Define

H = RL−LR.

We note that

Rα,β = 1

if and only if α ⊆ β and |β| = |α| + 1. Further Hα,β = 0 if |α| 6= |β| and, if

|α| = |β| = i , then

Hα,β = d −2i .

It follows that

H =
d∑

i=0
(d −2i )Fi
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and hence the the algebra of all polynomials in H is the equal to the alge-

bra generated by the diagonal matrices Fi .

Since

[R,L] = H , [H ,R] = 2R, [H ,L] =−2L

the algebra generated by R, L and H is a homomorphic image of U (sl (2,C)).

To complete the proof we must show that R and L generate the Ter-

williger algebra of H(n,d). But since the scheme is metric, each element

of the Bose-Mesner algebra is a polynomial in A and since the algebra

generated by H contains each Fi , we conclude that R and L generate the

Terwilliger algebra.

24.2 Modules

With what we know about the representation theory of sl (2,C), it is easy

to determine the irreducible T-modules for the binary Hamming scheme

H(d ,2). If u is a vertex of H(d ,2) with Hamming weight i , then the vectors

v ,Rv , . . . ,Rd−2i v

are a basis for an irreducible module of dimension d −2i +1. If u and v are

binary vectors then the irreducible modules they generate are isomorphic

if and only if u and v have the same Hamming weight.

24.2.1 Lemma. We have

dim(T(H(d ,2))) = 1

6
(d +1)(d +2)(d +3).

Proof. If 0 ≤ 2i ≤ d , then our Terwilliger algebra has one isomorphism class

of irreducible module with dimension d −2i +1, whence

dim(T(H(d ,2))) = ∑
i≤d/2

(d −2i +1)2 = 1

6
(d +1)(d +2)(d +3).

24.2.2 Lemma. The Terwilliger algebra of the Hamming scheme is thin and

dual thin.

Proof. If v has Hamming weight i , then the Hamming weight of each vector

in supp(R j v) is i + j . Hence Fi+ j R j v = R j v , and therefore the R-module

generated by v is thin. Since the Hamming schemes are metric, it follows

from 23.3.2 that this module is also dual thin.
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Determinants

The determinant is a function on square matrices which plays many roles.

If A is a square matrix over R, its determinant is a measure of ‘what A does

to volume’. More precisely, if S is a region in Rn with unit volume, then the

volume of set of points

{Ax : x ∈ S}

is |det(A)|. Because of this, the determinant plays an important role in

integration of functions of several variables.

25.1 Permutations

Let Ω be a set. A permutation of Ω is a bijection from Ω to itself. The set

of all permutations of Ω is called the symmetric group on Ω. If |Ω| = n,

then |Sym(Ω)| = n!. We use Sym(n) to denote the set of all permutations

on some set of size n, usually {1, . . . ,n}. If i ∈ Ω and σ ∈ Sym(Ω), then we

denote the image of i under σ by iσ.

Permutations of Ω are functions from Ω to Ω, so if ρ and σ are permuta-

tions, their product σρ is defined by

iσρ = (iσ)ρ .

This is again a permutation of Ω. As we will see, the order matters: usually

σρ 6= ρσ. Since a permutation is a bijection, it has an inverse. If σ ∈ Sym(Ω),

we denote the inverse of σ by σ−1. We have

σσ−1 =σ−1σ.

The identity mapping on Ω is a bijection; we call it the identity permuta-

tion and denote it by 1. Finally, if ρ, σ and τ are permutations of Ω, then

(ρσ)τ= ρ(στ).

In other words, multiplication of permutations is associative.

If Ω = {1, . . . ,n} and σ ∈ Ω, we can specify σ by writing down the se-

quence

1σ,2σ, . . . ,nσ.
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This is sometimes called the Cartesian form of the permutation. There

is a second useful way to present permutations, which we develop now.

Suppose i ∈Ω and consider the infinite sequence of elements

i , iσ, iσ
2
, . . .

by successively applying σ. Since Ω is finite there are integers r and s such

that r < s and

iσ
r = iσ

s
.

Then

i = iσ
sσ−r = iσ

s−r
.

This shows that r = 0 and that s is the least integer such that iσ
s = i . Hence

the elements

i , iσ, . . . , iσ
s−1

are distinct. We call the cyclic sequence

(i , iσ, . . . , iσ
s−1

)

the cycle of σ that contains i . We can view σ as rotating the elements of

this cycle.

We consider an example. Suppose n = 7 and the Cartesian form of σ is

2 3 1 5 6 7 4.

Then the cycle of σ that contains 1 is

(123)

and the cycle of σ that contains 5 is

(5674).

We regard this as equal to each of the cycles

(4567), (6745), (7456).

The distinct cycles of Ω form a partition of Ω. Together they determine

σ—we can specify σ by simply listing its cycles. In the example at hand we

may write

σ= (123)(4567).

The order in which we list the cycles is irrelevant. This is the cyclic form of

σ. A permutation may have cycles of length one; it is conventional to omit

this from the cyclic form if the underlying set is clear. (The cyclic form of

the identity permutation is often denoted by (1).) Note that i lies in a cycle

of length one if and only if it is fixed by σ, that is, iσ = i .

Each cycle of a permutation is a permutation in its own right, and a

permutation is the product of the permutations corresponding to its cycles.

A permutation is a transposition if it has one cycle of length two, and all

other cycles have length one.
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25.1.1 Theorem. If σ ∈ Sym(n) and σ has exactly k cycles, then it is the

product of n −k transpositions.

We leave the proof as an exercise. By way of a hint we note that

(1234) = (12)(13)(14),

from which we see that a cycle of length m is the product of m −1 transpo-

sitions. We must count cycles of length one.

25.2 The Sign of a Permutation

A function of x1, . . . , xn is alternating if, when τ is a transposition in Sym(n),

f τ =− f .

Thus x1 − x2 is an alternating function of two variables. If f is symmetric

and g alternating in x1, . . . , xn , then f g is alternating. Define the function

V (x1, . . . , xn) by

V (x1, . . . , xn) = ∏
i< j

(xi −x j ).

Clearly V is alternating. Further, if σ ∈ Sym(n), then

V σ = sign(σ)V ,

where sign(σ) = ±1. The value of sign(σ) is called the sign of σ. If σ is a

transposition, sign(σ) =−1.

25.2.1 Theorem. If σ,τ ∈ Sym(n), then sign(στ) = sign(σ)sign(τ).

Proof. We have

V στ = (sign(σ)V )τ = sign(σ)sign(τ)V

and therefore sign(στ) = sign(σ)sign(τ).

By Theorem 25.1.1, each permutation is a product of transpositions, and

therefore we have the following:

25.2.2 Corollary. If f is an alternating function of n variables and σ ∈
Sym(n), then f σ = sign(σ) f .

The set of even permutations is known as the alternating group.

Since each permutation is a product of cycles, if we know the sign of

these cycles, we can use the previous lemma to get the sign of the permuta-

tion itself.

25.2.3 Lemma. The sign of a cycle is odd if and only if its length is even.

Proof. It follows from Theorem 25.1.1 that a cycle of length k can be written

as the product of k −1 transpositions. Since the sign of a transposition is

odd, the sign of a cycle of length k is (−1)k−1.

25.2.4 Corollary. If a permutation has exactly e even cycles, its sign is

(−1)e .
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25.3 Permutation Matrices

Let F be a field. If σ ∈ Sym(n), let P (σ) be the linear transformation that

maps 
x1

x2
...

xn

 7→


x1σ

x2σ

...

xnσ

 .

Thus if e1, . . . ,en is the standard basis for Fn×1, then P (σ) maps e j to e
jσ−1 .

Hence the coordinate matrix for P (σ) is(
e

1σ−1 e
2σ−1 . . . e

nσ−1

)
.

The inverses are annoying, it may help to note that the i -th row of this

matrix is eT
iσ . We call P (σ) are permutation operator and the matrix which

represents it is a permutation matrix.

The product of two permutation operators is a permutation operator,

and consequently the product of two permutation matrices is a permuta-

tion matrix.

If P is a permutation matrix then PP T = I , and therefore P−1 = P T .

A matrix is a permutation matrix if it is a 01-matrix, and exactly one

entry in each row and column is equal to 1. We define a matrix to be a

monomial matrix there is at most one non-zero entry in each row and

each column. It is not hard to verify that a matrix M is monomial if M =
PD , where P is a permutation matrix and D is diagonal. Similarly DP is

monomial. If P is a permutation matrix and D is diagonal, then

P−1DP

is diagonal.

25.3.1 Lemma. The product of two monomial matrices of the same order is

a monomial matrix.

Proof. Suppose P1 and P2 are permutation matrices and D1 and D2 are

diagonal. Then P1D1 and P2D2 are monomial and

(P1D1)(P2D2) = P1P2(P−1
2 D1P2)D2.

Here P1P2 is a permutation matrix and (P−1
2 D1P2)D2 is a product of di-

agonal matrices, and so is diagonal. Hence (P1D1)(P2D2) is a monomial

matrix.

25.4 Definition of the Determinant

In this section we define the determinant of a square matrix, and develop

some of its properties.
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For this we will use a somewhat unusual matrix product: it is commu-

tative and associative and distributes over addition. If A and B are m ×n

matrices, we define their Schur product A ◦B by

(A ◦B)i , j = Ai , j Bi , j .

There are no difficulties in working with this product. If A and P are n ×n

matrices and P is a permutation matrix, then A ◦P is a monomial matrix.

The determinant is a function from the set of n ×n matrices over a field

(e.g., R or C) to the field itself. We define it in stages. If D is diagonal, then

det(D) :=
n∏

i=1
Di ,i .

If M is monomial, then M = DP where D is diagonal and P is a permuta-

tion matrix. If P = P (σ) for some permutation σ, we define sign(P ) to be

sign(σ) and then

det(M) := det(D)sign(P ).

Note that

PD = (PDP−1)P

where PDP−1 is diagonal. Since PDP−1 is diagonal and det(PDP−1) =
det(D),

det(PD) = det(PDP−1)sign(P ) = det(D)sign(P ).

It is implicit in this that, if P is a permutation matrix, then det(P ) = sign(P ).

To complete the definition of the determinant, let Perm(n) denote the

set of all n ×n permutation matrices. If A ∈ Matn×n(F), we define

det(A) := ∑
π∈Sym(n)

det(A ◦P (π)).

By way of example, if n = 2 then Perm(2) consists of the two matrices(
1 0

0 1

)
,

(
0 1

1 0

)
and so if

A =
(

a b

c d

)
,

then

det(A) = det

(
a 0

0 d

)
+det

(
0 b

c 0

)
= ad + (−1)bc = ad −bc.

25.4.1 Lemma. Let A be an n ×n matrix. If A is lower triangular, then

det(A) =
n∏

i=1
Ai ,i .

Proof. Suppose P ∈ Perm(n). If det(A ◦P ) 6= 0, then P must be lower triangu-

lar, but the identity matrix is the only lower triangular permutation matrix.

Therefore det(A) = det(A ◦ I ), and the lemma follows.
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25.4.2 Lemma. If A is a square matrix, det(AT ) = det(A).

Proof. We note first that if M is monomial, so is M T . Further, if M = DP

where D is diagonal and P is a permutation matrix, then

det(M T ) = det(P T D) = det((P T DP )P−1),

Since P−1 = P T , we see that P T DP is diagonal, and therefore

det(M T ) = det(P T DP )sign(P−1) = det(D)sign(P ) = det(M).

Now

det(AT ) = ∑
P∈Perm(n)

det(AT ◦P )

= ∑
P∈Perm(n)

det(A ◦P T )T

= ∑
P∈Perm(n)

det(A ◦P T )

= ∑
P∈Perm(n)

det(A ◦P )

= det(A).

25.5 The Determinant is Multiplicative

The determinant is useful in particular because, if A and B are square

matrices of the same order, then det(AB) = det(A)det(B). We work towards

a proof of this.

We work with functions on n ×n matrices. We may think of such a func-

tion δ as a function of n variables, the columns of the matrix. To indicate

this, if A is n ×n and e1, . . . ,en is the standard basis of Fn×1, we may use

δ(Ae1, . . . , Aen) in place of of δ(A). A function δ : Matn×n(F) → F is multilin-

ear if δ(A) is a linear function of each column of A. If δ is multilinear and

Ae1 = x + y , then

δ(A) = δ(Ae1, . . . , Aen) = δ(x, Ae2, . . . , Aen)+δ(x, Ae2, . . . , Aen).

Note that trace, although it is a linear function of A, is not multilinear.

However, if P is a permutation matrix then the function δP given by

δP (A) = det(A ◦P )

is multilinear. (Prove it.) If δ1 and δ2 are multilinear, then their sum, given

by

(δ1 +δ2)(A) = δ1(A)+δ2(A),

is multilinear.

A function δ : Matn×n(F) to F is alternating if δ(A) = 0 whenever two

columns of A are equal. This usage is different from the one used in Sec-

tion 25.2, but we will see that it is consistent with it.

We need two preliminary results.
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25.5.1 Lemma. If M1 and M2 are n×n monomial matrices, then det(M1M2) =
det(M1)det(M2).

Proof. We may suppose that for i = 1,2,

Mi = Di Pi

where Di is diagonal and Pi is a permutation matrix. Then

M1M2 = D1P1D2P2 = D1(P1DP−1
1 )P1P2.

Here P1DP−1
1 is diagonal, so D1(P1DP−1

1 ) is diagonal and also P1P2 is a

permutation matrix. Therefore M1M2 is monomial and

det(M1M2) = det(D1(P1DP−1
1 ))sign(P1P2)

= det(D1)det(D2)sign(P1)sign(P2)

= det(D1P1)det(D2P2)

= det(M1)det(M2).

This completes the proof.

25.5.2 Lemma. If A, B and P are n ×n matrices and P is a permutation

matrix, then (A ◦B)P = (AP )◦ (BP ).

Proof. Suppose e1, . . . ,en is the standard basis and Pei = e j . Then

((AP )◦ (BP ))ei = (AP )ei ◦ (BP )ei

= Ae j ◦Be j

= (A ◦B)e j

= (A ◦B)Pei .

Since this works for all i , we have proved the lemma.

25.5.3 Theorem. The determinant is an alternating multilinear function of

the columns of a matrix.

Proof. Since the functions δP are multilinear and since det is the sum of the

functions δP , it follows that det is multilinear.

To show that det is alternating, we first prove that if Q is a permutation

matrix, then det(AQ) = det(A)sign(Q). Using the previous two lemmas, we

have

det(AQ) = ∑
P∈Perm(n)

det((AQ)◦P )

= ∑
P∈Perm(n)

det[(A ◦PQ−1))Q]

= ∑
P∈Perm(n)

det(A ◦ (PQ−1))det(Q)

= det(Q)
∑

P∈Perm(n)
det(A ◦ (PQ−1)).
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Since

{P : P ∈ Perm(n)} = {PQ−1 : P ∈ Perm(n)},

the last sum above equals det(A), we have proved that det(AQ) = det(A)sign(Q),

as claimed.

Now suppose columns i and j of A are equal, let τ be the transposition

(i j ) and let T = P (τ). Then sign(T ) =−1, T 2 = I and AT = A; hence

(A ◦P )T = (AT )◦PT = A ◦PT

and consequently

det(A ◦P )+det(A ◦PT ) = det(A ◦P )+det((A ◦P )T )

= det(A ◦P )+det(A ◦P )det(T )

= det(A ◦P )−det(A ◦P )

= 0.

The set {P ,PT } is the left coset of the subgroup {I ,T } of Perm(n). For fixed

T , the set Perm(n) can be partitioned into pairs of the form {P ,PT } (prove

this), and therefore it follows that det(A) = 0.

One corollary of this proof is that if P ∈ Perm(n), then det(AP ) =
det(A)sign(P ). Hence the determinant is an alternating function in the

sense we used in Section 25.2. More generally, the same argument shows

that if δ is an alternating function on n ×n matrices and P is a permutation

matrix, then

δ(AP ) = δ(A)sign(P ).

Therefore a function that is alternating in the sense of this section is alter-

nating in the sense we used in Section 25.2, but the current definition is

more useful if we work over fields such as Z2.

Our next result is a converse to the previous theorem.

25.5.4 Theorem. If δ is an alternating multilinear function on n ×n matri-

ces and δ(I ) = 1, then δ(A) = det(A) for all n ×n matrices.

Proof. We have

Ae j =
n∑

i=1
Ai , j ei .

Since δ is multilinear,

δ(A) = δ(Ae1, . . . , Aen) =
n∑

i=1
δ(Ai ,1ei , Ae2, . . . , Aen)

and, using even more subscripts,

δ(A) = ∑
1≤i1,...,in≤n

δ(Ai1,1ei1 , . . . , Ain ,nein ). (25.5.1)
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Since δ is multilinear,

δ(Ai1,1ei1 , . . . , Ain ,nein ) = δ(ei1 , . . . ,ein )
n∏

k=1
Aik ,k ;

and since δ is alternating if r < s and ir = is , then

δ(ei1 , . . . ,ein ) = 0

Hence in (25.5.1), the summands indexed by the sequences i1, . . . , in that

are not permutations are zero, and therefore

δ(A) = ∑
P∈Perm(n)

δ(A ◦P ).

This shows that δ is determined by the values it takes on monomial matri-

ces.

If D is diagonal and P is a permutation matrix, then since δ is alternat-

ing,

δ(DP ) = δ(D)sign(P ).

Further, since δ is multilinear,

δ(D) =
n∏

i=1
Di ,iδ(I )

and therefore

δ(DP ) = det(DP )δ(I ).

This completes the argument.

25.5.5 Corollary. If A and B are n×n matrices, then det(AB) = det(A)det(B).

Proof. Consider the function δ from Matn×n(F) to F, given by

δ(B) := det(AB).

It is easy to verify that this is alternating and multilinear, and therefore

δ(B) = cA det(B)

for some scalar cA . Taking B = I in the definition of δ, we see that cA =
det(A) and therefore det(AB) = det(A)det(B).

25.6 The Laplace Expansion

The determinant is remarkable for the number of different ways in which

we can compute it. Here we describe an approach due to Laplace. You

may be familiar with the case when k = 1, because this is the well-known

expansion by cofactors.
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If T = {t1, . . . , tk }, define ‖T ‖ by

‖T ‖ =
k∑

i=1
(ti − i ).

Let AS,T denote the submatrix of A with rows indexed by S and columns

by T . If |S| = |T | = 1, then AS,T is just an entry of A. We use S to denote the

complement of S in {1, . . . ,n}. Now we can state and prove a result known

as Laplace’s expansion of the determinant.

25.6.1 Theorem. Let A be an n ×n matrix and let S and S′ be two subsets of

{1, . . . ,n}, with sizes k and n −k respectively. Then

∑
T :|T |=k

(−1)‖T ‖ det(AS,T )det(AS′,T ) =
(−1)‖S‖ det(A), if S′ = S;

0, otherwise.

Proof. We first consider the case where S′ = S. Let S and T be subsets of

{1, . . . ,n} with size k. Then

det A =∑
T

∑
σ:Sσ=T

det(A ◦P (σ)).

Note that if σ maps S to T then it must map S to T . Hence∑
σ:Sσ=T

det(A ◦P )(σ) = (−1)‖T ‖ det(AS,T )det(AS,T ).

Now suppose that S′ 6= ;. Let A′ be the matrix whose first k rows are

the rows of A indexed by S1, and whose last n −k rows are the rows of A

indexed by S2. Since we know that Laplace’s expansion holds when S ∩S′ =
;, we see that det(A′) is equal to the sum on the left on the statement of

the theorem. On the other hand, A′ has a repeated row, and therefore

det(A′) = 0.

Let A(i | j ) denote the matrix we get from the square matrix A by deleting

row i and column j . Then (−1)i+ j det(A(i | j ) is called the i j -cofactor of A.

The following special case of the Laplace expansion is known the expan-

sion by cofactors of det(A). This is somtimes used as a definition of the

determinant.

25.6.2 Corollary. Let A be an n ×n matrix. Then

det(A) = (−1)i−1
n∑

j=1
(−1) j−1 Ai , j det(A(i | j )).

Let A be an n ×n matrix. We define the adjugate adj(A) of A as follows:

adj(A)i , j = (−1)i+ j det A(i | j ).

Thus if

A =
(

a b

c d

)
,
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then

adj(A) =
(

d −b

−c a

)
.

If

J =

1 1 1

1 1 1

1 1 1


then adj(J ) = 0.

Applying the previous theorem with k = 1, we obtain:

25.6.3 Corollary. If A is a square matrix, then A adj(A) = det(A)I .

It is also true that adj(A)A = det(A); this can be proved using the trans-

pose. We leave the proof as an exercise.

25.6.4 Corollary. If A is a square matrix, then it is invertible if and only if

det(A) is.

Proof. If det(A) is invertible, the previous corollary implies that

A−1 = det(A)−1 adj(A).

If A ia invertible then

1 = det(I ) = det(A A−1) = det(A)det(A−1)

and therefore det(A) is invertible.

The following identity is due to Jacobi.

25.6.5 Theorem. Let A be an n ×n matrix and suppose S ⊆ {1, . . . ,n}. If

s = |S|, then

det(adj(A)S,S ) = det(A)n−1−s det(AS,S ).

Proof. If M is n ×n, we have adj(M)M = det(M)I and, taking determinants

of both sides yields

det(adj(M))det(M) = det(M)n .

Therefore det(adj(M)) = det(M)n−1. Assume S consists of the first s ele-

ments of {1, . . . ,n}. We have adj(A)A = det(A)I whence adj(A)Aei = det(A)ei

and

adj(A)
(

Ae1 . . . Aes es+1 . . . en

)
=

(
det(A)Is ?

0 adj(A)S,S

)

Taking the determinant of each side, we get

det(A)n−1 det(AS,S ) = det(A)s det(adj(AS,S )).

This yields the theorem.
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25.7 The Characteristic Polynomial of a Matrix

If A is a square matrix then det(t I − A) is a polynomial in t . It is called the

characteristic polynomial of A. It is not too difficult to verify that if A is

n ×n, then its characteristic polynomial is a monic polynomial of degree n.

If

A =
(

a b

c d

)
then

det(t I − A) = t 2 − (a + c)t + (ac −bd).

The constant term of the characteristic polynomial of A is

det(−A) = (−1)n det(A).

Suppose A = LBL−1. Then

det(t I − A) = det(t I −LBL−1) = det[L(t I −B)L−1]

= det(B)det(t I −B)det(L−1)

= det(t I −B).

Thus we see that similar matrices have the same characteristic polynomial.

We leave the proof of the following as an exercise.

25.7.1 Lemma. If φ(t ) is the characteristic polynomial of the square matrix

A, then the coefficient of t n−1 is − tr(A).

Our next result is called the Cayley-Hamilton theorem. Cayley proved it

for 2×2 and 3×3 matrices.

25.7.2 Theorem. If φ(t ) is the characteristic polynomial of the square

matrix A, then φ(A) = 0.

Proof. Each entry of adj(t I − A) is a polynomial in t with degree at most

n −1. Hence there are matrices B1, . . . ,Bn such that

adj(t I − A) = Bn + tBn−1 +·· ·+ t n−1B1

We want to show that each of the matrices B1, . . . ,Bn is a polynomial in A.

We have

(t I − A)adj(t I − A)

= t nB1 + t n−1(B2 − AB1)+·· ·+ t (Bn − ABn−1)+ (−A)Bn . (25.7.1)

Assume that

φ(t ) = t n +a1t n−1 +·· ·+an .

From Corollary 25.6.3 we have

(t I − A)adj(t I − A) = (t n +a1t n−1 +·· ·+an)I . (25.7.2)
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If we equate the coefficients of the powers of t , we obtain:

B1 = I , Bi+1 = ABi +ai I (i = 1, . . . ,n −1)

whence

B1 = I

B2 = A+a1I

B3 = AB2 +a2I = A2 +a1 A+a2I

and, in general,

Bk+1 = Ak +a1 Ak−1 +·· ·+ak I .

Thus Bk is a polynomial of degree k −1 in A.

From (25.7.1) and (25.7.2), we see that an I =−ABn . So

0 = ABn +an I = A(An−1 +a1 An−2 +·· ·+an−1I )+an I

=φ(A).

This completes the proof.

It is tempting to argue that if we substitute A for t in the equation

(t I − A)adj(t I − A) =φ(t )I ,

then t I − A becomes zero, and therefore φ(A) = 0. It is true that if f (t ) is

a polynomial in t with coefficients in a field and t − a divides f (t ), then

f (a) = 0. It need not be true that if f (t ) and f1(t ) are polynomials in t with

matrices as coefficients and

(t I − A) f1(t ) = f (t )

then f (A) = 0. The basic problem is, for example, that if b is a scalar then

t 2b = tbt = bt 2,

but if A and B are square matrices, then the products A2B , AB A and B A2

can all be different.

25.8 An Algorithm

If we attempt to compute the determinant of a matrix in Matn×n(Z) using

our definition, we may be obliged to sum n! products. This is already

unpleasant when n = 4. There is a second algorithm using elementary row

operations; the only disadvantage of this is that its intermediate stages

often require the use of rational numbers, even though the final answer is

an integer. (This is the algorithm usually taught.) We are going to describe

a a third algorithm that does not suffer from this disadvantage, and still

runs in polynomial time.
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Let A be an m×n matrix and suppose k ≤ m,n. We construct an (m+1−
k)× (n +1−k) matrix Dk (A) from A as follows. If k ≤ r ≤ m and k ≤ s ≤ n,

there is a unique k ×k submatrix of A that contains the r s-entry of A along

with all entries in the first k −1 rows and columns. Define Dk (A)r−k,s−k to

be the determinant of this submatrix. So D1(A) = A and if

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ,

then

D2(A) =
(

a1,1a2,2 −a1,2a2,1 a1,1a2,3 −a2,1a1,3

a1,1a3,2 −a1,2a3,1 a1,1a3,3 −a3,1a1,3

)
.

If A is n ×n, then Dn(A) = det(A). For any matrix A, let dk (A) denote the

determinant of the submatrix formed by the first k rows and columns; we

assume d0(A) = 1.

25.8.1 Lemma. If A is an m ×n matrix, then D2(Dk (A)) = dk−1(A)Dk+1(A).

Proof. We prove the result by induction on the size of A. Since D1(A) = A,

the lemma holds when k = 1 and we assume k ≥ 2.

First we consider a special case. Suppose A is (k + 1)× (k + 1). Then

Dk+1(A) = det(A) and

Dk (A) =
(

det(A(k +1|k +1) det(A(k +1|k))

det(A(k|k +1)) det(A(k|k))

)
Therefore

det(Dk (A)) = det(A(k|k))det(A(k +1|k +1))

−det(A(k +1|k))det(A(k|k +1))

and so if S := 1, . . . ,k −1, then

D2(Dk (A)) = det(adj(A)S,S ).

By Jacobi’s identity (Theorem 25.6.5),

det(adj(A)S,S = det(A)det(AS,S ) = dk−1Dk+1(A).

Now we verify that the result follows from this special case. If i ≥ k

we and B is the matrix we get by deleting the i -th row of A, then Dk (B) is

obtained from Dk (A) by deleting its (i +1−k)-th row. Since that Dk (AT ) =
Dk (A), a similar claim holds when we delete columns.

If i , j ≥ k +1, then (Dk+1(M))i−k, j−k is the determinant of the submatrix

M of A formed by the intersection of rows 1 through k and i with columns

1 through k and j . Since dk−1(A) = dk−1(M), we have

dk−1(A)Dk+1(A)i−k, j−k = dk−1(M)Dk+1(M)

= D2(Dk (M))

= D2(Dk (A))i−k, j−k

and so the result follows.
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The algorithm to compute det(A) runs as follows. The input is an n ×n

matrix A. We also use a scalar δ, which is initially set to 1.

1. If n = 1, then det(A) = A; halt.

2. If the first row or column of A is zero, then det(A) = 0; halt.

3. If necessary, swap two columns of A so that A1,1 6= 0 and replace δ by

−δ.

4. Compute δ−1D2(A) and let δ = (A)1,1. Return to the first step with

δ−1D2(A) in place of A.

After n −1 steps of this kind, we obtain Dn(A) = det(A).

We give one example. If

A :=

 x −1 0

−1 x −1

0 −1 x


then

D2(A) =
(

x2 −1 −x

−x x2

)
Since d1(A) = x,

det(A) = D3(A) = x−1(x4 −2x2) = x3 −2x.

This algorithm is sometimes attributed to C. Dodgson, better known as

Lewis Carroll.

25.9 Summary

The most useful facts are (c), (f) and (g). You are not required to know

anything about the proofs of (f), (g), (h), (i) and (j). You might need to use

them. Note that (d) and (e) together yield an algorithm for computing the

determinant, since we can bring a matrix to triangular form by elementary

row operations.

(a) Permutations, sign of a permutation, permutation and monomial

matrices.

(b) Definition of determinant.

(c) det(AT ) = det(A)

(d) If A is triangular, det(A) =∏
i Ai ,i .

(e) Adding a scalar multiple of one row of A to another does not change

det(A). Swapping rows changes the sign. Ditto for columns. If we get B

from A by multiplying a column by c, then det(B) = c det(A).
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(f) Multilinear and alternating functions on matrices, det(AB) = det(A)det(B).

(g) The adjugate of a matrix, A adj(A) = det(A)I .

(h) Cofactor expansion of det(A).

(i) The Cayley-Hamilton theorem.

(j) Bareiss algorithm.

(k) When the products AB and B A are both defined, det(I − AB) = det(I −
B A).

(l) Binet-Cauchy.

(m) det(exp(M)) = exp(tr(M)).

(We did not treat the last three items.)

25.10 Groups

In this chapter we met the ‘symmetric group’ and the ‘alternating group’.

As we continue with the course, we will meet other ‘groups’. For the sake of

background information, we explain the terminology.

A group is a set G with a multiplication ◦ defined on it. If a,b ∈ G , then

a ◦ b denotes the product of a and b. (In many cases the elements of G

are operations on some structure, and a ◦b denotes “do a, then b”.) The

multiplication must satisfy the following axioms.

1. If a,b ∈G , then a ◦b ∈G .

2. If a,b,c ∈G , then (a ◦b)◦ c = a ◦ (b ◦ c).

3. There is an element θ in G such that θ ◦a = a for all a in G .

4. For each element a ∈G , there is an element a−1 in G such that a−1 ◦a =
θ.

The first axiom states that G is closed under multiplication. The element

θ is the identity element of the group. The element a−1 is the inverse of

a. We do not assume that a ◦b = b ◦ a; if this does hold for all a and b the

group is commutative (or abelian).

One example of a group is the integers, with + as the ‘multiplication’. A

second example is the set of invertible n ×n matrices over a field with the

usual matrix multiplication.

We usually write ab in place of a ◦b unless G is commutative, in which

case we write a + b. We usually use 1 to denote the identity unless G is

commutative, when we use 0.

Suppose a, x, y ∈G and ax = ay . Then

x = 1x = (a−1a)x = a−1(ax) = a−1(ay) = (a−1a)y = 1y = y .
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Thus in a group we may ‘cancel on the left’. Since

a−1(a1) = (a−1a)1 = 12 = 1 = a−1a,

it follows (by left cancellation) that a1 = a for all a. Since

(aa−1)a = a(a−1a) = a1 = a = 1a

we also see that aa−1 = 1 for any a. Now if xa = y a, then

x = x1 = x(aa−1) = (xa)a−1 = (y a)a−1 = y(aa−1) = y1 = y ;

therefore we may also cancel on the right.

A subset of G is a subgroup if it contains the inverse of each of its el-

ements and is closed under multiplication. The alternating group is a

subgroup of the symmetric group.

Finally we point out that a group is a set with three operations. A binary

operation which, given (a,b) as input, returns a ◦ b. A unary operation

which, given a as input, returns a−1. And a nullary operation which, given

no input, returns the identity θ. (It may help to understand the last state-

ment if you think of a button on a calculator labelled π—this takes no input

and returns π.)
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Rings, Fields, Algebras

Thus chapter is meant to to provide some background, to help you deal

with linear algebra over fields other thanQ, R and C.

26.1 Rings

A ring R consists of a set R on which an addition operation + is defined,

such that (R,+) is a commutative group; in addition there is an associative

multiplication in R that satisfies the usual distributive laws relative to

addition. The multiplication is usually denoted by juxtaposition, i.e., the

product of a and b is denoted ab (and ab need not equal ba.). We always

assume that there is multiplicative identity, denoted by 1 (so 1x = x1 = x for

all x in R).

The canonical examples are Z,Q, R, C. Polynomials overQ, R or C form

a ring, and so do power series. Further, matrices with entries from a ring R

form a ring which is not normally commutative. Continuous real functions

on R form a ring.

Rings were first introduced in number theory, but now it is somewhat

unusual for a mathematician not to be working in the context of some ring.

As a general principal, any operation we can carry out on abelian groups

can be carried out on rings. So we have subrings, products and homomor-

phisms/quotients. Somewhat surprisingly, subrings do not play a big role,

except for ideals (which you can look up). Also finite rings seem to be less

useful than finite groups.

26.2 Fields

A field is a ring in which every non-zero element has a multiplicative in-

verse. The canonical examples areQ, R, C. We see that Z is not a field, and

the rings of polynomials we referred to above are not fields (although they

can be used to construct fields). If F is a field then F(t ), the ring of rational

functions with coefficients from F is a field.

As just defined, the multiplication in a field need not be commutative.
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However all fields we need are commutative and so henceforth field means

commutative field.

The integers modulo a prime p form a field Zp . We consider this in

some detail. Stricly speaking, the elements of Zp are equivalence classes

of integers, where integers m and n are equivalent, i.e., m ≡ n, if p divides

m −n. Each equivalence class contains exactly one element from the set of

integers

]{0,1, . . . , p −1}

and so we can identify the equivalence classes with the members of this

set. It is not too difficult to show that the equivalence classes form a ring,

with addition mod p and multiplication mod p as its operations. In fact we

can show that, for any positive integer n, the set Zn forms a ring. But if n

is not a prime we can write n = ab where a and b both greater than 1, and

therefore ab = 0 in Zn . It follows that the equivalence class of a does not

have a multiplicative inverse—if xa = 1 and ab = 0 then

0 = x(ab) = (xa)b = 1b = b.

Therefore if n is not prime, then Zn is not a field.

If p is a prime then each non-zero element of Zp does have a multiplica-

tive inverse. For if a ∈Zp and a 6= 0, then the gcd of a and p is 1, and hence

there are integers x and y such that

xa + y p = 1,

and therefore xa = 1. Thus we can find the multiplicative inverse of a

using the Euclidean algorithm. We have been a little sloppy here: when we

apply the Eulidean algorithm we are viewing a and p as integers, but we

originally chose a to be a non-zero element of the ring Zp . To avoid this we

should use some notation like [a] to denote the equivalence class of a, but

the sloppiness is easier, and traditional.

We can also construct fields from rings of polynomials. Let F be a field

and let F[t ] denote the ring of polynomials with coefficients from F. If

p(t ) is a monic polynomial in F[t ], define a relation ≡ on F[t ] by declaring

polynomials g and h to be equivalent if their difference is divisible by p.

Then this is an equivalence relation and the equivalence classes form a

ring. You may show that this ring is a field if and only if p is irreducible over

F (has no non-trivial factors).

If we take F = R and p(t ) = t 2 + 1, this construction produces a field

isomorphic to the complex numbers. If F = Z2 and p(t ) = t 2 + t + 1, we

obtain a field with four elements.

Exercise: Let E be a field and let F be the subset of E consisting of all

the elements of Ewe can get by adding 1 to itself any number of times. (By

assumption, 0 ∈ F ; thus F is the additive subgroup of E generated by 1.)

Show that F is a ring. If |F | is finite, prove that it is a prime, and deduce that

it is a field.
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26.3 Algebras

A ring R is an algebra over a field F if R is a vector space over F such that if

x, y ∈ R and a ∈ F, then

(ax)y = x(ay) = a(x y).

If 1 is the multiplicative identity in R, then the set {a1 : a ∈ F} forms a sub-

ring of R that is isomorphic to F. Each element of this subring commutes

with each element of R (it lies in the center of R).

The term ‘algebra’ has changed its meaning over the years, and it still

has more than one interpretation. As we have just defined it, every algebra

contains a multiplicative unit, but, in analysis for example, this require-

ment can be dropped.

The set of d ×d matrices over of field F forms an algebra. More generally,

the set of linear mappings of a vector space to itself is an algebra. The

complex numbers are an algebra over the reals.

The dimension of an algebra is its dimension as a vector space over the

underlying field.

Let M denote the subset of the algebra of 2×2 matrices overQ consisting

of the matrices of the form(
a 2b

b a

)
= a

(
1 0

0 1

)
+b

(
0 2

1 0

)
.

It is not hard to show that this set is a subspace of Mat2×2(Q) and this it is

closed under multiplication. Hence it is a subalgebra of Mat2×2(Q), but you

can also show that it is commutative and that every non-zero element is

invertible. Therefore it is a field, isomorphic to the field usually denoted by

Q(
p

2).

IfA is an algebra of dimension d over F and M ∈A, then the d+1 powers

I , M , . . . , M d are linearly dependent, whence there is a polynomial f such

that f (M) = 0. Consequently there is a monic polynomial ψ of least degree

such that ψ(M) = 0. It is called the minimal polynomial of M and degree at

most d .

Exercise: IfA is a finite-dimensional algebra over F and x ∈A, show that

multiplication by x is a linear mapping (over F).

Exercise: IfA is a finite-dimensional algebra over F, prove thatA is

isomorphic to an algebra of matrices over F.

Exercise: Suppose K , L, M are fields with K ≤ L ≤ M . Then L and M are

algebras over K ; let ` and m respectively denote the dimensions of L and

M over K . Prove that ` divides m.

Exercise: Let F be a field. If S is a subspace of Matd×d (F) such that each

non-zero element is invertible, prove that dim(S) ≤ d .

Exercise: IfA is a finite-dimensional algebra over a field F and each non-

zero element ofA is invertible, prove that the minimal polynomial of each

non-zero element is irreducible over F.





27

Index

T -invariant, 23, 27

abelian, 229

ad-nilpotent, 233

adjoint, 6, 189

adjoint map, 233

algebra, 57

algebraic multiplicity, 33, 52

alternating, 7

antichain, 231

antisymmetric, 62

Banach space, 190

bilinear form, 6

bottom, 45

bounded, 190

bounded rational function, 89

Casimir element, 234

characteristic matrix, 72

Choi matrix, 195

circuit, 1

column reduced, 91

commutant, 50

commutator, 229

commutator subalgebra, 230

companion matrix, 39

complement, 3

completely positive, 194

complex Hadamard matrix, 70

compression, 71

conditional expectation, 198

contraction, 67, 193

control basis, 41

coordinate vector, 2

corank, 4

cyclic code, 47

cyclic subspace, 24

degree, 91

degree of a matrix polynomial, 89

degree of a vector, 91

derivation, 230

derived design, 19

diagonalizable, 38

direct sum, 3, 26, 27

dual, 14

dual space, 6

dual thin, 244, 246

edge reconstructible, 21

edge reconstruction, 21

eigenvalue, 24

eigenvalue support, 135, 139

eigenvector, 24

equitable, 14

external direct sum, 4

Fitting invariant, 84

fixes, 55

flag, 55

foundation, 18

Frobenius normal form, 48

Gaussian binomial coefficient, 8

generated, 24

geometric multiplicity, 33, 52

Hermitian pencils, 137

Hermitian preserving, 191

highest weight vector, 237

Hilbert-Schmidt norm, 191

homomorphism, 232

ideal, 230

idempotent, 26

incidence matrix, 133

index, 75

index of nilpotency, 52

induced partition, 16

invariant, 233

isomorphism, 4

Jacobi identity, 229

Killing form, 234

Kronecker product, 61

left companion matrix, 45

level number, 231

Lie algebra, 229

Lie bracket, 229

linear mapping, 4

local, 90

lowering operators, 232

matrix algebra, 57

maximal flag, 55

minimal polynomial, 29

module, 233

monomial matrix, 69

monomially equivalent, 69

nilpotent, 51

non-singular, 67

null design, 18

observable, 25



274 C H R I S G O D S I L

operator algebra, 57

operator norm, 190

operator system, 193

orthogonal resolutions, 75

Peck poset, 231

Plücker coordinates, 84

positive, 191

preimage, 23

projection, 26

quantum m-colouring, 75

raising operator, 232

rank, 4

rank symmetric, 231

ranked, 231

representation, 233

residual design, 19

resolution of the identity, 70, 244

restriction, 23

right, 39

root spaces, 32

root vector, 32

Schwarz’s inequality, 196

singular values, 191

Sperner, 231

standard module, 138, 243

state, 193

strongly Sperner, 231

sub-multiplicative, 190

subdivision graph, 133

submodule, 233

symmetric, 62

Terwilliger algebra, 243

thin, 244, 246

thin relative to the resolution, 244

top, 45

trace preserving, 190

unimodal, 231

unital, 190

unitary dilation, 193

universal enveloping algebra, 231

unsigned Laplacian, 133

walk module, 135

weight, 237

weight spaces, 237


	I Modules
	Spaces and Subspaces
	Vector Spaces
	Subspaces
	Linear Mappings
	Duals and Adjoints
	Bilinear Forms
	Counting

	Incidence Matrices and Rank
	Fisher's Inequality
	Subset Incidence Matrices
	Equitable Partitions
	Induced Partitions
	Null Designs
	Supports
	Null-Designs on Subsets
	Edge Reconstruction

	Primary Decomposition
	Modules
	Control Theory
	Sums
	Invariant Sums
	Minimal Polynomials
	Primary Decomposition
	The Degree of the Minimal Polynomial
	Root Spaces
	Examples of Root Spaces
	Differential Equations
	Linear Recurrence Equations
	Diagonalizability

	Frobenius Normal Form
	Companion Matrices
	Transposes
	Eigenvectors for Companion Matrices
	Inverses of Companion Matrices
	Cycles
	Circulants and Cyclic Codes
	Frobenius Normal Form
	Applications
	Nilpotent Matrices
	A Similarity Condition
	Triangular Maps
	Triangulations
	The ``Fundamental'' ``Theorem of Algebra''

	Tensors
	The Kronecker Product
	Tensor Products
	Quadratic Tensors
	Cubic Tensors
	Multiplication
	Semifields

	Type-II Matrices
	Definitions
	Traces and Type-II Matrices
	Compressions and Projections
	Classical Colourings
	Quantum Permutations
	Quantum Colourings
	The Nomura Algebra of a Type-II Matrix
	The Matrix of Idempotents of a Type-II Matrix
	Commutants
	Coherent Algebras
	A Nomura Algebra is Schur-Closed

	The Smith Normal Form
	Domains
	Localization
	Binet-Cauchy
	Fitting Invariants
	Smith Normal Form

	Polynomial and Rational Matrices
	Series
	Polynomial Matrices
	Division
	Cayley-Hamilton
	Equivalence and Similarity
	An Identity
	Resolvents
	Paraunitary Matrices


	II Eigenthings
	Orthogonality
	Properties of Projections
	Matrices Representing Projections
	Least Squares
	Orthogonal Polynomials
	The Three-Term Recurrence
	Numerical Integration

	Eigenvectors and Eigenvalues
	Self-Adjoint Operators
	Diagonalizability
	Diagonalization of Self-adjoint Operators
	Rank-1 Approximation
	Eigenvectors and Optimization
	The Singular Value Decomposition
	Least Squares
	Legendre Polynomials
	Computing Eigenvalues
	Jacobi: An Example

	Spectral Decomposition
	Self-Adjoint Operators
	Commutative Algebras
	Normal Operators

	Cospectral Graphs
	K1,4, C4K1
	Direct Products
	The Partitioned Tensor Product
	Subdivisions and Line Graphs
	Congruence
	Local Switching
	Extended Adjacency Algebras

	Perturbation Theory
	Kato
	Basics
	Rank-1 Updates
	Commutants
	The Eigenvalues of a Hermitian Pencil
	Adding Loops to Strongly Regular Graphs
	Adding Edges

	Control
	Buffalos
	Burgers
	Controllability
	Observability
	Feedback and Controllability
	Canonical Forms
	Eigenvalues and Controllability
	Observers
	Transfer Matrices


	III Convexity
	Norms
	Convexity
	Extreme Points
	Norms
	Dual Norms
	Matrix Norms
	Examples
	Matrix Functions
	Powers
	Contractions
	Projections
	Contractions
	Perron

	Positive Semidefinite Matrices
	Gram Matrices
	Factorizing Positive Semidefinite Matrices
	Computing Cholesky
	Polynomial Examples
	Positive Semidefinite Matrices

	Channels
	Matrix Maps
	Norms
	Positive Maps
	Contractions and Positive Maps
	Completely Positive Maps
	States
	Positive Definite Block Matrices
	Conditional Expectations


	IV Geometry
	Lines and Frames
	Equiangular Lines
	Tight Frames
	Another Gram Matrix
	The Orthogonal Group
	Skew-Symmetric to Orthogonal
	Reflections

	Isoclinic Subspaces, Covers and Codes
	Isoclinic Subspaces
	Matrices
	Equiangular Subspaces
	Error Correction
	Isoclinic Subspaces from Covers
	Equi-isoclinic Subspaces and Unitary Covers
	Lines from Subspaces

	Forms
	Semilinear Forms
	The Classification of Forms

	Groups

	V Algebras
	Lie Algebras
	Basics
	Enveloping Algebras
	Posets
	Representations of Lie Algebras
	Bilinear Forms
	An Example
	Irreducible Modules
	Semisimple Elements
	Semisimple Modules

	Terwilliger Algebras
	Modules
	Thinness
	Jaeger Algebras

	Hamming Schemes
	The Binary Hamming Scheme
	Modules


	VI Background
	Determinants
	Permutations
	The Sign of a Permutation
	Permutation Matrices
	Definition of the Determinant
	The Determinant is Multiplicative
	The Laplace Expansion
	The Characteristic Polynomial of a Matrix
	An Algorithm
	Summary
	Groups

	Rings, Fields, Algebras
	Rings
	Fields
	Algebras

	Index


