

Controllable graphs

Lemma $A(x)$ has no eigenvector orthogonal to h if and only if

The pair (X, h) is controllable if

$$
\left\langle A, h^{\top}\right\rangle=\operatorname{Mar}_{n \times n}(\mathbb{R}) .
$$

The graph X is controllable if $\left\langle A_{,} J\right\rangle=\operatorname{Mat}_{n \times n}(\mathbb{R})$.

Theorem [C'Rourke \& Tcuri] Almost all graphs are controllable. For almost all graphs, all the pairs $\left(A, e_{a} e_{a}^{\top}\right)(a \in V(X))$ are controllable.

Lemma X is controllable $\Leftrightarrow \Phi(\bar{X}, 6)$ and $\phi(x,-t-1)$ are coprime. The vertex a ir controllable ff $\varnothing(x, b) \& \varnothing(x a, t)$ are coprime.

Lemma if x is controllable, $\operatorname{Ant}(x)=(1)$, If $\left(x, e_{a}\right)$ is controllable, then $A_{u} \mid(x)_{a}=\langle 1\rangle$.

Proof. Every permutation matrix commutes with T, and a permutation matrix P commutes with A if \& only if $P \in A n b(x)$. ρ_{e} if $P \in \operatorname{Ant}(X)$, then $P \in \operatorname{comm}(\langle A, \Gamma\rangle)$ and so $P=I$.

An isomorphism invariant for controllable graphs.

Assume $|V(x)|=n$ and define

$$
W_{x}=\left[\begin{array}{lll}
1 & A_{1} \cdots A^{n-1} \frac{1}{2}
\end{array}\right] \text { walk matrix }
$$

We can order the rows lexicographically, in this case we say W_{x} is ordered. (Note that if w_{x} is invertible. no two rows of W_{x} are equal.)

Theorem Let X and Y be controllable graphs with ordered walk matrices w_{x} and w_{y} respectively. Then $X \cong y$ if and only if $\phi(x, t)=\phi(Y, t)$ and $W_{x}=w_{y}$

Proof. We have

$$
A_{x} W_{x}=W_{x} C_{\phi(x)}, \quad A_{y} W_{y}=W_{x} C_{\theta(y)}
$$

If $w_{x}=w_{y}$, then

$$
\left(A_{x}-A_{y}\right) W_{x}=W_{x}\left(C_{\phi}(x)-C \varnothing(y)\right)
$$

If W_{x} is invertible, $A_{x}=A_{y}$.

Reminder: if $W=\left[h A h \cdots A^{n-1} h\right]$, then

$$
\begin{aligned}
A W & =\left[A h A^{2} h \ldots A^{n} h\right] \\
& =\left[h A h \ldots A^{n-1} h\right]\left[\begin{array}{ccc}
0 & 0 & * \\
I_{n-1} & \vdots \\
& & \dot{*}
\end{array}\right] \\
& =W C_{\phi(x, t)}
\end{aligned}
$$

Theorem If X \& Y are controllable and

$$
w(X, t)=w(Y, t), \quad A^{k} \frac{1}{2}
$$

then $\phi(X, t)=\varnothing(y, t)$.
Proof, $\operatorname{Set} A=A(x), B=A(y)$. Define

$$
\hat{W}_{x}=\left[\frac{1}{2} A_{\sim} \cdots A^{n} \frac{1}{n}\right], \hat{W}_{y}=\left[\frac{1}{r}, B_{i} \cdots B^{n} \frac{1}{\sim}\right]
$$

Then

$$
\left(\hat{w}_{x}^{\top} \hat{w}_{x}\right)_{i j}=I_{\sim}^{T} A^{i+j-1} \frac{1}{n}
$$

and therefore

$$
\hat{W}_{x}^{\top} \hat{W}_{x}=\hat{W}_{y}^{\top} \hat{W}_{y} \quad \text { Grammatriyes }
$$

Two sets of vectors $\left\{b_{1}, \ldots, b_{k}\right\}$ \& $\left\{c_{1}, \ldots, c_{k}\right\}$ are congruent if $\left\langle b_{i}, b_{j}\right\rangle=\left\langle c_{i}, c_{j}\right\rangle \quad \forall_{i, j}^{\prime,}$

Theorem. The vectors $\left\{b_{1}, \ldots, b_{k}\right\} \&\left\{c, \ldots, c_{k}\right\}$ are congruent if \& only if there is an orthogonal matrix Q such that $Q b_{i}=c_{i}$ for all i:

So if $B=\left[b_{1}, \ldots, b_{k}\right], C=\left[c_{1, \ldots}, c_{k}\right]$ and $B^{\top} B=C^{\top} C$, then $C=Q B$, for some orthogonal Q.

Euclidean geometry

Sketch of proof:
(a) reduce to case where the eplumns of B and C are linearly independent.
(b) If $b_{1, \ldots, b_{j}}$ are linearly independent and $\langle x x\rangle=\langle y, y\rangle$ and $\left\langle x, b_{i}\right\rangle=\left\langle y, b_{i}\right\rangle$ then there exists orthogonal φ st $Q b_{i}=b_{i}$ asir) and $Q_{x}=y$.

To prove (b), show that there is a reflection swapping $x 8 y$ and fixing $b_{1} . . . b_{j}$

$$
\text { - } \tau_{a}(u):=u-\frac{2(a, u)}{(a, a)} a
$$

- $\tau_{a}(a)=-a, \quad T_{a}(u)=u$ if $u \neq a^{\perp}$
- τ_{a} is orthogonal

$$
a=x-y
$$

we had $\hat{W}_{x}^{\top} \hat{W}_{x}=\hat{W}_{y}^{\top} \hat{W}_{y}$.
It follows that there is an orthogonal matrix Q such that $Q \hat{w}_{x}=\hat{W}_{y}$. Therefore

$$
Q A^{k} \underset{\sim}{1}=B^{k} \geq \quad(0 \leqslant k \leqslant n)
$$

and $Q_{z}=\frac{1}{\sim}$. Hence

$$
Q A^{n} Q^{\top} \cdot \frac{1}{\sim}=B^{n} \stackrel{1}{2}
$$

and (sc) $Q A Q^{\top}$ \& B have the same characteristic polynomial.

Let $N_{i}(t)$ be the generating function for walks in X that start at i and never return. Then

$$
\begin{gathered}
w_{i}(x, t)=w_{i, i}(X, t) N_{i}(t) \\
W(X, t)-W(x ;, t)=W_{i, i}(X, t) N_{i}(t)^{2} \\
\Rightarrow W(X, t)-W(X, t)=\frac{w_{i}(X, t)^{2}}{w_{i, i}(X, t)}-\frac{\phi(x-i, t)}{\phi(x, n}
\end{gathered}
$$

Corollary $W_{i}(X, t)$ is determined by $W(X, t)$ $W(x, i, t)$ and $\varnothing(x \cup i, t)$; $W(X \backslash i, t)$ is determined by $\varnothing(x, i, t)$ \& $\varnothing($ 不 $i, t)$

Theorem If X is controllable, it is vertex reconstructible.
Lemma [Hagos] The polynomials $\varnothing(X i, t)$ and $\varnothing(\bar{X}, i, t)$ ci$\in(x))$ determine $\Phi(X, t)$ and $\phi(\bar{X}, t)$.

Proof of theorem. Suppose $V(Y)=V(x)$ and X 그 Y, for all i in $V(X)$. Then $X \& Y$ have the same walk matrix W. Now

$$
\begin{aligned}
& A(x) W=W C_{\Phi(x, t)}, A(y) W=W C_{\Phi(y, t)} \\
& \Rightarrow A(x)=A(y)
\end{aligned}
$$

