

Commutative algebras

Theorem Let \mathcal{A} be a commutative algebra over an algebraically closed" field. Assume that if $N \in A$ and $N^{2}=0^{(2)}$, then $N=0$. Then A has a basis of pairwise orthogonal idempotents.
(1) We can make do with less - es. if the matrices in $C A$ are symmetric, \mathbb{R} will, work. and symmetric
(2) $16 N$ is real, ${ }^{R} N^{2}=0$, then $N=0$. (The jargon is that A has no nonzero nilpotent elementri)

Proof of theorem (Basically an easy exercise with primary decomposition)
(1) If $A \in A$ then all eigenvalues of A be in \mathbb{F} and so we have the spectral decomposition

$$
A=\sum_{r} \theta_{r} E_{r}
$$

(2) If $B \in A$ and $B=\sum_{s} \tau_{s} F_{s}$, then the distinct nonzero products $E_{r} F_{s}$ are pairwise orthogonal idempotents and their span contains $A \& B$.
(3) Induct...

Example: strongly regular graphs

Same strongly regular graphs:
(a) $m K_{n} ; m, n \geq 2$
(b) $L\left(K_{n}\right)$
(c) Latin square graphs

Algebras a automorphisms
Let X be a graph with diameter d. If osrisd, the ruth distance graph x_{r} has vertex set $V(X)$ and vertices u, v are adjacent in X_{r} if dist $X_{x}(u, v)=r$. Set $A_{r}=A\left(X_{r}\right)$.
So $A_{1}=A \& A_{0}=I$. If $\operatorname{diam}(X)=2$, then $A_{2}=A(\bar{X})$,

The distance algebra \mathcal{D} is $\left\langle A_{0}, A_{1}, \ldots, A_{d}\right\rangle$.

If the permutation matrix P represents an automorphism of X (i.e., $P A=A P$), then $P \in A_{n t}\left(X_{r}\right)$ and $P A_{r}=A_{r} P$.
(automorphisms
Therefore P lies in the preserve distance) commutant of D. So:

$$
\begin{aligned}
\theta \text { big } & \Rightarrow \text { Ant }(X) \text { small } \\
\text { Ant }(X) \text { large } & \Rightarrow D \text { small }
\end{aligned}
$$

We choose to measure size of D by dimension. We have

$$
d+1 \leqslant \operatorname{dim}(D) \leqslant n^{2}
$$

(a) If $\operatorname{dim}(D)=n^{2}$, then $\operatorname{Aut}(X)=\langle 1\rangle$
(b) If $\operatorname{dim}(D)=d+1$?

If $\operatorname{dim}(2)=d+1$, then

$$
A_{i} A_{j} \in \operatorname{span}\left\{A_{0} \ldots, A_{d}\right\}
$$

and so $A_{i} A_{j}$ is symmetric \& $A_{j} A_{i}=A_{i} A_{j}$.

As $\sum_{r} A_{r}=J$ we have $J \in D$ and $J A_{r}=A_{\sigma} J$ Therefore X_{1}, \ldots, X_{d} are regular.

Formally, $\left\{X_{1}, \ldots, X_{d}\right\}$ form a symmetric association scheme with d classes. (and D is its Bose-Mesner algebra)

If $d=1$, we have $x=K_{n}$
If $d=2$, then $X_{1} \& X_{2}$ are strongly regular graphs $\left(X_{2}=\bar{x}\right)$.
(If $d>2 \ldots$ we don't care.)

Strongly regular graphs
A graph X is strongly regular if there are constants k, a, c such that:

$$
A^{2}=k I+a A+c(J-\Gamma A) . \bar{A}
$$

So X is k-regular s

$$
A^{2}-(a-c) A-(k-c) I=c J
$$

(n, k, a, c) are the parameters of X

1) Compute the parameters for $L\left(K_{n}\right)$ and the Latin square graphs.
2) Determine the eigenvalues a their multiplicities.

Eigenthings
(a) $\frac{1}{\sim}$ is an eigenvector with eigenvalue k.
(b) If $\frac{I^{\top}}{\sim} \delta=0$ and z is an eigenvector, evan λ,
then $J_{z}=0$ \& so

$$
\begin{aligned}
0 & =A_{z}^{2}-(a-c) A_{z}-(k-c) z \\
& =\left(\lambda^{2}-(a-c) \lambda-(k-c)\right) z
\end{aligned}
$$

$\Rightarrow \lambda$ is a zero of $t^{2}-(a-c) t-(k-c)$

$$
\frac{1}{2}\left(a-c \pm \sqrt{(a-c)^{2}+4(h-c)}\right)
$$

Denote the zeros of $b^{2}-(a-c) t-(k-c)$ by $\theta \& T$. (As $\theta \tau=c-k<0$, we assume $\theta>0$ and $\tau<0$.)

A strongly regular graph is primitive if X and \bar{X} are connected.

If $l:=n-1-k$ (valency of \bar{x}) and X is primitive,

$$
\theta<k, \quad-\tau-1<l
$$

Spectral idempotents of A are polynomials in A. So

$$
E_{0}=\alpha I+\beta A+\gamma \bar{A}
$$

Hence
(a) $m_{\theta}=\operatorname{tr}\left(\epsilon_{\theta}\right)=n \alpha \Rightarrow \alpha=\frac{m_{\theta}}{n}$
(b)

$$
\left.\begin{array}{l}
\operatorname{sum}\left(E_{\theta} \circ A\right)=n k \beta \\
\operatorname{sum}\left(E_{\theta} \circ A\right)=\operatorname{tr}\left(E_{\theta} A\right)=\operatorname{tr}\left(\theta E_{\theta}\right)=\theta m_{\theta}
\end{array}\right\} \beta=\frac{m_{\theta} \theta}{n k}
$$

(c) $\bar{A} E_{\theta}=(-\theta-1) E_{\theta}$

$$
\left.n(n-1-k) \gamma=\operatorname{sum}\left(\bar{A} c E_{\theta}\right)=\operatorname{tr}\left(E_{\theta} \bar{A}\right)=-(0+1) m_{\theta}\right\} \gamma=-\frac{m_{\theta}(\theta+1)}{n(n-1-k)}
$$

$$
\begin{aligned}
l & =n-1-k \\
E_{\theta} & =\frac{m_{\theta}}{n}\left(I+\frac{\theta}{k} A-\frac{\theta+1}{l} \bar{A}\right) \\
\text { Now } E_{k} & =\frac{1}{n} J=\frac{1}{n}(I+A+\bar{A}) \text { and } \\
E_{k}+E_{\theta}+E_{\tau} & =I, \quad \rho_{0}: \\
E_{0} \quad E_{k} & =\frac{1}{n}(I+A+\bar{A}) \\
E_{1} \quad E_{\theta} & =\frac{m_{\theta}}{n}\left(I+\frac{\theta}{k} A-\frac{\theta+1}{l} \bar{A}\right) \\
E_{2} \quad E_{\tau} & =? I \quad ? A \quad ? \bar{A}) \\
1+m_{\theta}+m_{\tau} & =n ; h a \theta m_{\theta} 4 \tau m_{\tau}=0 ; \quad l-(\theta+1) m_{\theta}-(\tau+1) m_{\tau}=0
\end{aligned}
$$

Lemma Any two vertices in a strongly regular graph are cospectral.
2×2 sulbmabrices of idempatents

$$
\begin{aligned}
& E_{\theta}[u, v]=\left\{\begin{array}{l}
\frac{m_{\theta}}{n}\left[\begin{array}{cc}
1 & \theta / k \\
\theta / k & 1
\end{array}\right], u \sim v ; \\
\frac{m_{\theta}}{n}\left[\begin{array}{cc}
1 & -\frac{\theta+1}{l} \\
-\frac{\theta+1}{l} & 1
\end{array}\right], u * v, u \notin v .
\end{array}\right. \\
& E_{\tau}[u, v]=\left\{\begin{array}{ll}
\frac{m_{\tau}}{n}\left[\begin{array}{cc}
1 & \tau / k \\
\tau / k & 1
\end{array}\right], u \sim v \\
\frac{n \tau}{n}\left[\begin{array}{cc}
1 & -\frac{\tau+1}{l} \\
-\frac{\tau+1}{2} & 1
\end{array}\right] & u+v, u \neq v
\end{array}\right\} \begin{array}{l}
\text { all } \\
\text { if } \\
\text { prim }
\end{array} \\
& \text { all invertible }
\end{aligned}
$$

