

Cospectral complements, cospectral vertices

Cospectral complements
Is there a relation between $\phi(X, t)$ and $\phi(\bar{x}, t)$?

If X is regular, yes

$$
\begin{array}{cc}
\theta \in \operatorname{er}(X), \theta \neq \text { valency } \Rightarrow & -\theta-1 \in \operatorname{ev}(X) \\
k-1-k
\end{array}
$$

In general

$$
\begin{aligned}
& \operatorname{det}(t I-A(\bar{x}))= \operatorname{det}(t I-J+I+A) \\
&=\operatorname{det}((t+)) I+A-J) \\
&= \operatorname{det}((t+1) I+A) \operatorname{det}\left(I-(\ldots)^{-1} J\right) \\
&(-1)^{n} d(x,-t-1) \quad \operatorname{dol}\left(I-3 I^{T}\right) \\
&=\operatorname{det}\left(I-1^{*}\right)
\end{aligned}
$$

Therefore

$$
\left.(-1)^{n} \frac{(\bar{x}, t)}{\theta(x,-t-1)}=1-\frac{1^{\top}}{2}((t+1) I+A)^{-1} \frac{1}{1}\right)
$$

Now $\quad<t^{n} \mathcal{I}^{5} A_{1}^{n}$

$$
\mathfrak{I}^{\top}(I-t A)^{-1} 1
$$

is the generating function for all walls in X.
Lemma Assume X and Y are similar. Then $\bar{X} \& \bar{Y}$ are similar if a only if

$$
{\underset{\sim}{1}}^{\top} A(X)^{m} \underset{\sim}{1}={\underset{\sim}{1}}^{\top} A(Y)^{m} \underset{\sim}{1}
$$

Remark If X is k-regular on n vertices, the number of walks on X with length m is $n k^{m}$.

Corollary If $x \& y$ ave cospectral, then \bar{X} and \bar{Y} are cospectral if and only if

$$
{\underset{\sim}{1}}^{\top} E_{r}(x) \underset{\sim}{q}={\underset{\sim}{1}}^{\top} E_{r}(y) \underset{\sim}{1} \quad \forall r
$$

(If X is k-regular. $E_{r}(x)_{1}=0$ unless $\theta_{r}=k$.)

Cospectral vertices
Vertices u a v in X are cospectral if X un and X, v are cospectral; equivalently if $\phi(X, n, t)=\phi(X, v, t)$.

Examples:
(a) u, v in the same orbit
of $\operatorname{Ant}(x)$
(b) any two vertices in a
strongly regular graph

$$
\begin{aligned}
& \text { ソフ5 } \cong Y \text { 亿 } \\
& \Rightarrow 245 \text { are cospectral } \\
& \text { in } y \\
& 9 \int_{11}^{7}-6-\left(\frac{5}{5}-4-4,-20-1-0-9\right. \\
& 285 \text { are psendosimi)ar }
\end{aligned}
$$

Schwenk's tree

S_{13} \& $S_{6} 6$ are cospectral, as are these trees:

(apply the 1-sum identity)
c) Mckay's tree

$$
\begin{array}{llll}
M_{3} & M_{6} & M_{3} & M_{6} \\
\bar{M}_{3} & \overline{M_{6}} & \overline{M 3} & \overline{M 16} \\
L\left(M_{3}\right) & L\left(M_{6}\right) & \\
L\left(\bar{m}_{3}\right) & L\left(\bar{m}_{6}\right) & \\
\overline{L\left(m_{3}\right)} & \overline{L\left(m_{6}\right)} & \\
\overline{L\left(\bar{m}_{3}\right)} & \overline{L\left(\bar{m}_{6}\right)} & \\
D\left(m_{3}\right) & D\left(m_{6}\right) & \\
D\left(\bar{M}_{3}\right) & D\left(\bar{m}_{6}\right)
\end{array}
$$

Characterizing corpectral verticer

NO LECTURE MONDAY CITOBER 25

Since

$$
\left((t I-A)^{\prime}\right)_{a, a}=\frac{\theta(X, a, t)}{\phi(X, t)}=\sum_{r} \frac{\left(E_{r}\right)_{a, a}}{F-\theta_{r}}
$$

we have:
Lemma TFAE:
(a) vertices a \& b in X ave cospectral
(b) $\varnothing(X, a, t)=\varnothing(x, b, t)$
(c) $\left(A^{m}\right)_{a, a}=\left(A^{m}\right)_{b, b} \quad \forall m \geqslant 0$
(d) $\left(E_{r}\right)_{a, a}=\left(E_{r}\right)_{b, b} \forall r$
(e) The modules $\left\langle e_{a}-e_{b}\right\rangle_{A}$ and $\left\langle e_{a}+e_{b}\right\rangle_{A}$ are orthogonal.
(f) There is an orthogonal matres Q such that $Q A=A Q, Q^{2}=I$ and $Q e_{q}=e_{b}$

Proofs:

$$
\begin{aligned}
(l)\left(e_{a}-e_{b}\right)^{\top} A^{k}\left(e_{a}+e_{b}\right) & =\underbrace{e_{a}^{\top} A^{k} e_{a}-e_{b}^{\top} A^{h} e_{b}}_{=0}+\underbrace{T_{a}^{\top} A_{b}^{k}-e_{b}^{\top} A_{e}^{b} e_{s}}_{=0} \\
& =0
\end{aligned}
$$

(f)

$$
\begin{aligned}
& U(t):=\left\langle e_{a}+e_{b}\right\rangle_{A}, u(-): G\left\langle e_{a}-e_{b}\right\rangle_{A} \\
& u(0):=\left(u(+)+u(-1)^{\perp}\right.
\end{aligned}
$$

Define L to act as -1 on $U(-)$, as 1 on $U(t)$ and $U(0)$. Then $L^{2}=I, L$ is orthogonal and

$$
\left.\begin{array}{l}
L\left(e_{a}+e_{b}\right)=e_{a}+e_{b} \\
L\left(e_{a}-e_{b}\right)=e_{b}-e_{b}
\end{array}\right\} \Rightarrow L\left(2 e_{a}\right)=2 e_{b}
$$

Extended adjacency algebras

Assume A is $n \times n$. We have been working with $\mathbb{F}[A]$, the adjacency algebra over \mathbb{F}. We now assume $\mathbb{F}=\mathbb{R}$, and we choose a symmetric vank-1 matrix H (of order $n \times n$).

We refer to $\langle A, H\rangle$ as an extended adjacency algebra.

$$
\begin{aligned}
& h h^{\top} \\
& h=e_{a}
\end{aligned}
$$

In general, $\langle A, H\rangle$ is not commutative, but it is $*$-closed.

Why does this matter?
Lemma $16 A$ is *-closed and U is A-invarianti, so is U^{\perp}.
Proof, If $A \in A$ and U is A-invariant, U^{\perp} is A^{*}-invariant. So it U ir \mathcal{A}-invarian ts so is U^{+}.

Theorem If \mathcal{A} is $*$-closed, then \mathbb{C}^{n} is an orthogonal direct sum of simple A-modules.

We wand the decomposition of \mathbb{R}^{n} into simple modules for $A=\left\langle A, h h^{*}\right\rangle$.

Lemma $\langle h\rangle_{A}$ is a simple A-module.
Proof. Set $U=\langle h\rangle_{A}$ and suppose U_{1} is a proper subnodule of U. Then if $u \in U_{1}$,

$$
h h^{*} u=\left(h^{*} n\right) h
$$

So either $h \in U_{1}$ or $U_{1} \leq h^{\perp}$.

In the first case, $A^{k} h \in U$, for all k \& therefore $u_{1}=U_{\text {. In }}$ In the second case, $u_{1} \leqslant u^{\perp}$ and so $u_{1}=\langle 0\rangle$.

Corollary $\langle h\rangle_{A}$ is the only simple A-module that contains h, any other simple module lies in h^{\perp} and hence it is the intersection of h^{\perp} with an eigenspace of A.

So hh^{*} acts as zero on $\left(\langle h\rangle_{A}\right)^{+}$.
Problem Describe the action of $\left\langle A, h_{h^{*}}\right\rangle$ on $\langle h\rangle_{A}$.

Assume A has spectral decomposition

$$
\begin{equation*}
A=\sum_{r} \theta_{1} E_{r} \tag{r}
\end{equation*}
$$

Lemma The nonzero vectors $E_{r} h$ form an orthogonal basis for ${ }^{\langle h\rangle} A$.

The set $\left\{\theta_{r}: E_{r} h \neq 0\right\}$ is the eigenvalue support of h. Its size is equal to $\operatorname{dim}\left(\delta h_{A}\right)$.

Theorem Let $d=\operatorname{dim}\left(\langle h\rangle_{A}\right)$. The matrices

$$
E_{r} h h^{\top} \epsilon_{s} \quad\left(\theta_{r}, D_{s} \in \operatorname{esupp}(h)\right)
$$

generate an algebra of dimension d^{2}.
Uso isomorphic to $\operatorname{Mab}_{d x d}(\mathbb{E})$
Proof. Distinct matrices $\epsilon_{r} h^{\top} E_{s}$ are trace-orthogonals and there are d^{2} of them.

