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1. INTRODUCTION

Linear algebra provides an important collection of tools for the working combinatorialist.
These have often been used to obtain the first, the most elegant, or the only proof of many
significant results. Before I compiled this survey, my opinion was that this area consisted
of a large collection of disparate “tricks”. I have since come around to the view that there
is a small set of basic principles, perhaps not easily formalised, that underly most of the
combinatorial applications of linear algebra.

In writing this survey I have made no attempt to be exhaustive; indeed I should
apologise in advance to each of my readers for leaving out their favourite example. The
references provided are also far from complete, but should at least form a reasonable
starting point for those wishing to learn more.

The reader is hereby warned that, unless explicitly mentioned otherwise, all ranks,
dimensions etc. are over the rationals. The letters I and J will denote the identity matrix
and the “all-ones” matrix respectively. Their order will be determined by the context. (I

hope.)



2. THE RANK ARGUMENT

The best known application of linear algebra to combinatorics is the now standard proof
of Fisher’s inequality, namely that in any non-trivial 2-design the number of blocks is at
least as large as the number of points. This seems a good place for us to begin. We first
need to set up some notation. A hypergraph H = (V, E) consists of a vertex set V and a
collection E of subsets of V', which we call edges. We call H simple if there are no repeated
edges and we say it is k-uniform, or just uniform, if each edge contains exactly k vertices.
If each vertex of H lies in exactly r edges then H is r-regular, or simply regular. A simple
2-uniform hypergraph is better known as a “graph”.

A t-design is a uniform hypergraph with the property that every subset of ¢ vertices is
contained in exactly A edges, for some constant A. Thus a 1-design is a A-regular uniform
hypergraph. It is well known and simple to prove that any ¢-design is also an s-design,
for all s less than or equal to . A design is trivial if each edge contains all the vertices.
For further background see A. Brouwer’s chapter on designs in this handbook. Fisher’s
inequality (Fisher [1940]) asserts, in our notation, that every non-trivial 2-design has at
least as many edges as vertices. To prove this using linear algebra requires the use of
incidence matrices, and consequently another definition.

The incidence matrix B = B(H) of a hypergraph is the 01-matrix with rows indexed
by the vertices of H, columns indexed by the edges, and with (B);; = 1 if and only if
vertex ¢ is contained in edge j. The rank of B can not be greater than either the number

of rows or the number of columns of B. Thus we have:

2.1 PRINCIPLE. Let H = (V,E) be a hypergraph with incidence matrix B. If the
rows of B are linearly independent then |V| < |E|. O

This result is simultaneously too important, and too useful, to be termed a theorem.
There is one problem remaining though: it is still up to us to determine the rank of the
incidence matrix B. For an arbitrary large hypergraph this would normally be every bit
as difficult as proving that |V| < |E| by any other means. What saves us is that, in many
interesting cases, the rank of B(H) is more or less obvious due, for example, to some
regularity in the structure of H. Thus in the case of 2-designs we find that the defining
conditions imply that

BBT = (r = X\)I 4 \J, (1)

where » and A are as above. If the block size k of the design is not equal to |V| then we
must have » > A. Hence the right hand side of (1) is the sum of a positive semi-definite

matrix J and a positive definite matrix (r — A)I. It is therefore positive-definite and,
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with that, non-singular. Consequently the left hand side of (1) is non-singular, implying
that the rank of B is equal to the number of rows in B. This proves Fisher’s inequality.
(Note that the use of positive-definiteness in the above argument can be circumvented by
explicitly computing the determinant of (r — A)I 4+ AJ.)

We note further that, if B has rank |V| then it contains a |V| x |V| submatrix with
non-zero determinant. Given the definition of the determinant as a signed sum of products
of entries of a matrix, we deduce that there is an injection ¢:V — E such that the edge
¢(¢) contains the vertex ¢, for all vertices ¢ in H. This is a strengthening of the bald
statement that v < e. If we replace the non-zero elements of B by distinct members from
a set of algebraically independent numbers, we obtain a “generic” incidence matrix for H.
The existence of a bijection of the type described is equivalent to requiring that the rank
of this generic incidence matrix be equal to |V|. (For another, important, example of this
type of argument, see Stanley [1980].)

Fisher’s inequality can be generalised in many ways. If we weaken our definition of
2-design by allowing the edges to contain differing numbers of vertices, we find that B

satisfies the matrix equation

BBT = A +)\J, (2)

where A is a diagonal matrix with non-negative entries. The diagonal entries of A will
be positive if, for each pair of vertices in H, there is an edge containing one but not the
other. In this case the argument we used above still yields that B has rank equal to |V|,
and hence that v < e. (This result is due to Majindar [1962], and de Caen and Gregory
[1985] prove an even more general result using quadratic forms.)

Another important generalisation of Fisher’s inequality arises if we introduce auto-
morphism groups. Suppose that I' is a group of automorphisms of our hypergraph H.
Then vertices and edges of H are partitioned into orbits by I'. If H is a 2-design or, more
generally, if B has rank |V|, then the number of edge orbits of I" is as least as large as the
number of vertex orbits. (If I' is the identity group then this is just Fisher’s inequality
again.) This claim can be proved as follows. Let Cy,...,C} denote the vertex orbits of I'.
Call two edges o and 7 equivalent if |oc N C;| = |7 N C,| for all ¢. Clearly any two edges in
the same edge orbit of I' are equivalent. Let P be the k& x v matrix with ¢-th row equal
to the characteristic vector of C; (viewed as a subset of V(H)). Then edges o and T are
equivalent if and only if the corresponding columns of PB are equal. Hence the number of
edge orbits of T is as least as large as the rank of PB. If B has rank |V| then 2T PB =0
if and only if zTP = 0. As the rows of P are linearly independent it follows that z7 P =0
if and only if z = 0, i.e., the rank of PB is equal to the number of rows of P. This proves
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our claim.

The argument used in the last paragraph is sufficiently important to be worth formal-
ising. Let H be an arbitrary hypergraph, let m be a partition of its vertex set and let p be
a partition of its edge set. Define the characteristic matrix of a partition to be the matrix
with the i-th row equal to the characteristic vector of the i-th cell (or component) of the
partition. (Thus, a 01-matrix is the characteristic matrix of a partition of its columns if
and only if the sum of its rows is the vector with all entries equal to 1.) Denote the char-
acteristic matrices of m and p by P and R respectively. We call the pair (, p) of partitions
equitable if:

(a) each edge in the j-th cell of p contains the same number of vertices from the i-th cell
of ,

(b) each vertex in the i-th cell of 7 is contained in the same number of edges from the
J-th cell of p.

We see that (7, p) is an equitable partition of H if and only if (p, 7) is an equitable partition
of the dual hypergraph. (This is obtained by swapping the roles of the vertices and edges

in H — its incidence matrix is the transpose of that of H.)

2.2 LEMMA. Let m and p respectively be partitions of the vertices and edges of the

hypergraph H. Then (w,p) is equitable if and only if there are matrices ® and ¥ such
that PB = ®R and RBT = UP.

Proof. This lemma is only a routine translation of the definition (into linear algebra

terms). O

If ® and ¥ exist as described then ®RRT = PBRT and Y PPT = RBTPT. Hence
®RRT = pPTOT,

Thus ¥ is determined by &, and vice versa. Note that both PPT and RR” are diagonal
matrices. We call the matrix ® the vertex quotient of B with respect to the given pair of

partitions.

2.3 LEMMA. Let ® be a vertex quotient of the incidence matrix B with respect to the
equitable pair of partitions (w,p). If the rows of B are linearly independent then the rank
of ® is equal to the number of cells in 7, and so the number of cells of = is less than or

equal to the number of cells of p.

Proof. We have:
rank(P) = rank(PB) = rank(®R) = rank(®),
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where the first and third equalities hold because the rows of P and R are linearly inde-

pendent, while the second equality follows from Lemma 2.2. O

Note that Lemma 2.3 is actually a generalisation of 2.1, which we can recover by
taking m and p to be the partitions with all cells singletons. One important consequence
of this lemma is the fact that the number of point orbits of a collineation group of a
projective plane is always less than or equal to the number of line orbits (Hughes and Piper
[1973: Theorem 13.4].) It is not difficult to extend Lemma 2.3 to infinite structures. (See
Cameron [1976].) The notion of quotient is useful because it provides a means of arguing
that a particular matrix ® has rank equal to the number of rows in it. (Namely, ® has
inherited this property from the larger matrix B.) Thus quotients extend the applicability
of the rank argument. They will also play an important role in our section on Eigenvalue
Methods. The definitions above have been chosen with this later usage in mind as well.

I should also mention that it is often convenient to view ® as a generalised incidence
matrix for the “quotient hypergraph” with the cells of 7 and p of H as its vertices and
edges. (A cell of 7 is incident with a cell of p whenever some vertex in the former is
contained in some edge of the latter.) In the case when 7 and p are the vertex and edge
orbits of a group of automorphisms of H, Lemma 2.3 is well known and can be stated in
a sharper form. See, e.g., Dembowski [1968: p. 22] and Stanley [1982: Lemma 9.1].

The next result is of fundamental importance, and underlies many combinatorial ap-

plications of linear algebra.

2.4 THEOREM. Let Q) be a set with cardinality n and let B be the incidence matrix
for the hypergraph H with the k-sets of () as its vertices and the {-sets as its edges. Then
if k <min{f,n — £}, the rows of B are linearly independent. O

Here a k-set is incident with an /-set if it is contained in it. The earliest proof of
this known to the writer appears in Gottlieb [1966]. Other proofs appear in Foody and
Hedayat [1977], Kantor [1972] and Graham, Li and Li [1980]. It can also derived by a
quotient argument. For suppose that we have a non-zero vector z such that z7B = 0. We
may assume without loss that the first entry of & is non-zero; in fact we assume that it is
equal to 1. Clearly Sym(n) acts as a group of automorphisms of H. Let I' be the subgroup
of Sym(n) fixing the first k-subset of Q. Thus I' is isomorphic to Sym(k) x Sym(n — k).
Let P and R respectively be the characteristic matrices for the partitions determined by
the orbits of I' on k- and ¢-subsets of ). Finally let ® be the corresponding quotient of
B. It is important to note that ® is a triangular matrix of order (k + 1) x (k + 1) with

non-zero diagonal entries. In particular, it is invertible.
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If v €T, let 7 be the vector with (zv), = z,,. We set

As z; = 1 and 1y = 1 for all elements v of I', it follows that y # 0. It is not too hard
to show that (zy)TB = 0 if and only if zTB = 0. This implies that y7B = 0. Now the

entries of y are constant on the orbits of I' and so there is a non-zero vector z such that

yT = 2T P. Then we have
0=2z"B=y"B=:2TPB=:T®R

and, since the rows of R are linearly independent, this implies that z7® = 0. Since @ is
invertible this implies that z = 0 and so we are forced to conclude that there is no non-zero
vector z satisfying 7B = 0, i.e., that the rows of B are linearly independent.

We note some simple applications of Theorem 2.4. Suppose that 2 is the edge set
of a complete graph on n vertices. Then a k-subset of € is a graph on n vertices with
k edges. The symmetric group Sym(n) acts on the (3) elements of 2. The orbits of k-
subsets correspond to the isomorphism classes of graphs on n vertices with k edges. Since
the incidence matrix for k- versus £-subsets of ) has linearly independent rows, so does
its quotient with respect to Sym(n). If g,, ; denotes the number of isomorphism classes of
graphs with n vertices and k edges, it follows that g,, ;, < g,, , whenever k& < min{¢, (5)—¢}.
We deduce from this that the sequence g, 1,k =0,..., (3) is unimodal. Perhaps a more

significant application is the following. Let p;,(n) denote the number of partitions of the

integer n into at most k£ parts, the largest of which is at most £.
2.5 LEMMA. The sequence p;,(n),n =0,...,kl is unimodal.

Proof. We can define the wreath product I' = Sym(£) | Sym(k) to be the group acting on
an k x £ array R of “squares” by permuting the £ squares in each row independently, and
by permuting the k rows amongst themselves without changing the order of the squares
in the rows. (So the order of I' is (£!)*k!.) Then p,,(n) is the number of orbits under T
formed by the subsets of n squares from R, i.e., it counts the “I'-isomorphism” classes of

n-subsets of R. The lemma now follows as above. O

Lemma 2.5 is quite important and has a quite interesting history. The details of
this, together with the above proof, will be found in Stanley [1982]. The numbers p;,(n)
arise in a remarkable variety of situations, occuring in particular as the coefficients in the

expansion of the g-binomial coefficients [Z] . in powers of q. (For information on these see
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the chapter by Gessel and Stanley.) Although the sequence they form is unimodal, it is not
log-concave. This means that some of the standard techniques for proving that a sequence
is unimodal cannot be applied to derive Lemma 2.5.

Stanley [1985] has also used quotienting by orbits to re-derive Lovdsz’s proof that any
graph with more edges than its complement can be reconstructed from its edge-deleted
subgraphs. This will be discussed, along with some generalisations, in the next section.

Recently Wilson [1990] has determined the rank modulo p of the incidence matrix B
of k-sets versus /-sets. In this paper he also gives a diagonal form for B, i.e., a diagonal
matrix D such that B = EDF for suitable integral matrices ¥ and F' with determinants
equal to one. This is a very interesting result, but it seems fair to say that we do not yet

know what its combinatorial significance is.

The theory of posets is an area where linear algebra has been effectively applied, and
it would be remiss of us not to consider some examples. Let P be a poset with n elements.
The incidence matrix B = B(P) is the 0l-matrix with ¢j-entry equal to 1 if and only if
t < j7in P. We can always assume that B is an upper triangular matrix; this is equivalent
to the existence of linear extensions of P. Since ¢ < i, each diagonal entry of B is equal
to 1, and so B is an invertible matrix. This means that there is little future in seeking to
prove results about posets by rank arguments based on B. In fact we are going to work
with the inverse of B.

This brings us to the Mobius function of P. This is the function y = pup on P x P
defined by:

p(iyg) == (B™)y;
(For the basic theory of the Mdbius function, expressed in a manner consistent with our
approach, see Lovasz [1979a: Ch. 2|. Another convenient reference is Aigner [1979].) Note

that u(z,7) = 1 for all elements ¢ of P. It is also not difficult to prove that u(¢,7) = 0
unless ¢ < j in P. However the key fact that we need is the following.

2.6 LEMMA. Let f be a function on the poset P. If the function f* is defined by
F1@) =) 16)
jzi
then

F@) = Zﬂ(iaj)f*(j)-

Proof. If we view f and f* as column vectors with entries indexed by the elements of P
then the first equation asserts that f* = Bf. Hence f = B~!f*, which is equivalent to

the second equation. O



The theory of the M6bius function consists of an interesting mixture of combinatorics,
algebra and topology, and is very well developed. Explicit expressions for pp are known

for many important posets. We will be making use of the following pretty result.

2.7 LEMMA (H. Wilf [1968], B. Lindtstrom [1969]). Let P be a lattice with n
elements, let f be a function on P and let F' be the n x n matrix such that (F),; = f(iVj).

Then det F = HieP f*(2), where f*(i) = ZjeP w(t,7)1(7).
Proof. Let ® be the diagonal matrix with :-th diagonal entry equal to f*(¢). Then it is

(B&BT);; = > fr (k)= > f(k)

k>i,j k>iV

easy to see that

and that, by the previous lemma, the last of these two sums is equal to f(iV j). Therefore
F = B®BT and so

det(F) = det(B®BT) = det(B) det(®) det(B7T) = det(®)

since det(B) = 1. This proves the lemma. O

With the help of this lemma we can compute some rather complicated determinants.
For examples, the reader is referred to Lovasz [1979a: Ch. 2] and the original paper of Wilf
mentioned above. For a recent application to communication complexity, see the paper by
Hajnal, Maass and Turdn [1988]. An interesting application to combinatorial optimisation

is given Lovasz and Schrijver [1990]. The next result shows yet another use.

2.8 THEOREM. Let P be a lattice such that pp(z,1) 7E 0 for all ¢ in P. Then there is
a permutation w of the elements of P such that iV (¢)m =1 for all ¢ in P.

Proof. Define a function g on P by

. 1, ife=1;
o) i { |

0, otherwise.

and let G be the matrix with ij-entry equal to g(:V j). We seek to apply Lemma 2.7. From
Lemma 2.6 we see that g(¢) = iji f(j), where f(5) = p(3,1). Accordingly we deduce
that det G = HjeP ((7,1). Our hypothesis concerning p thus forces the conclusion that
det G # 0. The assertion of the theorem now follows from the definition of the determinant

as a signed sum of products of elements of a matrix. O

Theorem 2.8 was first obtained by Dowling and Wilson [1975] using linear algebra,

but not Wilf’s lemma. (The above proof might even be new.) Many interesting lattices
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have Mobius functions that satisfy the hypothesis of the theorem. In particular, geomet-
ric lattices have this property and so have “complementing permutations” as described.
(From this it follows very quickly that every finite geometric lattice has at least as many
hyperplanes as points. We cannot resist the following remarks in this context. Let H be a
hypergraph with the property that any two distinct vertices lie in exactly one edge. Then
it can be shown that the vertices and edges of H form a geometric lattice. Consequently
such a hypergraph has at least as many edges as vertices. This indicates that there is a
non-trivial connection between Theorem 2.8 and Fisher’s inequality.

To complete this section we mention another important result in the theory of posets
which has been established using linear algebra, namely the proof of Ivan Rival’s conjecture

on modular lattices, by J. Kung [1985, 1987].



3. DESIGNS AND CODES

We introduce a framework which will enable us to derive some far-reaching generalisations
of Fisher’s inequality, and a number of other results. Our approach follows the exposition
in Godsil [1993: Chs. 14-16].

A separation function p on a set {2 is simply a function on € x 2 taking values in some
field, the reals unless otherwise notified. If f is a real polynomial with degree r and a € 2

then we call the mapping
z — f(p(a,z))

a zonal polynomial of degree at most r, and denote it by f,. We inductively define vector
spaces Pol(Q,r) as follows. We set Pol(2,0) equal to the span of the constant functions
on Q and Pol(f2, 1) equal to the span of the zonal polynomials f,, where f ranges over all
real polynomials of degree at most one and a over the points in Q. If » > 1 then Pol(Q,r)

is the space spanned by
{fg : f S POI(Qa 1)7 gc POl(Q,T‘ o 1)}

We also define
Pol(Q) = | Pol(2,7).
>0

We refer to the elements of Pol(Q2) as polynomials on (2, and a polynomial which lies in
Pol(2,r), but not in Pol(Q,r — 1), will be said to have degree r. Note that if f is a
polynomial of degree r on 2 and g is a polynomial of degree s then the product fg will
be a polynomial of degree at most 7 + s. (Note also that z> 4+ y* + z? is a polynomial of
degree zero on the unit sphere in R>.)

A polynomial space consists of a set {2, a separation function p on ) and an inner
product (, ) on Pol() such that the following axioms hold:

I If 2,y € Q then p(z,y) = p(y, ).
IT The dimension of Pol(2,1) is finite.
IIT (f,g) = (1, fg) for all f and g in Pol(2).
IV If f € Pol(R?) and f(z) > 0 for all z in Q.

These axioms are not very restrictive. Moreover, when (2 is finite, Axioms II and IV are
redundant. We now present a number of examples. In all of the cases where (2 is finite the
inner product is given by

1
(f,9) = 9l Y f(z)g(z).

€N
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(a) The Johnson scheme J(n,k)
Here Q is the set of all k-subsets of a set of n elements and p(z,y) := |z N y|. For this

scheme we will usually assume implicitly that 2k < n.

(b) The power set 2™
In this case  is the power set of a finite set with n elements, and p(z,y) := |z N y| once
again.

(c) The Hamming scheme H(n,q)
Let ¥ be an alphabet of ¢ symbols {0,1,...,g — 1}. Define Q to be the set L™ of all
n-tuples of elements of ¥, and let p(z,y) be the number of coordinate places in which the
n-tuples z and y agree. Thus n — p(z,y) is the Hamming distance between = and y. (We
note that H(n,2) and 2™ have the same underlying set, but the functions p are different.)
We do not require g to be prime power. The elements of H(n,q) are usually called words

over 2.

(d) The symmetric group Sym(n)
We set @ = Sym(n). If z and y are elements of Q then p(z,y) is the number of points left
fixed by the permutation z~'y. Note that we can view Sym(n) as a subset of H(n,n), and
that the function p on Sym(n) is then just the restriction of the corresponding function in
H(n,n).

(e) The Grassmann scheme J, (n, k)
This time €2 is the set of all k-dimensional subspaces of an n-dimensional vector space over

a field with ¢ elements, and p(U, V) is the number of 1-dimensional subspaces of U N V.
(f) The unit sphere in R™

The set  is formed by the unit vectors in R™ and p(z,y) is the usual inner product on R™.
In this case the elements of Pol({2) are precisely the polynomials in n variables, restricted

to the sphere. If f and g are two elements of Pol({2) then their inner product is

(f,9) = /Q fgdp,

where g is the usual measure on the sphere in R"”, normalised so that the sphere has

measure 1.

(g) Perfect matchings in K,,,
If ¢ and y are perfect matchings in K,, then p(z,y) is the number of edges they have in

cominon.

Let (2, p) be a polynomial space. If ® is a finite subset of Q and f and g are polyno-
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mials on () then we define

We call @ a t-design in  if
(L, fle = (1, 1)

for all f in Pol(f2,¢). A t-design in the Johnson scheme is a simple ¢-design, as defined in
Section 2. A t-design in the Hamming scheme is the same thing as a ‘simple’ orthogonal
array. (These claims are not trivial; a proof of the first and an outline of a proof of the
second can be found in Godsil [1988].) A t-design D in the power set of X can be shown to
be a collection of subsets of X such that, for all s <, each set of s points lies in the same
number of elements of D. For the unit sphere, our definition of a ¢-design is the usual one.
(Delsarte, Goethals and Seidel [1977] study ¢-designs on the unit sphere at some length.)

These examples show that ¢-designs in polynomial spaces are objects of interest, and

indicate the importance of the following result.

3.1 THEOREM. Let (Q,p) be a polynomial space. If ® is a t-design in Q then |®| >
dim(Pol(€, [t/2])).

Proof. Let 4;; be the Kronecker delta function and let k,,...,hk, be an orthonormal basis
for Pol(Q2, [¢/2]). (Such a basis can always be found by Gram-Schmidt orthogonalisation.)
Then

(hishi)e = (1, h;h;)e = (1, h;h;) = (hiyhy) = 4,5

1? 7 ? (2] ? (2] 1 7

Therefore the restrictions to ® of the polynomials h; form a linearly independent set of
functions on ®. Since the vector space of all functions on ® has dimension |®|, it follows
that n < |®]. D

For this result to be useful, we need to know the dimensions of the spaces Pol(Q,r).

This is a non-trivial task, but the answer is known in many cases. (Again, see Godsil
[1993] for the details.) For the Johnson scheme J(n, k) we have dim(Pol(Q,7)) = () when
r < k.

3.2 COROLLARY (Ray-Chaudhuri and Wilson [1975]). Let D be a 2s-design
formed from the k-subsets of an n-set, with 2k < n. Then D contains at least (Z) blocks. O

If (Q,p) is the Hamming scheme H(n,q) then dim(Pol({,r)) is equal to
(n
— 1) .
Y g-1) (z>

1<r
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3.3 COROLLARY. Let D be an orthogonal array of strength 2s in the Hamming

scheme H(n,q). Then
(n
D| > — 1) .0
EES YR

i <r

The dimension of dim(Pol(€,r)) is the same for the power set of an n-set as it is for
the Hamming scheme H(n,2). For the g-Johnson scheme Pol(Q,r) has dimension [Z]q,
and for the unit sphere in R™ it has dimension (n+:_1) + (ni_jl_2) (This lower bound on
the size a spherical ¢-design was derived by Delsarte et al [1977].)

A 2s-design realising the the bound of Theorem 3.1 is called a tight design. A tight
2-design in the Johnson scheme is better known as a symmetric design; such designs may
be said to be rather plentiful. On the other hand it has been proved (Bannai [1977]) that
if t = 2s > 10 then there are only finitely many tight ¢-designs in the Johnson scheme.
There is also a close connection with the theory of association schemes; we will discuss this

briefly following Corollary 3.9.

Our definition of a design in a polynomial space can be extended. A weighted t-design
on a polynomial space ({2, p) is a non-negative function ¢ with finite support, S say, such
that

Y 8(2) f(=) = (1, 1)

€S
for all polynomials f in Pol(Q,t). For example, if ® is a t-design we might take ¢ to be
the function equal to 1/|®| on the elements of ® and zero elsewhere. A weighted design in
the Johnson scheme is equivalent to a design in the usual sense of the word, with repeated
blocks permitted. Theorem 3.1 can be easily extended to show that, if S is the support
of a weighted t-design, then |S| > dim(Pol(f, [¢/2])). It can also be shown, under fairly
general conditions, that a polynomial space contains weighted t-designs supported by at
most dim(Pol(€2,t)) points. (See Godsil [1988, 1993].) We give a simple and direct proof

of this fact for the Johnson scheme.

3.4 LEMMA. For any integers t, k and v with t < k < v — k, there is a k-uniform
hypergraph H with at most (:) edges that is the support of a weighted t-design.

Proof. Let X be a fixed set of v elements, and let B, ; be the 01-matrix with rows indexed
by the t-subsets of X, columns indexed by the k-subsets and with ¢j-entry equal to 1 if and
only if the :-th ¢-subset is contained in the j-th k-subset. A weighted ¢-design corresponds

to a column vector z of length (Z) with non-negative entries such that
Bt7kw = j- (]‘)
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v—1
k—t

standard results in the theory of Linear Programming, (1) has non-negative basic solutions,

We know that (1) does have non-negative solutions — ( )_1 j for example. Hence, by
i.e., solution vectors supported by linearly independent sets of columns of B = B, ;. Such

a set of columns has cardinality at most (:), since this is the number of rows of B. O

Here we should also mention Wilson’s well known proof that weighted ¢-(v,k, ) de-
signs exist whenever the obvious divisibility conditions are satisfied (R. M. Wilson [1973]),
which also starts with Equation (1).

There is another lower bound on the size of a t-design which, despite its simple proof,

is very useful.

3.5 THEOREM. Let ® be a t-design in the polynomial space (Q,p). Then, for any
polynomial p of degree at most t which is non-negative on ® and any point o in ®,

|¢|ZM

(
(1,p)
and equality holds if and only if p vanishes on ®\ a.

Proof. Let ¢ be a weighted ¢-design and let a be a point in its support. Suppose that p
is a polynomial of degree at most ¢ on {2, and that p is non-negative on the support of .
Then
p@p@ < Y p@)ple) = (1),
zip(2)#0

from which our bound follows immediately. O

Theorem 3.5 is a form of Delsarte’s linear programming bound. (See, e.g., Delsarte
et al [1977].) The name arises because this theorem suggests the following optimization
problem: choose p in Pol({,t) non-negative on ® so that p(a)/(1,p) is maximal. This is
easily expressed as a linear programming problem.

Let A be a set of real numbers. (In all cases of interest, it will be finite.) A A-code

in a polynomial space (£, p) is a subset ® such that

{p(z,y) 12,y € @,z #y} CA.

We will also refer simply to codes when the set A is determined by the context, or is
not important. We say ® has degree d if it is a A-code for some set A of cardinality d.
Many interesting problems in Combinatorics are equivalent to questions concerning the
maximum cardinality of A-codes. We have a general upper bound on the cardinality of

codes, but to state this we require another definition. Suppose p is a separation function
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on a set } and ® C ). We say ® is orderable if there is linear ordering ‘<’ such that,

whenever a € 9,
p(a,a) € {pla,z) : & < a}.

If ® is an orderable subset then so is any subset of it. In all the examples of polynomial

spaces we listed, (2 itself was orderable. The following result is therefore significant.

3.6 THEOREM. Let p be a separation function on the set () and let ® be an orderable
subset of ) with degree s. Then

|®| < dim(Pol(£, s)).

Proof. (We only give an outline, see Godsil [1993: Theorem 14.4.1] for more details.) For
each a in ® let A(a) be the set

{p(ay) : p(a,2) < pla,a),z £ a}

and let F, be the polynomial on {2 defined by

F@) = I[ (plase) ).
AEA(a)
Then F,(b) = 0if b < a and F,(a) # 0. Using this it is not difficult to show that
the functions F, are linearly independent. Since they also all lie in Pol({2,s), the result
follows. O

The basic technique used in proving Theorem 3.6 is due to Koornwinder [1976]. We
now list some of the consequences of Theorem 3.6. A set of degree s in the unit sphere is

usually called an s-distance set.

3.7 COROLLARY (Delsarte, Goethals and Seidel [1977]). If ® is an s-distance

subset of the unit sphere in R™ then |®| < (n:fl_l) + (n:_32_2) O

3.8 COROLLARY (Ray-Chaudhuri and Wilson [1975]). Let H be a k-uniform

hypergraph on v vertices and let A be set of positive integers with |A| = d. Then if H is
a A-code, |[E(H)| < (). O

3.9 COROLLARY (Frankl and Wilson [1981]). Let H be a k-uniform hypergraph
on v vertices and let A be set of positive integers. Suppose that A has d' distinct elements

modulo the prime p, and none of these is congruent to k modulo p. Then if H is a A-code,

|E(H)| < (§).0
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3.10 COROLLARY (Frankl and Wilson [1981]). Let F be a subset of the power
set of X, where |X| = n. If F has degree s then |F| <Y, (7). O

7

More information about the above results will be found in the chapters of this hand-
book by Frankl and Brouwer. The paper by Frankl and Wilson [1981] contains many
significant results, one of which was recently used in Kahn and Kalai [1992] to disprove
Borsuk’s conjecture. (This asserted that a set of diameter one in R? could always be par-
titioned into d + 1 sets of diameter smaller than one. Kahn and Kalai show that at least
(1.1)‘/3 such sets may be required.) Many of the polynomial spaces we have mentioned are
association schemes. Delsarte [1973] showed how to define designs and codes in association

schemes; where these concepts overlap ours, they agree. Further information will be found

in the chapter on association schemes by Brouwer and Haemers in this handbook.

A number of interesting results of coding type have been proved using exterior algebra.
The basic example is the following, which is a slight extension of a result due to Bollobas

[1965]. The version stated, and its proof, are due to Lovasz [1977].

3.11 THEOREM. Suppose that A,,...,A,,
B,,...,B,, are s-element subsets of X. If A, N B, = 0 for all ¢ and A; N B, # 0
whenever © < 7, then m < (rts).

are r-element subsets of a set X, and

m

Proof. Let f be a mapping from X into V = R"™* such the image of any set of 74 s distinct
points from X is linearly independent. (We could assume that f maps each element of X

to a vector of the form

(1,t,...,¢7 7571,

It is a simple exercise to show that this works, provided only that we use distinct values
of the parameter ¢ for distinct elements of X.)

To any set S of elements of X we associate the wedge product

N f(z)

€S

and we denote this by w(.5). (This product does depend on the order in which the multi-
plication is performed, but a change of order leads only to a change of sign, and this will
cause no problems.) Observe that this is a vector in a space of dimension (Tgﬁ), and it
is non-zero if and only if the vectors f(z), for z in S, are linearly independent. If T is a
second subset of X then w(S) A w(T) is non-zero if and only if (.5 UT) spans a subspace

of V with dimension |S| + |T|.
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The m vectors w(A4;) lie in a vector space of dimension (rts); if we can show they are

linearly independent then the theorem is proved. Suppose we have scalars ¢; such that

Zci w(4;) =0. (2)
Let j be the greatest index such that ¢; # 0. Since B; N A, is nonempty for all 7 less than

j, we have w(A;) Aw(B;) = 0if i <j. Since B; N A; = 0, it follows that f(A; U B;) is a
linearly independent set. Hence w(A;) A w(B;) # 0. Therefore (2) yields

0= Zc w(A;) AN w(B;)

Il
o

w(A;) Nw(B;)

J

=c. w(Aj) ANw(B;).

J

But this implies that ¢; = 0, and this forces us to conclude that the vectors w(A;) are

linearly independent. Hence m < (rts). O

A subspace U of V = R"** with basis vy,...v,, can be represented by the vector A,v,.

Hence the argument used above yields the following result.

3.12 LEMMA (Lovéasz [1977]). If we are given r-dimensional subspaces U,,...,U,,

and s-dimensional subspaces W,,...,W. of V = R""* such that U, N W, #0if 1 <j
and U;NW,; =0 then m < ("*). O

The theorem itself is a consequence of this lemma, together with the observation
that there is an injection of X into V which maps all subsets with cardinality at most
r + s onto independent sets. In fact the lemma holds independently of the dimension of
V. For suppose we have subspaces U, and W, as described in a vector space V, where
dim(V) > r + s. Since we can extend the field we are working over if necessary, there is
no loss in assuming it is infinite. Choose a subspace V,, of V with codimension r + s in
general position with respect to the subspaces U; and W, and let ¢ denote the mapping
onto the quotient space V/V,. Then dim(U; N W;) = dim(¢(U;) N ¢(W;)) for all i and j
and we can now apply the lemma to the subspaces ¢(U;) and ¢(W;), 1 <i,j < m, of the
vector space V/V,. (One consequence of this is that Theorem 3.10 actually holds if the A,
and B; are flats of rank r and s respectively in a linear matroid.)

More examples of the use of exterior algebra will be found in Lovasz [1977, 1979¢| and
Alon [1985]. One possible source for background on exterior algebra is Northcott [1984],

but any book on multilinear algebra would suffice for what we have used.
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4. NULL DESIGNS
Let V be a fixed set with v elements. A function f on the subsets of V' is a null design of

strength t (or a null ¢-design) if, for each subset 7 of V' with at most ¢ elements,
> f(B) =o. (1)
BoT
If U is a subset of V' then the restriction of f to the subsets of U is not, in general, a null
design of strength ¢ on U. However there is an easy way to construct such a function from
f, due to Frankl and Pach [1983], that we now describe.
Given any function f on the subsets of V', define the function f* by setting
F1(r) =) f(8). (2)
BoT
Then f is a null ¢-design if and only if f* vanishes on the subsets of V with at most ¢
elements. Also f can be recovered from f* by Mobius inversion thus:
£(8) = 2 (=) (m). 3)
7208

Consequently we can construct as null ¢-design on the subset U of V as follows.

(a) Choose a null t-design f on V.

(b) Compute the transform f* asin (2) above.

(c) Apply Mobius inversion on the subsets of U (as in (3)) to the restriction (f*)[U of
fftoU.

Let us denote the resulting function by f;;. We can view it as a null design on V by the
simple expedient of defining it to be zero on any subset of V' not contained in U.

There is a possibility that f;; may be identically zero, but this will not happen unless
f* vanishes on all subsets of U. We have

fol@)= Y (-1l (p)

aCACU

= Y Py )

atpcl v28

=) f Y, =y

~CV aCBCHNU

= Y f)

yN\U=«
which provides a useful alternative definition of f;;. One consequence of (4) is that if
fu(a) # 0 then f(v) # 0 for some subset 4 of V such that U Ny = a. We also obtain the

following result.
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4.1 LEMMA. Let f be a null design of strength t on the set V and let U be a minimal
subset of V such that f*(U) #0. Then if a CU,

fola) = (=1)/7lf*(U).

Proof. This follows immediately from the definition of fi;. O

4.2 COROLLARY. Any non-zero null design of strength t on the set V assumes a

non-zero value on at least 27! subsets of V.

Proof, Let U be a minimal subset of V' such that f*(U) # 0. Since f has strength ¢,
the cardinality of U is at least ¢t + 1. By the lemma, f;; is non-zero on each subset of U
and so, by the remark above, for each subset a of U, there must be a subset v of V' such
that y N U = a and f(v) # 0. This supplies us with 21U1 distinct elements of V on which

f is non-zero. O

Let G be the incidence matrix for the subsets of a v-set with cardinality at most ¢,
versus all subsets of the same v-set. Then a null ¢-design can be viewed as an element of the
null-space of (G, and so Corollary 4.2 can viewed as determining the minimum distance of a
code over the rationals. If we had worked modulo 2 we would have obtained a Reed-Muller
code. The minimum distance of these codes has been determined, and is given in most
textbooks on coding theory. (See Van Lint’s chapter in this handbook or, for example,
MacWilliams and Sloane [1978: Chapter 13].) The arguments used to determine this
minimum distance actually suffice to determine the minimum distance over the rationals.
Hence we may view the above corollary as a translation of a known result. Corollary 4.2 is
also derived, in another context, in Anstee [1985: Proposition 2.5]. We now present some

applications of this machinery.

4.3 LEMMA (Frankl and Pach [1983]). If H, and H, are two distinct t-designs with
the same vertex set then the symmetric difference of their edge sets contains at least 2171

edges.

Proof. Let x, and x, be the respective characteristic vectors of H, and H,. Then it is not
difficult to check that x; — x, is a null design of strength ¢{. By Corollary 4.2 it must have

at least 2t non-zero entries. O

Our next application of Corollary 4.2 requires some further preliminaries. A hyper-
graph H, is an edge-reconstruction of the hypergraph H, if there is a bijection ¢ from
E(H,) to E(H,) such that, for each edge e in H,, the edge-deleted hypergraph H, \ e
is isomorphic to H, \ ¢(e). We say that a hypergraph H is edge-reconstructible if any
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hypergraph that is an edge reconstruction of H is isomorphic to it. Thus we can say
that a hypergraph is edge reconstructible if it is determined by the collection of its edge
deleted hypergraphs. The edge reconstruction conjecture for graphs asserts that all graphs
with at least four edges are edge-reconstructible. Bondy and Hemminger [1977] provide
an excellent, if slightly dated, survey of progress on the reconstruction problem.

A hypergraph is s-edge reconstructible if it is determined by the collection of (2)
hypergraphs obtained by deleting, in turn, each set of s edges from it. The next result

generalises the result of Miiller [1977] on edge reconstruction of graphs.

4.4 LEMMA. Let H be a hypergraph with v vertices and e edges. If 2°7* > v! then H

is s-edge reconstructible.

Proof. Assume by way of contradiction that H; and H, are two non-isomorphic hyper-
graphs with e edges, and the same collection of s-edge deleted hypergraphs. There is no
loss of generality in assuming that H, and H, have the same vertex set V. We view a
hypergraph with vertex set V as a subset of the power set 2V of V. If i = 1 or 2, let x;
be the function on the 2V defined by

0, otherwise.

XZ(F) = {
I claim that the function
X = [Aut(Hy)|x; — |[Aut(H,)[x,

is a null design with strength e — s on 2V. For if L is any hypergraph with vertex set V
and ¢ = 1 or 2 then

> |Aut(H;)|x;(F)

FDL
is equal to the number of permutations 7 of V' such that the image of H, under 7 contains
L, and this is in turn equal to the number of sub-hypergraphs of H; isomorhic to L. The
claim that x is a null design with strength e — s is consequently a restatement of the
hypothesis that H, and H, have the same s-edge deleted sub-hypergraphs.

It follows that xy must take non-zero values on at least 2~ **! hypergraphs. But
|Aut(H,)|x; is equal to 1 on each of |Sym(V)|/|Aut(H;)| hypergraphs with vertex set V
that are isomorphic to H; (¢ = 1,2), and is equal to zero on all others. Thus it takes
non-zero values on at most 2|Sym(V')| = 2v! hypergraphs. This means that we must have
2¢7¢ <9l O
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Let B be the incidence matrix of hypergraphs with e — s edges versus hypergraphs
with e edges (and all having vertex set V). If x is a non-zero null design with strength e —s
then By = 0. Hence the columns of B must be linearly dependent. From Theorem 2.4 it

follows that in this case B must have more rows than columns. So if x exists as described

then
(7))
> )
e— 3 e
which implies that e — s < 2¥ — e. Thus we have deduced:

4.5 LEMMA. Let H be a hypergraph with v vertices and e edges. If 2e > 2° + s then

H is s-edge reconstructible. O

When s = 1 this result was first proved in Lovasz [1972], using an inclusion-exclusion
argument. A proof using a form of quotient argument was subsequently presented in
Stanley [1985]. The argument just used is easily modified to prove that a k-uniform
hypergraph on v vertices with e edges is s-edge reconstructible if 2e > (Z) +s. On
the other hand Lemma 4.4 holds as stated for k-uniform hypergraphs. For graphs, the
analogues of Lemmas 4.4 and 4.5 were first proved in Godsil, Krasikov and Roddity [1987].

So far our all our applications of the theory of null designs have used only Corollary
4.2. We now give an example where Lemma 4.1 is used. A hypergraph is k-chromatic
if we can partition its vertex set into k classes such that no edge is a subset of any one
of the classes. It is critically k-chromatic if it is k-chromatic and each of the subgraphs
obtained by deleting one edge from it is (k — 1)-chromatic. Thus the cycle on five vertices
is an example of a critically 3-chromatic 2-uniform hypergraph. The result we are about to
prove, due to Lovasz [1976], asserts that any critically 3-chromatic k-uniform hypergraph

with v vertices has at most (Z) edges. This is an immediate byproduct of the following.

4.6 LEMMA (Lovéasz [1976]). Let H be a critically 3-chromatic k-uniform hypergraph
with vertex set V and let B = B,_,(H) be the incidence matrix for the (k — 1) subsets of
V versus the edges of H. Then the columns of B are linearly independent.

Proof. Assume by way of contradiction that the columns of B are linearly dependent.
Then there is a null design f of strength (k — 1) on V that is supported by the edges of H.
Thus f*, as defined by equation (2) above, vanishes on all subsets of V' with fewer than &k
elements. Since f itself vanishes on all subsets of V' with more than k elements, it follows
from (2) that f = f*.

Now let (X,Y') be any partition of V into two classes. Then, from (4) we have

fx@= Y f0)

yNX=0
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Since f = f* it follows from this that the above sum is equal to ZWCY f*(v) and, given
that f*(v) # 0 only when v € E(H), we thus deduce that

fX(@) = (—1)ka(0)-

Using (4) once more we obtain

Y. B =(=1F > #(8) (5)

BNX=0 BNY =0
To complete the proof we choose an edge a of H such that f(a) # 0 and take (X,Y) to be
a 2-colouring of H\ a. Then a is the unique edge of H contained in one of the sets X and
Y. This implies that one side of (5) is zero, but the other is not. Accordingly f cannot

exist as described, and so the columns of B;,_,(H) are linearly independent. O

The above proof is no simpler than the original, and differs from it only in the argument
used to derive (5). However it does show how the available information on null designs

can be used. There is a closely related result due to Seymour.

4.7 LEMMA (Seymour [1974]). The rows of the incidence matrix of a critically 3-

chromatic hypergraph are linearly independent over R.

Proof. Let H be a critically 3-chromatic hypergraph with incidence matrix B. Assume by
way of contradiction that there is a non-zero vector y such that y” B = 0. The hypergraph
induced by the vertices ¢ such that y, = 0is 2-colourable. Assume that it has been coloured
blue and red. Extend this to H by colouring the vertices j such that y; > 0 with blue, and
the remaining vertices red. If b is a column of B then yTb = 0. Hence either y; = 0 for
all vertices ¢ in the edge corresponding to b, or else y is positive on one vertex of this edge
and negative on another. This shows that our colouring of the vertices of H is a proper

2-colouring, which contradicts our choice of H. O

This proof is interesting in that it depends on the fact that R is an ordered field. No
other example of this comes to mind. The Fano plane shows that the result is not valid
over finite fields.

We remark finally that there is a close connection between the theory of null designs
and the representation theory of the symmetric group. The key to this is that we may
identify a k-subset of a v-set with a “tabloid” having two rows, of size v — k and k. (As
ever, we assume 2k < v.) Then the null designs with minimum support constructed in
Frankl and Pach [1983] can be viewed as “polytabloids”, which span a Specht module for

the symmetric group. For more information on the latter see, e.g., James [1978: Ch. 4].
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5. WALKS IN GRAPHS

In the previous sections our emphasis has been on design theory, but from now it will be
on graphs (and directed graphs). We begin by establishing some notation. An edge {u,v}
in a graph will be regarded as being formed from the two arcs (u,v) and (v, u). (This usage
of the term “arc” is also standard in other situations, e.g., when discussing automorphism
groups of graphs.) Hence we may, when convenient, view a graph as simply a special type
of directed graph. If D is a directed graph with vertex set V then its adjacency matrix
A(D) is the matrix with rows and columns indexed by V, and with uv-entry equal to the
number of arcs in D from u to v. (Our directed graphs may have loops and/or parallel
arcs, however our graphs will always be simple.) Note that isomorphic directed graphs
will not in general have the same adjacency matrices but, as will become apparent, this is
never the source of any problems.

A walk in a directed graph is a sequence

Vps€15V19:++3Vp_15€ny Uy,

formed alternately of vertices and arcs, such that e, is the arc (v,_;,v;). The length of the
above walk is n. We explicitly permit walks of length zero; there is one such walk for each
vertex. A walk that starts and finishes at the same vertex is called closed. All walks, even
in undirected graphs, are directed objects. The basic result concerning walks can now be

stated.

5.1 LEMMA. Let D be a directed graph with adjacency matrix A. If v and v are
vertices of D then (A*),, is equal to the number of walks of length k in D that start at
w and finish at v. O

The proof of this result is a routine induction argument, based on the observation
that A* = AA*~!. One consequence of this result is that tr A* is equal to the number of
closed walks in D with length k. (And since A° = I, we thus reconfirm that there is one
closed walk of length zero on each vertex of D.) We note also that if D is a graph then
tr A = 0, tr A% equals twice the number of edges in D and tr A% is equal to six times the
number of 3-cycles. Given the existence of fast algorithms for matrix multiplication, the
last observation leads to the most efficient known algorithm for detecting a triangle. This
also works when D is directed, provided we first delete all the loops from it. (This approach
to finding 3-cycles has occurred independently to a number of people, so I remain silent
on the question of its attribution. The efficiency of such a “non-combinatorial” algorithm

is undoubtedly a source of annoyance in many quarters.)
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The most effective way to study walks in graphs is by using generating functions. To
describe this we first need another round of definitions. Let D be a directed graph with

adjacency matrix A. The walk generating function of D is

W(D,z) := (I —zA)"" = Zkak.
k>0

Thus W (D, z) is a formal power series with coefficients in a ring of matrices. The uv-entry
of W(D,z) will be written as W,,(D,z) and the trace of W(D,z) will be denoted by
C(D,z). (As we have no intention of ever setting # equal to a real or complex number in
one of these series, the reader should put all thoughts of convergence from her mind.) The
characteristic polynomial det(zI — A) of A will be denoted by ¢(D,z) and referred to as
the characteristic polynomial of D. If u € V(D) then D\ u is the directed graph obtained
by removing u, together with all its attendant arcs. Convenient references for background
information on adjacency matrices and related topics are Biggs [1974] and Cvetkovié¢, Doob
and Sachs [1980]. Walk generating functions are studied at some length in Godsil [1993:
Ch. 4]

5.2 LEMMA. Let u be a vertex in the directed graph D. Then
C8_1VVuu(l)7m_1) = ¢’(D\u7w)/¢’(D7w)

Proof. Let B be the adjacency matrix of D\ u. jFrom Cramer’s rule and the definition of
W(D,z), we see that W, (D,z) = det(I — zB)/det(I — zA). (Remark: the two identity
matrices [ in this quotient have different orders. We will frequently be found guilty of this
abuse of notation.) If n = |V(D)| then

det(I —zA) = z™ det(z™'I — A) = z"¢(D,z™ )

and similarly det(zI — B) = 2" 1¢(D\ u,z™!). The lemma follows immediately. O

The above lemma provides an explicit expression for the diagonal entries of W (D, z).
We derive some analogous formulas for the off-diagonal elements later. We note one sim-

ple but useful property of the characteristic polynomial. For the proof see, for example

Cvetkovié¢, Doob and Sachs [1980: Thm. 2.14] or Godsil [1993: Thm. 2.1.5(c)].

5.3 LEMMA. For any directed graph D,

gﬁ/(D,CB) = Z ¢’(D\u7w) O]

uweV(D)
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As an immediate consequence of Lemmas 5.2 and 5.3, we infer that
¢ 'C(D,z7 ') = ¢/(D,z)/ (D, ). (1)

This shows that the characteristic polynomial and the closed walk generating function of
a directed graph provide the same information. If we multiply both sides of (1) by ¢(D, z)
and then equate coeflicients, we recover a system of equations connecting the sums of the
powers of the zeros of ¢(D,z) with its coefficients.

The concept of quotients, as introduced in Section 2, can be applied very usefully
to graphs and directed graphs. It was first studied by H. Sachs; a discussion of it from
his point of view is presented in Cvetkovié, Doob and Sachs [1980: Chapter 4]. Here we
will only consider quotients of graphs, a more extensive treatment of this topic is given in
Godsil [1993: Ch. 5]. One definition is necessary. If G is a graph then a partition m of
V(G) will be called equitable if the pair of partitions (7, 7) is equitable in the sense used
in Section 2. We have the following.

5.4 LEMMA. Let G be a graph and let ™ be a partition of V(G) with characteristic
matrix P. Then « is equitable if and only if there is a matrix ® such that PA(G) = ®P.O

Here ® is a square matrix with rows and columns indexed by the cells of © and with
(®);; equal to the number of arcs that start at a vertex in cell ¢ and finish on a given vertex

in cell j. Thus if G is Petersen’s graph, u is a fixed vertex in G and = is the partition of
V(G) induced by the distance in G from u then

KA
I
o w o

10
0 1],
2 2
which illustrates that ® need not be symmetric. We shall find it convenient to view & as

the adjacency matrix of a directed graph with the cells of 7 as its vertices. This directed

graph will be denoted by G/7. The following result can now be derived in a routine fashion.

5.5 LEMMA. Let m be an equitable partition of the graph G and set ® = A(G/7).

finish at a specified vertex in cell 3. O

is equal to the number of walks of length k in G/ that start in cell ¢ and

The discrete partition, with each cell a singleton, is always equitable. Consequently
Lemma 5.5 is a generalisation of the better known Lemma 5.1. The last two results provide

all the information on quotients that we need.
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One consequence of Lemma 5.4 is that the characteristic polynomial of G/7 divides
that of G. To see this note first that if U is an invariant subspace for A then we have
PU = PAU = ®PU, showing that PU is an invariant subspace for ®. From this, and the
fact that the rows of P are linearly independent, it can be shown that the characteristic

polynomial of & divides that of A. In one important case we can compute ¢(G,z) from
$(G/m,x).

5.6 THEOREM. Let GG be a graph with n vertices, let uw be a vertex in G and let m be
an equitable partition of G in which {u} is a cell. Then if ¢(G\v,z) is the same for all
vertices v in G and H = G/,

¢'(G,2)/$(G,z) = ng(H \{u},z)/¢(H, z). (2)

Proof. Let C;,...,C, be the cells of 7 and denote the corresponding vertices of H by
1,...,7. Assume that C; = {u}. From Lemma 5.5 we see that if the vertex v of G is in

cell C, then W, (G,z) = W, (H,z). The result follows now from Lemmas 5.2 and 5.3. O

It is not difficult to show that, when {u} is a cell 7, (®*),,/(®*),; = |C,;|. Thus,
under the hypotheses of Theorem 5.6, we can compute ¢(G, z) given ® = A(H). The most
obvious case where this result can be applied is when Aut(G) is vertex transitive and = is
the partition of V(@) formed by the orbits of a subgroup of Aut(G) that fixes the vertex u.

The next result is one of the most important applications of the theory we have described.

5.7 COROLLARY. Under the hypotheses of Theorem 5.6, the numerators in the partial
fraction expansion of n¢(H \{u},z)/¢(H,z) are the multiplicities of the zeros of ¢(G,z).

Proof. This is a well known property of the partial fraction expansion of u/(z)/u(z), for
any polynomial py(z). O

Corollary 5.7 thus provides a feasibility condition that a digraph A must satisfy if it to
occur as the quotient with respect to an equitable partition 7 of a graph G, for which the
conditions of Theorem 5.6 hold. This condition can be formulated in a number of different
ways, and is often referred to as the “eigenvalue method”. The key idea is that the
multiplicities of the eigenvalues of A(G) can be determined from a fairly limited amount of
information. There are surprisingly many situations where this is useful. The “classical”
application is in demonstrating the non-existence of classes of, or individual, distance-
regular graphs. The most well known, and earliest example, is provided by the work of
Hoffman and Singleton [1960] on Moore graphs of diameter two and three. (A convenient
description of their work, and more recent generalisations, will be found in Biggs [1974].)

For another application we mention the proof of the fact that finite projective planes cannot
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have a null polarity, as presented in Hughes and Piper [1973], and the generalisation of
this result to the so-called “friendship theorem”. (For more details and further references,
see Cameron and Van Lint [1991: p. 45].) This method has also recently been applied in
Model Theory (Evans [1986]), albeit at a point where the distinction between this subject
and Finite Geometry is hard to discern. Finally McKay [1979] has used Theorem 5.6 and
Corollary 5.7 to determine, with the aid of a computer, all vertex-transitive graphs with
fewer than 20 vertices.

Our approach to Corollary 5.7 is not the standard one, which is based on computations
with the eigenvectors of ® = A(A), and places much more restrictive conditions on G
(namely that it should be a distance-regular graph). An accessible discussion from this
viewpoint is presented in Biggs [1974]. A detailed exposition along the lines taken above

will be found in Godsil and McKay [1980].

We are now going to derive some information about the off-diagonal elements of
W(D,z). The adjugate of zI — A, i.e., the transpose of its matrix of cofactors, will
be denoted by ¥(A,z). The most important property of ¥ is that

V(A,z)(zl — A) = det(z] — A)I.

If A is the adjacency matrix of the directed graph D then (¥(A4,x)),; is equal to ¢(D\3,z).
In this case we denote the ij-entry of W(A,z) by ¢,;(D,z). It is easy to show that

CC_lvvuv(l)a w) = ¢’uv(D7 w)/¢(D7 CC)

If Ais an n xn matrixand U C {1,...,n}, we denote by U;;(A,z) the (square) submatrix
of ¥ with rows and columns indexed by the elements of U. We use A\ U to denote the
matrix obtained by deleting the rows and columns indexed by U. We need the following
crucial result, the combinatorial significance of which first seems to have been noted by

Tutte [1947, 1979].
5.8 LEMMA (Jacobi [1833]). If A is an n X n matrix and U is a subset of {1,...,n}
with m elements then

det Uy (A, z) = (det(x] — A))™* det(zl — (A\U)).

Proof. We may assume without loss that U = {1,...,m}. Let M be the matrix obtained
by replacing the first m columns of the n x n identity matrix with the corresponding

columns of ¥(A4,z). Then the product (zI — A)M has the form
(det(wI—A) I, 0 )
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where the diagonal blocks are square (and the details of the sub-diagonal block are irrele-

vant). Now det M = det ¥;;(A,z) and so we have
d(A,z)det ¥y (A, 2) = det((wl — A)M) = (det(zl — A))™ det(=I — (A\D)).

(The last term is just the determinant of the matrix in (3).) This equation immediately

yields the lemma. O

Lemma 5.8 is in fact a classical result, best described as well forgotten. It is sometimes
referred to as “Jacobi’s identity”, which is not a particularly useful identifier. We will only

be using it when |U| = 2. For ease of reference we restate this case in a modified form.

5.9 COROLLARY. Let D be a directed graph with vertices v and j. Then

¢:;(D,z)9;:(D,z) = ¢(G\u,z)p(G\v,z) — $(G,z)d(G\ {7,7},z). O

When D is a graph, ¢,;(D,z) = ¢,;,(D,z) and so Corollary 5.9 implies that

It might appear that the sign of ¢(D, z) is not determined by this expression, but we know
that the rational function ¢,;(D,z)/¢(D,z) has non-negative coeflicients when expanded
as a series in z~!. This implies that the leading term of ¢(D, z) is always positive.

A very nice application of equation (4) to graph reconstruction was found by Tutte.

5.10 THEOREM (Tutte [1979]). If the characteristic polynomial of the graph G is

irreducible over the rationals then G is vertex reconstructible.

Proof. Let the vertex set of G be {1,...,n} and suppose ¢(G,z) is irreducible. We prove
that for any two distinct vertices ¢ and j of G, the polynomial ¢(G \ ij,z) is determined
by ¢(G,z), ¢(G\i,z) and ¢(G\ j,z). We have

$(G\i,2) §(G\j,z) — $(G,z) $(G\ ij, ) = ¢;;(G, )" (5)

Now suppose that 7 is a polynomial such that
¢(G\i,2) $(G\ j,z) — ¢(G,z)n = o (6)
for some polynomial o of degree at most n — 2. Then, subtracting (5) from (6), we obtain:

¢(G,z) (p(G\ij,z) —n) = ¢ij(G,w)2 — o2,

28



The right side of this equation is the product of two polynomials, each of degree at most
n — 2. Since this product is divisible by ¢(G, z), which is irreducible of degree n, we are
forced to conclude that = ¢(G \ ij,z). This proves our claim. As noted in the proof
of Lemma 5.3, if H has m vertices then the coefficient of 2™~ in ¢(H,z) is equal to —1
times the number of edges in H. So, given ¢(G), ¢(G\ ), #(G\j) and ¢(G\ {i,5}) we
can determine the number of edges joining ¢ to j, i.e., whether or not ¢ and j are adjacent.
Therefore when ¢(G) is irreducible, the first three of these polynomials determine whether
¢ and j are adjacent.

To complete the proof we now recall that in Tutte [1979] it is shown that the charac-
teristic polynomial of a graph G is determined by the collection of vertex deleted subgraphs

of G. Hence G is vertex reconstructible when ¢(G) is irreducible. O

The above proof still works if ¢(G) is not irreducible, but instead has an irreducible
factor of degree n — 1. For another variation, suppose that ¢(G\ 1) is irreducible. An
argument similar to the one above shows then that ¢(G), ¢(G\1) and ¢(G\{1,7}) determine
#(G\ 7). iFrom this it follows again that G is vertex reconstructible. This result was first
proved, in apparently greater generality, in Hong Yuan [1982].

There are close connections between the theory of matchings in graphs and the topics
we are discussing. To describe this we require some more notation. A k-matching in a

graph is a set of k disjoint edges, no two of which have a vertex in common. The number

of k-matchings in the graph G will be denoted by p(G, k). We call

w(G,z) = (—1)*p(G, k)z" 2"

the matchings polynomial of G. The task of computing this polynomial for a given graph
is NP-hard (or, more precisely, #P-complete), since the constant term of u(G,z) counts
the number of perfect matchings in G and counting the number of perfect matchings in
bipartite graphs is equivalent in complexity to determining the permanent of 01-matrices.
JFrom Valiant [1979], we know that the latter is NP-hard. One consequence of this is that,
unless P=NP, there is no easy way of computing u(G, z).

Thus the matchings polynomial is in this regard a more intractable object than the
characteristic polynomial of a graph. Nonetheless it is known that G is forest if and only
if u(G,z) = ¢(G,z) and there are also some simple recurrences that enable us to compute
the matchings polynomials of small graphs with some facility. The matchings polynomials
of bipartite graphs are essentially the same as “rook polynomials”. (For information on

rook polynomials see Riordan [1958]. For the matchings polynomial see Heilmann and
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Lieb [1972], Farrell [1979], Godsil and Gutman [1981] and Godsil [1981b, 1993: Chs. 1 &
6].)

An unexpected property of the matchings polynomial is that all its zeros are real.
The first, second and third proofs of this are to be found in the above-mentioned paper of
Heilmann and Lieb. For a Combinatorialist this is perhaps not the easiest paper to read,
and it is probably a non-trivial task even to locate all three of the proofs just referred to.)
A fourth proof will follow from the next result. The fact that the zeros are real is not
without combinatorial significance. It implies, for example, that the sequence formed by
the numbers p(G, k) (k= 0,1,...) is log-concave. (This was noted by Heilmann and Lieb.)
Another consequence is that, in many cases of interest, the number of edges in a randomly
chosen matching has exactly k edges is asymptotically normally distributed. (See Godsil
[1981a].)

5.11 THEOREM (Godsil [1981b]). Let G be a graph and let u be a vertex in G. Let
T = T(G,u) be the tree with the paths in G that start at u as its vertices, and with two
such paths adjacent if and only if one is a maximal subpath of the other. Then

p(G\ ) _ p(T\u2)
WGe) ~ ulle)

(In the right side of the above identity, v denotes the one vertex path consisting of
u itself.) As we remarked above, when H is a forest we have u(H,z) = ¢(H,z). So from
Theorem 5.11 we deduce that all zeros and poles of the rational function p(G\u,z)/p(G, z)
are real. A trivial induction argument on the number of vertices in G now yields the
conclusion that all the zeros of u(G,z) are real. Another consequence of Theorem 5.11 is
that u(G\u,z)/p(G, z) is essentially a generating function for a class of walks in G. (This
because the right hand side can be written as ¢(T \ u,z)/¢(T,z) and this is “essentially”
a generating function, by Lemma 5.2.)

Another connection between linear algebra and the theory of matchings is provided
by Pfaffians. We discuss this briefly. Let A = (a;;) be a skew-symmetric n x n matrix,
i.e., AT = —A. let F(n) be the set of permutations 7 of {1,...,n} such that all cycles of
7 have even length. (So F(n) is empty if n is odd. Then it is known that

det A = ( Z sig(m) Wt(ﬂ'))2. (7)

TEF(n)

Here wt(m) = [[i, a; (i)= and sig(m) = £1. (The exact definition of sig(7) will not be

needed.) The sum here is known as the Pfaffian of A. For more information about the
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Pfaffian, the reader is referred to Godsil [1993: Chapter 7|, Lovasz [1979a], Stembridge
[1990], or Northcott [1984].

Suppose now that we are given a graph G, and that we wish to determine whether it
has a perfect matching. This can be done as follows. Let A= a;; be a skew-symmetric
matrix such that a;; = 0 if 7 and j are not adjacent in G and, moreover, the numbers
{a;; 1 < j,ij € E(G)} are algebraically independent over the rationals. Then from (7)
we see that det A is non-zero if and only if G has a perfect matching. This fact, together
with Lemma 5.8, was used by Tutte to derive his characterisation of graphs with no perfect
matchings.

Instead of choosing the entries of A to be algebraically independent, we can also choose
them at random. If det A # 0 then G must have a perfect matching. If det A = 0 then we
are left uncertain, but by repeating the experiment a number of times we can reduce the
uncertainty to any desired level. This strategy was first suggested in Edmonds [1967], for

bipartite graphs. For an elegant implementation of this idea and some related background

information, see Mulmuley, Vazirani and Vazirani [1987].

6. EIGENVALUE METHODS

In this section our study of adjacency matrices is continued, but now our emphasis will be
on their eigenvalues, rather than on walks. We confine ourselves almost entirely to graphs,
which means that our adjacency matrices will be symmetric and their eigenvalues real. A
great deal of effort has been devoted to the study of the relation between the structure of a
graph G and the eigenvalues of A(G). Although this subject has considerable independent
interest, we confine ourselves almost entirely to its applications. We begin by introducing
two fundamental results from matrix theory, the first of which is a version of the well known
Perron-Frobenius theorems. (See, e.g., Cvetkovié, Doob and Sachs [1980: Theorem 0.3].)

6.1 THEOREM. Let G be a connected graph. Then the largest eigenvalue p of A(G) is
simple, and the entries of the corresponding eigenvector are all positive. If A is any other
eigenvalue of A(G) then X\ > —p, with equality holding if and only if G is bipartite. The
largest eigenvalue of any proper subgraph of G is less than p. O

(The most general, and most natural, form of the Perron-Frobenius theorem is con-
cerned with non-negative matrices; the above version suffices for most of what we need.) If
G has maximum degree A and largest eigenvalue p then vA < p < A. The first inequality
holds because the complete bipartite graph K , is a subgraph of ¢ and the second because
G can be realised as a subgraph of a A-regular graph. (This also shows that we can have

p = A if and only if G is regular.)

31



6.2 THEOREM. Let u be a vertex in the graph G. Then the eigenvalues of G\ u
interlace those of G (i.e., between any two eigenvalues of G\ u there lies an eigenvalue of

Q).

Proof. Assume that G has n vertices and let A = A(G). If U is a subspace of R"”, define
Ay (A) to be the minimum value of T Az as = ranges over the unit vectors in U. Denote

the k-th largest eigenvalue of A by A, (A4). It is known that

- 2T Ax
A(4) = max min —7—.
dim(U)=k zeU zTz

Let S be an m x n matrix with orthonormal rows, i.e., $ST = I, . Then we have

A (SAST) = max Ap(SAST) = max Asy(4)

whence it follows that

Ae(SAST) < Ai(A). (1)

Applying the same argument to — A, we further deduce that for k = 0,...,m,
Ak (SAST) > X, _i(4). (2)

If we now choose S to consist of n — 1 rows of the identity matrix I,, then we obtain the

theorem. O

The interlacing property of the eigenvalues of symmetric matrices was first noted
in Mechanics, arising in the study of the behaviour of a (mechanical) system as new
constraints are imposed on its parameters. The proof we have given is based on Haemers
[1979]. Haemers has used Equations (1) and (2) above to obtain a number of interesting
results in graph theory and design theory. It is worth noting that there is a connection here
to the theory of quotients. Suppose that, in our usual notation, we have PA = &P where
P is the characteristic matrix of an equitable partition. Choose A to be the non-negative
diagonal matrix such that A2 = PPT. Then A~'PA = A~'®A - A~'P and so we may set
S=A"'PandT = A'®A to obtain SAST =T. The rows of § are pairwise orthogonal
and thus the inequalities (1) and (2) follow.

Theorem 6.2 implies that any eigenvalue of G with multiplicity greater than one must
also be an eigenvalue of any vertex-deleted subgraph G\ u. Another consequence is that
the least eigenvalue of G\ u is bounded below by the least eigenvalue of G. Thus, the

class of all graphs with least eigenvalue greater than a fixed number a is closed under the
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operation of taking subgraphs. The study of these classes turns out to be quite interesting,
so we discuss it briefly.

Denote the least eigenvalue of G by A, ;, (G). Since the eigenvalues of K, are —1 and

1, it follows that A, ;,(g) < —1 for any graph G with at least one edge. The eigenvalues
of K, , are —+/2, 0 and v/2, whence we deduce that if G is connected and not complete
then AL (g < —+/2. A more interesting case is the class of graphs with A . > —2. It
can be shown that all line graphs have this property, along with the so-called “generalised
line graphs”. Considerable effort was devoted to characterising the remaining graphs in
this class before Cameron et al [1976] produced a short, ingenious and elegant solution.
Their work was all the more interesting in that it was based on a connection with the
theory of root systems. We outline the way this arises. Let GG be a graph with vertex set
V(G) ={1,...,n} such that A(G)+2I is a positive semidefinite matrix. There is a matrix
X, with linearly independent columns, such that A(G) +2I = XX7T. Let z; be the i-th
row of X. Then
2, ifi=y;
(z,z;) =< 1, ifi~y;

0, otherwise.

Let £ be the lattice formed by the set of all integral combinations of the columns of X. If
z a row of X then the mapping

a—a—(a,z)z

fixes £. (Note that this mapping represents reflection in the hyperplane in R™ perpen-
dicular to z.) From this it follows that the vectors z,, for ¢ in V(G), are a subset of a
root system. (For an elementary and pleasant introduction to root systems, see Grove and
Benson [1985].)

It would appear that this topic is far from being exhausted. Neumaier [1979] showed
that, with finitely many exceptions, the strongly regular graphs with A ;, = —k (for some
positive integer k) belong to one of two infinite families. (The strongly regular graphs G
with A, ;,(g) not an integer fall into a third infinite family.) Hoffman [1977] shows that a
graph with A_,. > —1 — /2 and having “large” valency is a generalised line graph, and
consequently has least eigenvalue at least —2. (Here “large” is determined by Ramsey
theory, and is thus only technically finite.) This is an intriguing result.

The eigenvalues of a graph also give information about its chromatic number, and re-
lated quantities. Let A
number of G by x(G).

(G) denote the largest eigenvalue of G. We denote the chromatic

max
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6.3 THEOREM (Hoffman [1970]). The chromatic number of a graph G is bounded
below by 1- Ama.x(G’)/Amin(G')’

(G). Assume that
G can be properly coloured with ¢ colours. Such a colouring determines a partition of

V(G) with ¢ cells and characteristic matrix P. Let P be the matrix constructed from P

Proof. Let z be an orthonormal eigenvector of G with eigenvalue A,

by replacing the non-zero entry in column ¢ of P by the corresponding entry of z, and
then deleting all zero rows. The rows of P are not orthonormal, but there is a unique
non-negative diagonal matrix A such that the rows of S := AP are are. There is also a
vector y such that y7.S = 27, Consequently

yTSASTy = 2TAz =), (G),

max

which implies that A G) <A SAST). On the other hand, since the rows of S are
pairwise orthonormal, inequalities (1) and (2) apply. Thus we deduce that A G) =

A SAST) and accordingly that

ma.x( ma.x(
ma.x(

ma.x(

(e — DA, (SAST) + X (G) = (¢ — DA, (SAST) + X (SAST).

By (2), the left hand side is bounded below by (¢ — 1)A;, (G) + Aax(G). The right hand
side is bounded above by tr SAST. It is easy to see that the diagonal entries of SAST are

all zero, hence the sum of its eigenvalues is zero. This implies that
(C - 1))‘m1n(G) + )‘max(G) <0

and this yields the theorem. O

In deriving Theorem 6.3 we did not use the fact that the non-zero entries of 4 are all
equal to 1; in fact a careful reading will show that we have actually proved that if B is
a symmetric matrix such that (B),; = 0 whenever ¢ and j are non-adjacent vertices in G

then

ij

X(G) 21 = Apax(B)/A

— max

(B)-

min

If A
equal to 1 and with (C)ij = 0 whenever ¢ and j are distinct non-adjacent vertices in G.

This leads us to:

min(B) = —7 then C := I +7 !B is a positive semidefinite matrix with diagonal entries
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6.4 COROLLARY. Let G be a graph on n vertices and let Q(G) be the set of all
positive semidefinite matrices C' such that (C),; = 1 for all vertices i of G, and (C);; =0

whenever © and j are distinct non-adjacent vertices. Then

22

> A .
x(G) > B max(C)- O

The complement of the graph G will be denoted by G. The quantity

max{A_ ..

(C)]Ce(G)}

is usually denoted by §(G). Thus Corollary 6.4 asserts that x(G) > 6(G). Now suppose
that the vertices in the subset S of V(@) induce a complete subgraph of G. Let Cg be the

01-matrix with ¢j-entry equal to 1 when ¢ and 7 both lie in (', and equal to zero otherwise.

Then Cg € Q(G) and A, ,,(Cg) = |S|. This shows that (G) > a(G), or equally that
0(G) > a(G). (Here a(G) is the maximum number of vertices in an independent set from
G.)

The quantity §(G) was first introduced in Lovész [1979b], where he established that
it provides a lower bound on the “Shannon capacity” of G. We discuss this briefly. If G
and H are graphs, let us denote by G x H their strong product. This can be defined as
the graph with

(A(G) +1)@ (A(H) + 1)

as its adjacency matrix. (Thus the vertex set of G x H is the Cartesian product of V(G)
and V(H), and the pairs (u,v) and (u’,v’) are adjacent if and only if u is equal or adjacent
to v’ in G and v is equal or adjacent to v’ in H. The strong product of n copies of G will

be denoted by G™. It is not hard to show that a(G x H) > a(G)a(H) and from this one
can deduce that the Shannon capacity

O(G) :=lim sup(a(Gn)l/n)

exists. The significance of (G) stems from the facts that it is an upper bound for a(G),
and that it is multiplicative, i.e., (G x H) = 0(G)0(H). Together these imply that
O(G) < 0(G). (For the proof that §(G) is multiplicative we refer the reader to Lovész
[1979b].) Note that it is not difficult to verify that Q(G x H) contains Q(G) ® Q(H), and
this implies that (G x H) > 6(G)8(H). It is proved in Grétschel, Lovasz and Schrijver
[1981] that §(G) can be computed in polynomial time. Lovasz found a number of different

expressions for (G). One of these is, in a sense, dual to our definition.
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6.5 THEOREM. (Lovdsz [1979b].) For any graph G, let M(G) denote the set of all
positive semidefinite matrices such that tr B = 1 and (B),; = 0 if ¢ and j are distinct

vertices of G. Then

]
(G) = min tr(JB).O
BEM(G)

Using the theory he developed, Lovasz was able to deduce the value of ®(G) in many
new cases. (The smallest of these was Cy, the cycle on five vertices, while ©(C;) is still
unknown. This gives some idea of the difficulty of this problem.) Haemers found a simple
argument which sometimes provides a better bound on ©(G) than 6(G) does. He observed
that, if A\ # 0, then the submatrix of A(G) + AI corresponding to an independent set on s

vertices is just AI,. Hence it is non-singular and so we deduce that
a(G) < rank(A4 + AI).

;From this it can be shown that rank(A + AI) is an upper bound on ©(G). For more

information, and examples where this bound is better than 6(G), see Haemers [1981].

Eigenvalue methods have also been applied to graph factorisation problems. The next

example is possibly the best known of these.

6.6 Lemma (Graham and Pollak [1972]). The edge set of K, cannot be partitioned

into fewer than n — 1 complete bipartite subgraphs.

Proof. Let G be graph on n vertices that is is the edge-disjoint union of subgraphs
H,,...,H,.. Assume that each of these subgraphs H, is a spanning subgraph of G con-
sisting of a complete bipartite graph, together with some isolated vertices. We assume
without proof the easily established fact that if H is a complete bipartite graph on m
vertices then there is an m-dimensional subspace U of R™ such that the inner product
(u, A(H)u) is non-negative for all v in U. (In fact U is spanned by the eigenvectors of
A(H) with non-negative eigenvalues.) We say that U is non-negative for A(H). It follows
that we can associate to each subgraph H; an (n — 1)-dimensional subspace of R™ that is
non-negative for A(H,).

The intersection of the r subspaces Uy, ...,U, has dimension at least n — r and so, if
r < n — 2, there is a 2-dimensional subspace U’ of R™ that is non-negative for the A(G).
In U’ we can find a non-zero vector z orthogonal to the “all ones” vector j such that
(2, A(G)z) > 0. Now suppose that G = K,,. Then A(G) = J — I and so, if z is a non-zero
vector orthogonal to j, then (z, A(G)z) = —(z,2) < 0. This shows that r >n — 2.0

The argument just used can be rephrased in terms of real quadratic forms, and in this

setting even shorter proofs of Lemma 6.6 can be found. One corollary of the above proof
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is that a graph on n vertices with exactly m non-negative eigenvalues cannot be expressed
as the edge disjoint union of fewer than n — m complete bipartite graphs. We note another
result that can be proved with the method at hand.

6.7 Lemma (A. J. Schwenk [1983,1987]). The complete graph on 10 vertices cannot

be expressed as the the edge disjoint union of three copies of Petersen’s graph.

Proof. Assume that we have

where A, B and C are 0l-matrices and A and B are both adjacency matrices of copies of
Petersen’s graph. It is known that the eigenvalues of Petersen’s graph are —2, 1 and 3, and
that the eigenvalue 1 has multiplicity six. Let T' and U be the eigenspaces associated to the
eigenvalue 1 of A and B respectively. Since j is an eigenvector with eigenvalue 3 for both
A and B, it follows that T and U both lie in the 9-dimensional subspace of R? formed by
the vectors orthogonal to j. Consequently they must have a non-zero common subspace,
which we assume is spanned by a vector z. Then (J — I)z = —z and so Oz = (—3)z.
Thus C has —3 as an eigenvalue, and so cannot be the adjacency matrix of (a copy of)

Petersen’s graph. O

Note that the matrix ¢’ must be the adjacency matrix of a cubic graph and that,
by Theorem 6.1, a cubic graph with least eigenvalue equal to —3 is bipartite. Thus the
above method is providing more information than is contained in the statement of the
lemma, and it also can easily be applied to other situations. It could, for example, be used
to study the possibility of partitioning the edges of K,, into three copies of some given
strongly regular graph (on n vertices).

Mohar [1992] develops a relation between graph eigenvalues and Hamiltonicity. One
consequence of this theory is a proof that the Petersen graph does not contain a Hamilton
cycle. There is an amusing direct proof of this using interlacing, which we now describe.
Suppose by way of contradiction that there was a Hamilton cycle in the Petersen graph.
Then the line graph L(P) of the Petersen graph would contain an induced copy of C,, and
so, by interlacing, 6,(C;,) < 0,(L(P)) for ¢ +1,...,10. But in fact 6,(C,,) > 6,(L(P)),
so the Hamilton cycle cannot exist. (This argument fails to prove that the Coxeter graph
has no Hamilton cycle; it would be very interesting to find an extension of this argument

which would work for the Coxeter graph.)

Our next topic is the connection between graph eigenvalues and connectivity. For this

it is sometimes convenient to use modified forms of adjacency matrices. We discuss them
briefly.
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If G is a graph on n vertices, let A = A(G) be the n x n diagonal matrix with A,
equal to the valency of the i-th vertex of G. The incidence matrix of B = B(G) of G is the
01-matrix with rows indexed by the vertices of G, columns by the edges and with (B)ij
equal to 1 if and only if vertex z is in edge j. Then we have

BB" = A(G) + A(G),  BTB=2I+ A(L(G)),

where £(G) denotes the line graph of G. (Remark: since BT B is positive semidefinite, it
follows that A

An orientation of G can be defined to be a function o on V x V such that o(u,v) =

min (L(G)) > —2, as we mentioned in the discussion following Theorem 6.2.)
—o(v,u), and is zero if v and v are not adjacent. If o(u,v) = 1 we call v the head and u

the tail of the edge {u,v}. The pair (G, o) is an oriented graph. The incidence matrix B
of (G,o) is defined by

1, if ¢ is the head of e;
(B%),.. =< —1, if z is the tail of ¢;

0, otherwise.

The pertinent property of B? is that
B7(B")" = A(G) — A(G). (3)

Much of our notational effort is gone to waste, since the right hand side of (3) is clearly
independent of the orientation . We do deduce, however, that A — A is a positive semidef-
inite matrix. The multiplicity of 0 as an eigenvalue of A — A is equal to the dimension
of the null-space of B?. This is in turn is known to equal n — ¢, where ¢ is the number
of connected components of G. (One reference for the unproved assertions here is Biggs
[1974].) (If G is bipartite then A — A and A + A are similar matrices. I know of no
reference for this. However in this case it is easy enough to find a diagonal matrix A, with
diagonal entries equal to +1, such that B = AB. Then A(A — A)A = A(A — A)A and,
since A = A™!, this proves the claim.)

Let A,(G) denote the second smallest of the n eigenvalues of A — A. From our
remarks above we see that \,(G) # 0 if and only if G is connected. A study of the relation
between A, and connectivity has been made by Fiedler [1973]. We observe that that if
we delete the first row and column from A — A we obtain a matrix, D say, differing from
A(G\1) — A(G\1) by the addition of some non-negative terms to its diagonal. ;From this
it can be deduced that the ¢-the eigenvalue of D is at least as large as the i-th eigenvalue of

A(G\1)— A(G\1). Since the eigenvalues of this latter matrix interlace those of A — A4, we
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conclude that A\,(G\ 1) < A,(G). This implies, as noted by Fiedler, that A\,(G) is a lower
bound on the vertex connectivity of G. In fact it can be argued that it is more natural
here to consider edge-deleted subgraphs, rather than vertex deleted subgraphs of G. For
if e € E(G) and H := G\ e than the difference between A(G) — A(G) and A(H) — A(H)
is a matrix with rank one. This implies that the eigenvalues of G\ e interlace those of G.

If X C V(G), let 0X denote the number of edges of G with one end in X and the
other not in X. We have:

6.8 LEMMA. Let G be a graph with n vertices and let X be a subset of V(G). Then
0X| = X (G)[ X[V X|/n.

Proof. Let j be the vector with all entries equal to 1. Since the rows and columns of A — A

all sum to 0, we always have (A — A)j = 0. This implies that
A3(G) = min{(z, (A — 4)2) | (2,5) = 0, |z]| = 1}.

We also have
(2, (A= A)z) = Y (z,— )
1jJEE(G)
Now define z by setting z; equal to a when ¢+ € X, and to 8 otherwise. Choose a and (3 so
that (2,7) = 0 and ||z|| = 1. Then (z,(A — A)z) = |0X|(a — B)>. After some calculation

we arrive at the statement of the lemma. O

A more general result, using the same basic approach of “guessing” a trial eigenvector
z for A,, can be found in Alon and Milman [1985: Lemma 2.1]. Their work is devoted
to a study of “expanders”. We will not discuss these further, but instead refer the reader
to Chapter 32 in this handbook. This subject is perhaps the most important recent

application of graph eigenvalues to combinatorics.
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7. APPENDIX: RANDOM WALKS, EIGENVALUES, AND RESISTANCE
(L. Lovész)

The results of sections 5 and 6 concerning the walk generating functions of graphs are
closely related to random walks on graphs and to the theory of finite Markov chains, and
also to the electrical resistance of the graph. For more on this topic, see Lovdsz [1979a],
second edition, Chapter 11.

Let G be a d-regular connected graph on n vertices with adjacency matrix A. (Most
of the results below extend to non-regular graphs, but the formulations are much simpler
for regular graphs. We can reduce the general case to this by adding a sufficient number
of loops at each vertex; here, a loop adds only 1 to the degree.)

Consider a random walk on G: starting at a node v, at each step we are at a vertex
v,, and move to each neighbor with probability 1/d. Let v, be the random vertex we are
at after ¢ steps. Clearly, the sequence of random vertices (v, : t = 0,1,...) is a symmetric
Markov chain, and P = d~!A4 is the matrix of transition probabilities. (In fact, every
symmetric Markov chain can be viewed as random walk on a graph, if we allow weighted
edges. Most facts mentioned below extend quite naturally to all symmetric Markov chains;
many extend even to non-symmetric ones.)

Random walks arise in many models in mathematics and physics. For example, con-
sider the shuffling of a deck of cards. Construct a graph whose vertices are all permutations
of the deck, and two of them are adjacent if they come by one shuffle move, dependening
on how we shuffle. Then repeated shuffle moves correspond to a random walk on this graph
(see Diaconis [1988]). Models in statistical mechanics can be viewed as a random walk on
the set of states.

Random walks have important algorithmic applications. They can be used to reach
“obscure” parts of large sets, and also to generate random elements in large and compli-
cated sets, such as the set of lattice points in a convex body or the set of perfect matchings
in a graph (which, in turn, can be used to the asymptotic enumeration of these objects).
See Aleliunas, Karp, Lipton, Lovasz, and Rackoff [1979], Sinclair and Jerrum [1988], Dyer,
Frieze and Kannan [1989] for some of these applications.

The probability pfj that, starting at ¢, we reach j in ¢ steps is the ij-entry of P*. We
define the probability generating function for the random walks on G to be

P(G,z):= Y a'P'=(I—2P)™". (1)

t=0
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This is of the same form as the walk generating functions studied earlier, and one can
apply much of the theory described in the last two sections.

Since P is symmetric, its eigenvalues are real. A trivial eigenvalue of P is 1, with the
corresponding eigenvector (1,...,1)T. Tt follows from the Frobenius—Perron theory that
this eigenvalue is unique and that P has spectral radius 1. The value —1 is an eigenvalue
of P iff G is bipartite.

Let 1 = X\; > ... > A, be the eigenvalues of P (these are just the eigenvalues of A
divided by d), and let v,...,v, be corresponding eigenvectors (normed to unit length).
Let v, = (vj1,---,v4,)" - Clearly we can take v,; = 1/4/n.

Expressing A in terms of its eigenvectors, we get

n
_ E T
A = Ak’vk’vk
k=1

and hence

n 1 n
1
ng) = Z)‘kaivkj == Z)‘kvkivkj' (2)
k=1 k=2

We shall see how this basic formula can be applied in the analysis of random walks; but
first let us introduce some parameters that are significant in the algorithmic applications

mentioned above.

(a) The mean access time 7;; is the expected number of steps required to reach a

vertex j, starting from a vertex ¢. The sum v,;; = 7;; + 7;; is called the mean commute

time.

(b) The mean cover timeis the expected number of steps to reach every vertex (starting

at the vertex for which this is maximum).

(c) The mixing rate is a measure of how fast the random walk converges to its limiting

distribution. (How long should we shuffle a pack of cardsI') This can be defined as follows.

If the graph is non-bipartite, then p(.t.)

if —1/n ast — oo, and the mixing rate is

1/t
. ) 1
p = limsupmax |p;; — —

t—oo Z¥) n

(For a bipartite graph with bipartition {V;,V,}, the distribution of v, oscillates between
“almost uniform on V;” and “almost uniform on V,”. The results for bipartite graphs are
similar, just a bit more complicated to state, so we ignore this case.)

We have to walk about (1 — p)~! steps before the distribution of v, will be close

to uniform. The surprising fact, allowing the algorithmic applications mentioned above,
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is that this number may be much less than the number of nodes; for an expander, for
example, this takes only a constant number of steps.

An algebraic formula for the mixing rate is easily obtained. Let A = max{|\,|, |\, |},
then it follows by (2) that

w 1 i ¢
Pij —;‘<)‘ kZ_Z|”ki”kj|<)‘-

So p < A; it is not difficult to argue that equality must hold here.

7.1 THEOREM. The mixing rate of a random walk on a non-bipartite graph G is
max{ ||, [A,|}-

Lemma 6.8 has established a connection between the second-largest eigenvalue of A
(equivalently, of P) and a certain edge-connectivity property of the graph. We define the
conductance ® = ®(G) of the graph G as the minimum of ndX/(d|X||V \ X|) over all
non-empty sets X C V. Combining Lemma 6.8 with results of Sinclair and Jerrum [1988]
we obtain the following (cf. Alon [1986], Diaconis and Stroock [1991], and also Chapter
32, Theorems 3.1 and 3.2):

7.2 THEOREM. $2/4<1- ), < &.

2\t
o _ L (%
(%)

The mean access time and the mean commute time can be estimated by elementary

7.3 COROLLARY.

means (but, as we shall see later, eigenvalues provide more powerful formulas). We remark
first that in a very long random walk, every vertex is visited on the average in every nth
step and every edge is traversed in each direction on the average in every 2mth step, where
m is the number of edges. (This second assertion remains valid also for random walks over
non-regular graphs.) Hence it follows that if we start from node 7, and j is an adjacent
node, then within 2m steps we can expect to pass through the edge ji; hence the mean
commute time for two adjacent nodes is bounded by 2m. It follows that the mean commute
time between two nodes at distance r is at most 2mr < n®. A similar bound follows for
the mean cover time.

Let qg;) denote the probability that the random walk starting at z hits vertex j the
first time in the ¢th step. Then we have the following identity by easy case distinction:

1
(1) _ (), (t=s)
Py =295 P -
s=0
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Hence we get for the generating functions f;;(z) = Moo Op )zt and gi;(z) = oo Oq(t) t
that

fij(w) = gij(w)fjj(w)'

Now here

_ t ot _ i

3 S et 3

t=0 k=1 k=1
and so
vkzvk] vk]
() =

Now 7,; = g;;(1); from this explic1t formula we get

7.4 THEOREM. The mean access time is given by

2 :vk] vkzvk]
1:' =n 1 .

7.5 COROLLARY. The mean commute time is given by

Since the vectors u; = (v;;,)5_,; are mutually orthogonal unit vectors, we can derive

the following bound on the mean commute time between any pair of nodes:

vkz vk] 1 - 2
i'_nz 1, _nl—)\2 ;(vki_vkj)

1
—nl_)‘2(u —u, ) =2n/(1—X,).
Using Theorem 7.2, we get
8n
Yi; < 32

which is better than the elementary bound if, e.g., the graph is an expander. In this case
we obtain that v,; = O(n). It also follows from Corollary 7.5 that the mean commute
time between any two vertices of any regular graph on n nodes is at least n, so this is best
possible for expanders. The best known bound for the mean commute time in a general
regular graph is O(n?), which follows from the analogous bound for the mean cover time

below.

No eigenvalue formula for the mean cover time is known, but a rather good bound

follows by elementary probability theory (Matthews [1988]):
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7.6 PROPOSITION. The mean cover time of a random walk on a graph with n vertices
is at most O(logn) times the maximum of the mean access times between all pairs of

vertices..

The mean cover time of a regular graph is O(n?) (Kahn, Linial, Nisan and Saks [1989];
this issue of J. Theor. Prob. contains many other interesting papers on this problem). This
gives a surprisingly narrow range for cover times. It is conjectured that the graph with
smallest cover time is the complete graph (whose cover time is ~ nlogn).

There is an interesting connection between random walks on graphs and electrical
networks. We may consider a graph G on n vertices as an electrical network, every edge
corresponding to unit resistance. The network has some resistance R,; between any pair
of vertices. A whole book has been written on this connection (Doyle and Snell [1984]);
here we only formulate one surprising identity (Nash-Williams [1959], Chandra, Raghavan,
Ruzzo, Smolensky, and Tiwari [1989]):

7.7 THEOREM. The mean commute time between vertices 1 and j is ndR,;.

The proof (which is only sketched) is connected to yet another interesting notion. We

call a function ¢ : V(G) — R harmonic with poles s and ¢ if

Y. () = dé())

‘€N ()

for every j # u,v. It is easy to see that if we normalize so that ¢(s) = 1 and ¢(¢t) = 0,
then the harmonic function with given poles is uniquely determined.

There are (at least) two rather natural ways to construct such harmonic functions.

(1) Consider the graph as an electrical network as above. Give voltage 1 to s and

voltage 0 to t. Then the voltage ¢(¢) of vertex ¢ defines a harmonic function.

(2) Let ¢(¢) denote the probability that a random walk starting at ¢ hits s before it

hits ¢. It is trivial that this defines a harmonic function.

Now the resistance R,; is 1/(total current) = 1/, n ;) ¢(2). On the other hand,
consider a very long random walk, with K steps, say. This hits ¢t about K/n times. Call
a hit interesting if after it the random walk hits s before it hits ¢ again. Between two
interesting hits, the average number of steps is v,,. Now the probability that a given hit
is interesting is % EiEN(t) #(2), by interpretation (2) of the harmonic function. Hence the
number of interesting hits is about %ZiEN(t) #(¢)(K/n), and so the average number of
steps between them is nd/(>_,c n(;) ¢(3)) = ndR,,.
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