Linear Algebra Exercises

1. Prove that any real square matrix is a product of two symmetric matrices.
2. Let W be the cyclic A-module generated by the vector w. If B is a matrix and $B w \in W$, prove that there is a polynomial p such that $B w=p(A) w$.
3. If the sets of vectors u_{1}, \ldots, u_{m} and v_{1}, \ldots, v_{m} are linearly independent, show that the vectors

$$
u_{i} \otimes v_{j}, \quad 1 \leq i, j \leq m
$$

are linearly independent.
4. Assume A is a real matrix and let P be the linear map that sends $u \otimes v$ to $v \otimes u$. Show that the matrix $P\left(A \otimes A^{T}\right)$ is symmetric.
5. Let V be $\operatorname{Mat}_{n \times n}(\mathbb{F})$ and let A be a fixed matrix. If $X \in V$, define the map Ad_{A} in $\operatorname{End}(V)$ by

$$
\operatorname{Ad}_{A}(X):=A X-X A
$$

If $A^{n}=0$, prove that $\mathrm{Ad}_{A}^{2 n}=0$.
6. Compute the singular values of a companion matrix. (Remark: this is asking for the eigenvalues of $C C^{T}$ or $C^{T} C$; one of these is much simpler to work with than the other.)
7. Show that the sum of the singular values of a matrix is a norm.
8. Let A be an $n \times n$ complex matrix with all eigenvalues simple. Prove that

$$
\operatorname{rk}(A \otimes I-I \otimes A)=n^{2}-n
$$

and deduce from this that any matrix that commutes with A is a polynomial in A.
9. Let C_{f} denote the companion matrix of the polynomial f. Let $p \vee q$ and $p \wedge q$ denote respectively the lcm and gcd of the polynomials p and q. Prove that the matrices

$$
\left(\begin{array}{cc}
C_{p} & 0 \\
0 & C_{q}
\end{array}\right), \quad\left(\begin{array}{cc}
C_{p \vee q} & 0 \\
0 & C_{p \wedge q}
\end{array}\right)
$$

are similar.
10. Assume $A \in \operatorname{End}(V)$ and let x be a vector such that $\psi_{A, x}=\psi_{A}$. Prove that any submodule of $\langle z\rangle_{A}$ is cyclic.
11. The proof in the lectures for the singular value decomposition works over the reals. Write out a proof of the complex version.
12. Prove that matrix A is normal if and only if $\langle A x, A x\rangle=\left\langle A^{*} x, A^{*} x\right\rangle$ for all x. Use this to prove that if A is normal and x is an eigenvector for A, it is also an eigenvector for A^{*}.

Exercises

13. If S is a completely regular subset of $V(X)$ with covering radius r, prove that the set of vertex at distance r from X is completely regular.
14. Apply the inertia bound to a weighted Cartesian product of the Petersen graph with K_{2} to derive an upper bound on the maximum size of an induced bipartite subgraph of the Pe tersen graph. Show your bound is tight. [If you're ambitious, repeat the exercise for the Kneser graph $K_{7: 3}$ (4-regular on 35 vertices, look up the eigenvalues) and again derive a tight bound. For $K_{9: 4}$, the bound is good but not tight.]
15. If X is perfect, prove that the weighted inertia bound gives the exact value for $\alpha(X)$.
16. Using the machinery employed in the lectures to prove the Hoffman bound on $\chi(X)$, prove that if equality holds, the multiplicity of τ is at least $\chi(X)-1$.
17. Let W and Z. be type-II matrices of the same order. Let A and B be matrices such that $\circ B=0$ and $A+t B$ is type-II for all non-zero t. Prove that $W \otimes A=t Z \otimes B$ is type-II for all non-zero t.
18. Assume W is type-II of order $n \times n$ and let P be the $n^{2} \times n^{2}$ permutation matrix such that $P(x \otimes y)=y \otimes x$ for all x and y in \mathbb{C}^{n}. Prove that $\widehat{W}=\left(W \otimes W^{(-) T}\right) P$ is a type-II matrix with constant diagonal and that $\widehat{W}^{2}=I$.
19. Assume P and Q are quantum permutations of order $n \times n$. Define the $n \times n$ matrix $P \star Q$ by setting

$$
\left(P \star Q_{i, j}\right)=\sum_{r=1}^{n} P_{i, r} \otimes Q_{r, j} .
$$

(Remark: the entries of P are $d \times d$, those of Q are $e \times e$. We are not assuimng that $d=e$.) Show that $P \star Q$ is a quantum permutation. Show that this \star-operation is associative.

