
Chapter 31Tools from Linear AlgebraC. D. GodsilDepartment of Combinatorics and OptimizationUniversity of WaterlooWaterloo, Ontario N2L 3G1, Canada1. Introduction2. The rank argument3. Designs and codes4. Null designs5. Walks in graphs6. Eigenvalue methods7. Appendix: random walks, eigenvalues, and resistance (L. Lov�asz)1. INTRODUCTIONLinear algebra provides an important collection of tools for the working combinatorialist.These have often been used to obtain the �rst, the most elegant, or the only proof of manysigni�cant results. Before I compiled this survey, my opinion was that this area consistedof a large collection of disparate \tricks". I have since come around to the view that thereis a small set of basic principles, perhaps not easily formalised, that underly most of thecombinatorial applications of linear algebra.In writing this survey I have made no attempt to be exhaustive; indeed I shouldapologise in advance to each of my readers for leaving out their favourite example. Thereferences provided are also far from complete, but should at least form a reasonablestarting point for those wishing to learn more.The reader is hereby warned that, unless explicitly mentioned otherwise, all ranks,dimensions etc. are over the rationals. The letters I and J will denote the identity matrixand the \all-ones" matrix respectively. Their order will be determined by the context. (Ihope.) 1



2. THE RANK ARGUMENTThe best known application of linear algebra to combinatorics is the now standard proofof Fisher's inequality, namely that in any non-trivial 2-design the number of blocks is atleast as large as the number of points. This seems a good place for us to begin. We �rstneed to set up some notation. A hypergraph H = (V;E) consists of a vertex set V and acollection E of subsets of V , which we call edges. We call H simple if there are no repeatededges and we say it is k-uniform, or just uniform, if each edge contains exactly k vertices.If each vertex of H lies in exactly r edges then H is r-regular, or simply regular. A simple2-uniform hypergraph is better known as a \graph".A t-design is a uniform hypergraph with the property that every subset of t vertices iscontained in exactly � edges, for some constant �. Thus a 1-design is a �-regular uniformhypergraph. It is well known and simple to prove that any t-design is also an s-design,for all s less than or equal to t. A design is trivial if each edge contains all the vertices.For further background see A. Brouwer's chapter on designs in this handbook. Fisher'sinequality (Fisher [1940]) asserts, in our notation, that every non-trivial 2-design has atleast as many edges as vertices. To prove this using linear algebra requires the use ofincidence matrices, and consequently another de�nition.The incidence matrix B = B(H) of a hypergraph is the 01-matrix with rows indexedby the vertices of H, columns indexed by the edges, and with (B)ij = 1 if and only ifvertex i is contained in edge j. The rank of B can not be greater than either the numberof rows or the number of columns of B. Thus we have:2.1 PRINCIPLE. Let H = (V;E) be a hypergraph with incidence matrix B. If therows of B are linearly independent then jV j � jEj.This result is simultaneously too important, and too useful, to be termed a theorem.There is one problem remaining though: it is still up to us to determine the rank of theincidence matrix B. For an arbitrary large hypergraph this would normally be every bitas di�cult as proving that jV j � jEj by any other means. What saves us is that, in manyinteresting cases, the rank of B(H) is more or less obvious due, for example, to someregularity in the structure of H. Thus in the case of 2-designs we �nd that the de�ningconditions imply that BBT = (r � �)I + �J; (1)where r and � are as above. If the block size k of the design is not equal to jV j then wemust have r > �. Hence the right hand side of (1) is the sum of a positive semi-de�nitematrix J and a positive de�nite matrix (r � �)I. It is therefore positive-de�nite and,2



with that, non-singular. Consequently the left hand side of (1) is non-singular, implyingthat the rank of B is equal to the number of rows in B. This proves Fisher's inequality.(Note that the use of positive-de�niteness in the above argument can be circumvented byexplicitly computing the determinant of (r � �)I + �J .)We note further that, if B has rank jV j then it contains a jV j � jV j submatrix withnon-zero determinant. Given the de�nition of the determinant as a signed sum of productsof entries of a matrix, we deduce that there is an injection �:V ! E such that the edge�(i) contains the vertex i, for all vertices i in H. This is a strengthening of the baldstatement that v � e. If we replace the non-zero elements of B by distinct members froma set of algebraically independent numbers, we obtain a \generic" incidence matrix for H.The existence of a bijection of the type described is equivalent to requiring that the rankof this generic incidence matrix be equal to jV j. (For another, important, example of thistype of argument, see Stanley [1980].)Fisher's inequality can be generalised in many ways. If we weaken our de�nition of2-design by allowing the edges to contain di�ering numbers of vertices, we �nd that Bsatis�es the matrix equation BBT = �+ �J; (2)where � is a diagonal matrix with non-negative entries. The diagonal entries of � willbe positive if, for each pair of vertices in H, there is an edge containing one but not theother. In this case the argument we used above still yields that B has rank equal to jV j,and hence that v � e. (This result is due to Majindar [1962], and de Caen and Gregory[1985] prove an even more general result using quadratic forms.)Another important generalisation of Fisher's inequality arises if we introduce auto-morphism groups. Suppose that � is a group of automorphisms of our hypergraph H.Then vertices and edges of H are partitioned into orbits by �. If H is a 2-design or, moregenerally, if B has rank jV j, then the number of edge orbits of � is as least as large as thenumber of vertex orbits. (If � is the identity group then this is just Fisher's inequalityagain.) This claim can be proved as follows. Let C1; : : : ; Ck denote the vertex orbits of �.Call two edges � and � equivalent if j� \ Cij = j� \ Cij for all i. Clearly any two edges inthe same edge orbit of � are equivalent. Let P be the k � v matrix with i-th row equalto the characteristic vector of Ci (viewed as a subset of V (H)). Then edges � and � areequivalent if and only if the corresponding columns of PB are equal. Hence the number ofedge orbits of � is as least as large as the rank of PB. If B has rank jV j then xTPB = 0if and only if xTP = 0. As the rows of P are linearly independent it follows that xTP = 0if and only if x = 0, i.e., the rank of PB is equal to the number of rows of P . This proves3



our claim.The argument used in the last paragraph is su�ciently important to be worth formal-ising. Let H be an arbitrary hypergraph, let � be a partition of its vertex set and let � bea partition of its edge set. De�ne the characteristic matrix of a partition to be the matrixwith the i-th row equal to the characteristic vector of the i-th cell (or component) of thepartition. (Thus, a 01-matrix is the characteristic matrix of a partition of its columns ifand only if the sum of its rows is the vector with all entries equal to 1.) Denote the char-acteristic matrices of � and � by P and R respectively. We call the pair (�; �) of partitionsequitable if:(a) each edge in the j-th cell of � contains the same number of vertices from the i-th cellof �,(b) each vertex in the i-th cell of � is contained in the same number of edges from thej-th cell of �.We see that (�; �) is an equitable partition of H if and only if (�; �) is an equitable partitionof the dual hypergraph. (This is obtained by swapping the roles of the vertices and edgesin H | its incidence matrix is the transpose of that of H.)2.2 LEMMA. Let � and � respectively be partitions of the vertices and edges of thehypergraph H. Then (�; �) is equitable if and only if there are matrices � and 	 suchthat PB = �R and RBT = 	P .Proof. This lemma is only a routine translation of the de�nition (into linear algebraterms).If � and 	 exist as described then �RRT = PBRT and 	PPT = RBTPT . Hence�RRT = PPT	T :Thus 	 is determined by �, and vice versa. Note that both PPT and RRT are diagonalmatrices. We call the matrix � the vertex quotient of B with respect to the given pair ofpartitions.2.3 LEMMA. Let � be a vertex quotient of the incidence matrix B with respect to theequitable pair of partitions (�; �). If the rows of B are linearly independent then the rankof � is equal to the number of cells in �, and so the number of cells of � is less than orequal to the number of cells of �.Proof. We have: rank(P ) = rank(PB) = rank(�R) = rank(�);4



where the �rst and third equalities hold because the rows of P and R are linearly inde-pendent, while the second equality follows from Lemma 2.2.Note that Lemma 2.3 is actually a generalisation of 2.1, which we can recover bytaking � and � to be the partitions with all cells singletons. One important consequenceof this lemma is the fact that the number of point orbits of a collineation group of aprojective plane is always less than or equal to the number of line orbits (Hughes and Piper[1973: Theorem 13.4].) It is not di�cult to extend Lemma 2.3 to in�nite structures. (SeeCameron [1976].) The notion of quotient is useful because it provides a means of arguingthat a particular matrix � has rank equal to the number of rows in it. (Namely, � hasinherited this property from the larger matrix B.) Thus quotients extend the applicabilityof the rank argument. They will also play an important role in our section on EigenvalueMethods. The de�nitions above have been chosen with this later usage in mind as well.I should also mention that it is often convenient to view � as a generalised incidencematrix for the \quotient hypergraph" with the cells of � and � of H as its vertices andedges. (A cell of � is incident with a cell of � whenever some vertex in the former iscontained in some edge of the latter.) In the case when � and � are the vertex and edgeorbits of a group of automorphisms of H, Lemma 2.3 is well known and can be stated ina sharper form. See, e.g., Dembowski [1968: p. 22] and Stanley [1982: Lemma 9.1].The next result is of fundamental importance, and underlies many combinatorial ap-plications of linear algebra.2.4 THEOREM. Let 
 be a set with cardinality n and let B be the incidence matrixfor the hypergraph H with the k-sets of 
 as its vertices and the `-sets as its edges. Thenif k � minf`; n� `g, the rows of B are linearly independent.Here a k-set is incident with an `-set if it is contained in it. The earliest proof ofthis known to the writer appears in Gottlieb [1966]. Other proofs appear in Foody andHedayat [1977], Kantor [1972] and Graham, Li and Li [1980]. It can also derived by aquotient argument. For suppose that we have a non-zero vector x such that xTB = 0. Wemay assume without loss that the �rst entry of x is non-zero; in fact we assume that it isequal to 1. Clearly Sym(n) acts as a group of automorphisms of H. Let � be the subgroupof Sym(n) �xing the �rst k-subset of 
. Thus � is isomorphic to Sym(k) � Sym(n� k).Let P and R respectively be the characteristic matrices for the partitions determined bythe orbits of � on k- and `-subsets of 
. Finally let � be the corresponding quotient ofB. It is important to note that � is a triangular matrix of order (k + 1) � (k + 1) withnon-zero diagonal entries. In particular, it is invertible.5



If 
 2 �, let x
 be the vector with (x
)i = xi
 . We sety := 1j�jX
2�x
As x1 = 1 and 1
 = 1 for all elements 
 of �, it follows that y 6= 0. It is not too hardto show that (x
)TB = 0 if and only if xTB = 0. This implies that yTB = 0. Now theentries of y are constant on the orbits of � and so there is a non-zero vector z such thatyT = zTP . Then we have 0 = xTB = yTB = zTPB = zT�Rand, since the rows of R are linearly independent, this implies that zT� = 0. Since � isinvertible this implies that z = 0 and so we are forced to conclude that there is no non-zerovector x satisfying xTB = 0, i.e., that the rows of B are linearly independent.We note some simple applications of Theorem 2.4. Suppose that 
 is the edge setof a complete graph on n vertices. Then a k-subset of 
 is a graph on n vertices withk edges. The symmetric group Sym(n) acts on the �n2� elements of 
. The orbits of k-subsets correspond to the isomorphism classes of graphs on n vertices with k edges. Sincethe incidence matrix for k- versus `-subsets of 
 has linearly independent rows, so doesits quotient with respect to Sym(n). If gn;k denotes the number of isomorphism classes ofgraphs with n vertices and k edges, it follows that gn;k � gn;` whenever k � minf`; �n2��`g.We deduce from this that the sequence gn;k; k = 0; : : : ; �n2� is unimodal. Perhaps a moresigni�cant application is the following. Let pk`(n) denote the number of partitions of theinteger n into at most k parts, the largest of which is at most `.2.5 LEMMA. The sequence pk`(n); n = 0; : : : ; k` is unimodal.Proof. We can de�ne the wreath product � = Sym(`) o Sym(k) to be the group acting onan k � ` array R of \squares" by permuting the ` squares in each row independently, andby permuting the k rows amongst themselves without changing the order of the squaresin the rows. (So the order of � is (`!)kk!.) Then pk`(n) is the number of orbits under �formed by the subsets of n squares from R, i.e., it counts the \�-isomorphism" classes ofn-subsets of R. The lemma now follows as above.Lemma 2.5 is quite important and has a quite interesting history. The details ofthis, together with the above proof, will be found in Stanley [1982]. The numbers pk`(n)arise in a remarkable variety of situations, occuring in particular as the coe�cients in theexpansion of the q-binomial coe�cients �nk�q in powers of q. (For information on these see6



the chapter by Gessel and Stanley.) Although the sequence they form is unimodal, it is notlog-concave. This means that some of the standard techniques for proving that a sequenceis unimodal cannot be applied to derive Lemma 2.5.Stanley [1985] has also used quotienting by orbits to re-derive Lov�asz's proof that anygraph with more edges than its complement can be reconstructed from its edge-deletedsubgraphs. This will be discussed, along with some generalisations, in the next section.Recently Wilson [1990] has determined the rank modulo p of the incidence matrix Bof k-sets versus `-sets. In this paper he also gives a diagonal form for B, i.e., a diagonalmatrix D such that B = EDF for suitable integral matrices E and F with determinantsequal to one. This is a very interesting result, but it seems fair to say that we do not yetknow what its combinatorial signi�cance is.The theory of posets is an area where linear algebra has been e�ectively applied, andit would be remiss of us not to consider some examples. Let P be a poset with n elements.The incidence matrix B = B(P ) is the 01-matrix with ij-entry equal to 1 if and only ifi � j in P . We can always assume that B is an upper triangular matrix; this is equivalentto the existence of linear extensions of P . Since i � i, each diagonal entry of B is equalto 1, and so B is an invertible matrix. This means that there is little future in seeking toprove results about posets by rank arguments based on B. In fact we are going to workwith the inverse of B.This brings us to the M�obius function of P . This is the function � = �P on P � Pde�ned by: �(i; j) := (B�1)ij :(For the basic theory of the M�obius function, expressed in a manner consistent with ourapproach, see Lov�asz [1979a: Ch. 2]. Another convenient reference is Aigner [1979].) Notethat �(i; i) = 1 for all elements i of P . It is also not di�cult to prove that �(i; j) = 0unless i � j in P . However the key fact that we need is the following.2.6 LEMMA. Let f be a function on the poset P . If the function f� is de�ned byf�(i) :=Xj�i f(j)then f(i) =Xj �(i; j)f�(j):Proof. If we view f and f� as column vectors with entries indexed by the elements of Pthen the �rst equation asserts that f� = Bf . Hence f = B�1f�, which is equivalent tothe second equation. 7



The theory of the M�obius function consists of an interesting mixture of combinatorics,algebra and topology, and is very well developed. Explicit expressions for �P are knownfor many important posets. We will be making use of the following pretty result.2.7 LEMMA (H. Wilf [1968], B. Lindtstr�om [1969]). Let P be a lattice with nelements, let f be a function on P and let F be the n�n matrix such that (F )ij = f(i_j).Then detF =Qi2P f�(i), where f�(i) =Pj2P �(i; j)f(j).Proof. Let � be the diagonal matrix with i-th diagonal entry equal to f�(i). Then it iseasy to see that (B�BT )ij = Xk�i;j f�(k) = Xk�i_j f�(k)and that, by the previous lemma, the last of these two sums is equal to f(i_ j). ThereforeF = B�BT and sodet(F ) = det(B�BT ) = det(B) det(�) det(BT ) = det(�)since det(B) = 1. This proves the lemma.With the help of this lemma we can compute some rather complicated determinants.For examples, the reader is referred to Lov�asz [1979a: Ch. 2] and the original paper of Wilfmentioned above. For a recent application to communication complexity, see the paper byHajnal, Maass and Tur�an [1988]. An interesting application to combinatorial optimisationis given Lov�asz and Schrijver [1990]. The next result shows yet another use.2.8 THEOREM. Let P be a lattice such that �P (i; 1) 6= 0 for all i in P . Then there isa permutation � of the elements of P such that i _ (i)� = 1 for all i in P .Proof. De�ne a function g on P byg(i) := � 1; if i = 1;0; otherwise.and let G be the matrix with ij-entry equal to g(i_j). We seek to apply Lemma 2.7. FromLemma 2.6 we see that g(i) = Pj�i f(j), where f(j) = �(j; 1). Accordingly we deducethat detG = Qj2P �(j; 1). Our hypothesis concerning � thus forces the conclusion thatdetG 6= 0. The assertion of the theorem now follows from the de�nition of the determinantas a signed sum of products of elements of a matrix.Theorem 2.8 was �rst obtained by Dowling and Wilson [1975] using linear algebra,but not Wilf's lemma. (The above proof might even be new.) Many interesting lattices8



have M�obius functions that satisfy the hypothesis of the theorem. In particular, geomet-ric lattices have this property and so have \complementing permutations" as described.>From this it follows very quickly that every �nite geometric lattice has at least as manyhyperplanes as points. We cannot resist the following remarks in this context. Let H be ahypergraph with the property that any two distinct vertices lie in exactly one edge. Thenit can be shown that the vertices and edges of H form a geometric lattice. Consequentlysuch a hypergraph has at least as many edges as vertices. This indicates that there is anon-trivial connection between Theorem 2.8 and Fisher's inequality.To complete this section we mention another important result in the theory of posetswhich has been established using linear algebra, namely the proof of Ivan Rival's conjectureon modular lattices, by J. Kung [1985, 1987].
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3. DESIGNS AND CODESWe introduce a framework which will enable us to derive some far-reaching generalisationsof Fisher's inequality, and a number of other results. Our approach follows the expositionin Godsil [1993: Chs. 14{16].A separation function � on a set 
 is simply a function on 
�
 taking values in some�eld, the reals unless otherwise noti�ed. If f is a real polynomial with degree r and a 2 
then we call the mapping x! f(�(a; x))a zonal polynomial of degree at most r, and denote it by fa. We inductively de�ne vectorspaces Pol(
; r) as follows. We set Pol(
; 0) equal to the span of the constant functionson 
 and Pol(
; 1) equal to the span of the zonal polynomials fa, where f ranges over allreal polynomials of degree at most one and a over the points in 
. If r > 1 then Pol(
; r)is the space spanned by ffg : f 2 Pol(
; 1); g 2 Pol(
; r � 1)g:We also de�ne Pol(
) = [r�0Pol(
; r):We refer to the elements of Pol(
) as polynomials on 
, and a polynomial which lies inPol(
; r), but not in Pol(
; r � 1), will be said to have degree r. Note that if f is apolynomial of degree r on 
 and g is a polynomial of degree s then the product fg willbe a polynomial of degree at most r + s. (Note also that x2 + y2 + z2 is a polynomial ofdegree zero on the unit sphere in R3.)A polynomial space consists of a set 
, a separation function � on 
 and an innerproduct ( ; ) on Pol(
) such that the following axioms hold:I If x; y 2 
 then �(x; y) = �(y; x).II The dimension of Pol(
; 1) is �nite.III (f; g) = (1; fg) for all f and g in Pol(
).IV If f 2 Pol(
) and f(x) � 0 for all x in 
.These axioms are not very restrictive. Moreover, when 
 is �nite, Axioms II and IV areredundant. We now present a number of examples. In all of the cases where 
 is �nite theinner product is given by (f; g) = 1j
jXx2
 f(x)g(x):10



(a) The Johnson scheme J(n; k)Here 
 is the set of all k-subsets of a set of n elements and �(x; y) := jx \ yj. For thisscheme we will usually assume implicitly that 2k � n.(b) The power set 2nIn this case 
 is the power set of a �nite set with n elements, and �(x; y) := jx \ yj onceagain.(c) The Hamming scheme H(n; q)Let � be an alphabet of q symbols f0; 1; : : : ; q � 1g. De�ne 
 to be the set �n of alln-tuples of elements of �, and let �(x; y) be the number of coordinate places in which then-tuples x and y agree. Thus n� �(x; y) is the Hamming distance between x and y. (Wenote that H(n; 2) and 2n have the same underlying set, but the functions � are di�erent.)We do not require q to be prime power. The elements of H(n; q) are usually called wordsover �.(d) The symmetric group Sym(n)We set 
 = Sym(n). If x and y are elements of 
 then �(x; y) is the number of points left�xed by the permutation x�1y. Note that we can view Sym(n) as a subset of H(n; n), andthat the function � on Sym(n) is then just the restriction of the corresponding function inH(n; n).(e) The Grassmann scheme Jq(n; k)This time 
 is the set of all k-dimensional subspaces of an n-dimensional vector space overa �eld with q elements, and �(U; V ) is the number of 1-dimensional subspaces of U \ V .(f) The unit sphere in RnThe set 
 is formed by the unit vectors in Rn and �(x; y) is the usual inner product on Rn.In this case the elements of Pol(
) are precisely the polynomials in n variables, restrictedto the sphere. If f and g are two elements of Pol(
) then their inner product is(f; g) = Z
 fg d�;where � is the usual measure on the sphere in Rn, normalised so that the sphere hasmeasure 1.(g) Perfect matchings in K2nIf x and y are perfect matchings in K2n then �(x; y) is the number of edges they have incommon.Let (
; �) be a polynomial space. If � is a �nite subset of 
 and f and g are polyno-11



mials on 
 then we de�ne (f; g)� = 1j�jXx2� f(x)g(x):We call � a t-design in 
 if (1; f)� = (1; f)for all f in Pol(
; t). A t-design in the Johnson scheme is a simple t-design, as de�ned inSection 2. A t-design in the Hamming scheme is the same thing as a `simple' orthogonalarray. (These claims are not trivial; a proof of the �rst and an outline of a proof of thesecond can be found in Godsil [1988].) A t-design D in the power set of X can be shown tobe a collection of subsets of X such that, for all s � t, each set of s points lies in the samenumber of elements of D. For the unit sphere, our de�nition of a t-design is the usual one.(Delsarte, Goethals and Seidel [1977] study t-designs on the unit sphere at some length.)These examples show that t-designs in polynomial spaces are objects of interest, andindicate the importance of the following result.3.1 THEOREM. Let (
; �) be a polynomial space. If � is a t-design in 
 then j�j �dim(Pol(
; bt=2c)).Proof. Let �ij be the Kronecker delta function and let h1; : : : ; hn be an orthonormal basisfor Pol(
; bt=2c). (Such a basis can always be found by Gram-Schmidt orthogonalisation.)Then (hi; hj)� = (1; hihj)� = (1; hihj) = (hi; hj) = �ij :Therefore the restrictions to � of the polynomials hi form a linearly independent set offunctions on �. Since the vector space of all functions on � has dimension j�j, it followsthat n � j�j.For this result to be useful, we need to know the dimensions of the spaces Pol(
; r).This is a non-trivial task, but the answer is known in many cases. (Again, see Godsil[1993] for the details.) For the Johnson scheme J(n; k) we have dim(Pol(
; r)) = �nr� whenr � k.3.2 COROLLARY (Ray-Chaudhuri and Wilson [1975]). Let D be a 2s-designformed from the k-subsets of an n-set, with 2k � n. Then D contains at least �ns� blocks.If (
; �) is the Hamming scheme H(n; q) then dim(Pol(
; r)) is equal toXi�r (q � 1)i�ni�:12



3.3 COROLLARY. Let D be an orthogonal array of strength 2s in the Hammingscheme H(n; q). Then jDj �Xi�r (q � 1)i�ns�:The dimension of dim(Pol(
; r)) is the same for the power set of an n-set as it is forthe Hamming scheme H(n; 2). For the q-Johnson scheme Pol(
; r) has dimension �nr�q,and for the unit sphere in Rn it has dimension �n+r�1r � + �n+r�2r�1 �. (This lower bound onthe size a spherical t-design was derived by Delsarte et al [1977].)A 2s-design realising the the bound of Theorem 3.1 is called a tight design. A tight2-design in the Johnson scheme is better known as a symmetric design; such designs maybe said to be rather plentiful. On the other hand it has been proved (Bannai [1977]) thatif t = 2s � 10 then there are only �nitely many tight t-designs in the Johnson scheme.There is also a close connection with the theory of association schemes; we will discuss thisbrie
y following Corollary 3.9.Our de�nition of a design in a polynomial space can be extended. A weighted t-designon a polynomial space (
; �) is a non-negative function � with �nite support, S say, suchthat Xx2S �(x) f(x) = (1; f)for all polynomials f in Pol(
; t). For example, if � is a t-design we might take � to bethe function equal to 1=j�j on the elements of � and zero elsewhere. A weighted design inthe Johnson scheme is equivalent to a design in the usual sense of the word, with repeatedblocks permitted. Theorem 3.1 can be easily extended to show that, if S is the supportof a weighted t-design, then jSj � dim(Pol(
; bt=2c)). It can also be shown, under fairlygeneral conditions, that a polynomial space contains weighted t-designs supported by atmost dim(Pol(
; t)) points. (See Godsil [1988, 1993].) We give a simple and direct proofof this fact for the Johnson scheme.3.4 LEMMA. For any integers t, k and v with t < k � v � k, there is a k-uniformhypergraph H with at most �vt� edges that is the support of a weighted t-design.Proof. Let X be a �xed set of v elements, and let Bt;k be the 01-matrix with rows indexedby the t-subsets of X, columns indexed by the k-subsets and with ij-entry equal to 1 if andonly if the i-th t-subset is contained in the j-th k-subset. A weighted t-design correspondsto a column vector x of length �vk� with non-negative entries such thatBt;kx = j: (1)13



We know that (1) does have non-negative solutions | �v�tk�t��1j for example. Hence, bystandard results in the theory of Linear Programming, (1) has non-negative basic solutions,i.e., solution vectors supported by linearly independent sets of columns of B = Bt;k. Sucha set of columns has cardinality at most �vt�, since this is the number of rows of B.Here we should also mention Wilson's well known proof that weighted t-(v; k; �) de-signs exist whenever the obvious divisibility conditions are satis�ed (R. M. Wilson [1973]),which also starts with Equation (1).There is another lower bound on the size of a t-design which, despite its simple proof,is very useful.3.5 THEOREM. Let � be a t-design in the polynomial space (
; �). Then, for anypolynomial p of degree at most t which is non-negative on � and any point � in �,j�j � p(�)(1; p)and equality holds if and only if p vanishes on �n�.Proof. Let ' be a weighted t-design and let � be a point in its support. Suppose that pis a polynomial of degree at most t on 
, and that p is non-negative on the support of '.Then '(�)p(�) � Xx:'(x) 6=0'(x)p(x) = (1; p);from which our bound follows immediately.Theorem 3.5 is a form of Delsarte's linear programming bound. (See, e.g., Delsarteet al [1977].) The name arises because this theorem suggests the following optimizationproblem: choose p in Pol(
; t) non-negative on � so that p(�)=(1; p) is maximal. This iseasily expressed as a linear programming problem.Let � be a set of real numbers. (In all cases of interest, it will be �nite.) A �-codein a polynomial space (
; �) is a subset � such thatf�(x; y) : x; y 2 �; x 6= yg � �:We will also refer simply to codes when the set � is determined by the context, or isnot important. We say � has degree d if it is a �-code for some set � of cardinality d.Many interesting problems in Combinatorics are equivalent to questions concerning themaximum cardinality of �-codes. We have a general upper bound on the cardinality ofcodes, but to state this we require another de�nition. Suppose � is a separation function14



on a set 
 and � � 
. We say � is orderable if there is linear ordering `<' such that,whenever a 2 �, �(a; a) 2 f�(a; x) : x < ag:If � is an orderable subset then so is any subset of it. In all the examples of polynomialspaces we listed, 
 itself was orderable. The following result is therefore signi�cant.3.6 THEOREM. Let � be a separation function on the set 
 and let � be an orderablesubset of 
 with degree s. Then j�j � dim(Pol(
; s)):Proof. (We only give an outline, see Godsil [1993: Theorem 14.4.1] for more details.) Foreach a in � let �(a) be the setf�(a; x) : �(x; x) � �(a; a); x 6= agand let Fa be the polynomial on 
 de�ned byFa(x) = Y�2�(a)(�(a; x) � �):Then Fa(b) = 0 if b < a and Fa(a) 6= 0. Using this it is not di�cult to show thatthe functions Fa are linearly independent. Since they also all lie in Pol(
; s), the resultfollows.The basic technique used in proving Theorem 3.6 is due to Koornwinder [1976]. Wenow list some of the consequences of Theorem 3.6. A set of degree s in the unit sphere isusually called an s-distance set.3.7 COROLLARY (Delsarte, Goethals and Seidel [1977]). If � is an s-distancesubset of the unit sphere in Rn then j�j � �n+s�1s�1 �+ �n+s�2s�2 �.3.8 COROLLARY (Ray-Chaudhuri and Wilson [1975]). Let H be a k-uniformhypergraph on v vertices and let � be set of positive integers with j�j = d. Then if H isa �-code, jE(H)j � �vd�.3.9 COROLLARY (Frankl and Wilson [1981]). Let H be a k-uniform hypergraphon v vertices and let � be set of positive integers. Suppose that � has d0 distinct elementsmodulo the prime p, and none of these is congruent to k modulo p. Then if H is a �-code,jE(H)j � �vd0�. 15



3.10 COROLLARY (Frankl and Wilson [1981]). Let F be a subset of the powerset of X, where jXj = n. If F has degree s then jFj �Pi�s �ni�.More information about the above results will be found in the chapters of this hand-book by Frankl and Brouwer. The paper by Frankl and Wilson [1981] contains manysigni�cant results, one of which was recently used in Kahn and Kalai [1992] to disproveBorsuk's conjecture. (This asserted that a set of diameter one in Rd could always be par-titioned into d + 1 sets of diameter smaller than one. Kahn and Kalai show that at least(1:1)pd such sets may be required.) Many of the polynomial spaces we have mentioned areassociation schemes. Delsarte [1973] showed how to de�ne designs and codes in associationschemes; where these concepts overlap ours, they agree. Further information will be foundin the chapter on association schemes by Brouwer and Haemers in this handbook.A number of interesting results of coding type have been proved using exterior algebra.The basic example is the following, which is a slight extension of a result due to Bollob�as[1965]. The version stated, and its proof, are due to Lov�asz [1977].3.11 THEOREM. Suppose that A1; : : : ; Am are r-element subsets of a set X, andB1; : : : ; Bm are s-element subsets of X. If Ai \ Bi = ; for all i and Ai \ Bj 6= ;whenever i < j, then m � �r+ss �.Proof. Let f be a mapping fromX into V = Rr+s such the image of any set of r+s distinctpoints from X is linearly independent. (We could assume that f maps each element of Xto a vector of the form (1; t; : : : ; tr+s�1):It is a simple exercise to show that this works, provided only that we use distinct valuesof the parameter t for distinct elements of X.)To any set S of elements of X we associate the wedge productx̂2S f(x)and we denote this by !(S). (This product does depend on the order in which the multi-plication is performed, but a change of order leads only to a change of sign, and this willcause no problems.) Observe that this is a vector in a space of dimension �r+sjSj �, and itis non-zero if and only if the vectors f(x), for x in S, are linearly independent. If T is asecond subset of X then !(S) ^ !(T ) is non-zero if and only if f(S [ T ) spans a subspaceof V with dimension jSj+ jT j. 16



The m vectors !(Ai) lie in a vector space of dimension �r+ss �; if we can show they arelinearly independent then the theorem is proved. Suppose we have scalars ci such thatmXi=1 ci !(Ai) = 0: (2)Let j be the greatest index such that cj 6= 0. Since Bj \Ai is nonempty for all i less thanj, we have !(Ai) ^ !(Bj) = 0 if i < j. Since Bj \ Aj = ;, it follows that f(Aj [ Bj) is alinearly independent set. Hence !(Aj ) ^ !(Bj) 6= 0. Therefore (2) yields0 = mXi=1 ci !(Ai) ^ !(Bj)=Xi�j ci !(Ai) ^ !(Bj)= cj !(Aj) ^ !(Bj):But this implies that cj = 0, and this forces us to conclude that the vectors !(Ai) arelinearly independent. Hence m � �r+ss �.A subspace U of V = Rr+s with basis v1; : : : vm can be represented by the vector ^ivi.Hence the argument used above yields the following result.3.12 LEMMA (Lov�asz [1977]). If we are given r-dimensional subspaces Ui; : : : ; Umand s-dimensional subspaces W1; : : : ;Wm of V = Rr+s such that Ui \Wj 6= 0 if i < jand Ui \Wi = 0 then m � �r+ss �.The theorem itself is a consequence of this lemma, together with the observationthat there is an injection of X into V which maps all subsets with cardinality at mostr + s onto independent sets. In fact the lemma holds independently of the dimension ofV . For suppose we have subspaces Ui and Wj as described in a vector space V , wheredim(V ) > r + s. Since we can extend the �eld we are working over if necessary, there isno loss in assuming it is in�nite. Choose a subspace V0 of V with codimension r + s ingeneral position with respect to the subspaces Ui and Wj , and let � denote the mappingonto the quotient space V=V0. Then dim(Ui \Wj) = dim(�(Ui) \ �(Wj )) for all i and jand we can now apply the lemma to the subspaces �(Ui) and �(Wj), 1 � i; j � m, of thevector space V=V0. (One consequence of this is that Theorem 3.10 actually holds if the Aiand Bj are 
ats of rank r and s respectively in a linear matroid.)More examples of the use of exterior algebra will be found in Lov�asz [1977, 1979c] andAlon [1985]. One possible source for background on exterior algebra is Northcott [1984],but any book on multilinear algebra would su�ce for what we have used.17



4. NULL DESIGNSLet V be a �xed set with v elements. A function f on the subsets of V is a null design ofstrength t (or a null t-design) if, for each subset � of V with at most t elements,X��� f(�) = 0: (1)If U is a subset of V then the restriction of f to the subsets of U is not, in general, a nulldesign of strength t on U . However there is an easy way to construct such a function fromf , due to Frankl and Pach [1983], that we now describe.Given any function f on the subsets of V , de�ne the function f� by settingf�(� ) :=X��� f(�): (2)Then f is a null t-design if and only if f� vanishes on the subsets of V with at most telements. Also f can be recovered from f� by M�obius inversion thus:f(�) =X���(�1)j���jf�(� ): (3)Consequently we can construct as null t-design on the subset U of V as follows.(a) Choose a null t-design f on V .(b) Compute the transform f� as in (2) above.(c) Apply M�obius inversion on the subsets of U (as in (3)) to the restriction (f�) �U off� to U .Let us denote the resulting function by fU . We can view it as a null design on V by thesimple expedient of de�ning it to be zero on any subset of V not contained in U .There is a possibility that fU may be identically zero, but this will not happen unlessf� vanishes on all subsets of U . We havefU (�) = X����U(�1)j���jf�(�)= X����U(�1)j���jX
�� f(
)= X
�V f(
) X����
\U(�1)j���j= X
\U=�f(
) (4)which provides a useful alternative de�nition of fU . One consequence of (4) is that iffU (�) 6= 0 then f(
) 6= 0 for some subset 
 of V such that U \ 
 = �. We also obtain thefollowing result. 18



4.1 LEMMA. Let f be a null design of strength t on the set V and let U be a minimalsubset of V such that f�(U) 6= 0. Then if � � U ,fU (�) = (�1)jUn�jf�(U):Proof. This follows immediately from the de�nition of fU .4.2 COROLLARY. Any non-zero null design of strength t on the set V assumes anon-zero value on at least 2t+1 subsets of V .Proof, Let U be a minimal subset of V such that f�(U) 6= 0. Since f has strength t,the cardinality of U is at least t + 1. By the lemma, fU is non-zero on each subset of Uand so, by the remark above, for each subset � of U , there must be a subset 
 of V suchthat 
 \ U = � and f(
) 6= 0. This supplies us with 2jU j distinct elements of V on whichf is non-zero.Let G be the incidence matrix for the subsets of a v-set with cardinality at most t,versus all subsets of the same v-set. Then a null t-design can be viewed as an element of thenull-space of G, and so Corollary 4.2 can viewed as determining the minimum distance of acode over the rationals. If we had worked modulo 2 we would have obtained a Reed-Mullercode. The minimum distance of these codes has been determined, and is given in mosttextbooks on coding theory. (See Van Lint's chapter in this handbook or, for example,MacWilliams and Sloane [1978: Chapter 13].) The arguments used to determine thisminimum distance actually su�ce to determine the minimum distance over the rationals.Hence we may view the above corollary as a translation of a known result. Corollary 4.2 isalso derived, in another context, in Anstee [1985: Proposition 2.5]. We now present someapplications of this machinery.4.3 LEMMA (Frankl and Pach [1983]). If H1 and H2 are two distinct t-designs withthe same vertex set then the symmetric di�erence of their edge sets contains at least 2t+1edges.Proof. Let �1 and �2 be the respective characteristic vectors of H1 and H2. Then it is notdi�cult to check that �1��2 is a null design of strength t. By Corollary 4.2 it must haveat least 2t+1 non-zero entries.Our next application of Corollary 4.2 requires some further preliminaries. A hyper-graph H1 is an edge-reconstruction of the hypergraph H2 if there is a bijection � fromE(H1) to E(H2) such that, for each edge e in H1, the edge-deleted hypergraph H1 n eis isomorphic to H2 n �(e). We say that a hypergraph H is edge-reconstructible if any19



hypergraph that is an edge reconstruction of H is isomorphic to it. Thus we can saythat a hypergraph is edge reconstructible if it is determined by the collection of its edgedeleted hypergraphs. The edge reconstruction conjecture for graphs asserts that all graphswith at least four edges are edge-reconstructible. Bondy and Hemminger [1977] providean excellent, if slightly dated, survey of progress on the reconstruction problem.A hypergraph is s-edge reconstructible if it is determined by the collection of �es�hypergraphs obtained by deleting, in turn, each set of s edges from it. The next resultgeneralises the result of M�uller [1977] on edge reconstruction of graphs.4.4 LEMMA. Let H be a hypergraph with v vertices and e edges. If 2e�s > v! then His s-edge reconstructible.Proof. Assume by way of contradiction that H1 and H2 are two non-isomorphic hyper-graphs with e edges, and the same collection of s-edge deleted hypergraphs. There is noloss of generality in assuming that H1 and H2 have the same vertex set V . We view ahypergraph with vertex set V as a subset of the power set 2V of V . If i = 1 or 2, let �ibe the function on the 2V de�ned by�i(F ) = � 1; if F �= Hi;0; otherwise.I claim that the function � := jAut(H1)j�1 � jAut(H2)j�2is a null design with strength e � s on 2V. For if L is any hypergraph with vertex set Vand i = 1 or 2 then XF�L jAut(Hi)j�i(F )is equal to the number of permutations � of V such that the image of Hi under � containsL, and this is in turn equal to the number of sub-hypergraphs of Hi isomorhic to L. Theclaim that � is a null design with strength e � s is consequently a restatement of thehypothesis that H1 and H2 have the same s-edge deleted sub-hypergraphs.It follows that � must take non-zero values on at least 2e�s+1 hypergraphs. ButjAut(Hi)j�i is equal to 1 on each of jSym(V )j=jAut(Hi)j hypergraphs with vertex set Vthat are isomorphic to Hi (i = 1; 2), and is equal to zero on all others. Thus it takesnon-zero values on at most 2jSym(V )j = 2v! hypergraphs. This means that we must have2e�s � v!. 20



Let B be the incidence matrix of hypergraphs with e � s edges versus hypergraphswith e edges (and all having vertex set V ). If � is a non-zero null design with strength e�sthen B� = 0. Hence the columns of B must be linearly dependent. From Theorem 2.4 itfollows that in this case B must have more rows than columns. So if � exists as describedthen � 2ve� s� > �2ve �;which implies that e� s < 2v � e. Thus we have deduced:4.5 LEMMA. Let H be a hypergraph with v vertices and e edges. If 2e � 2v + s thenH is s-edge reconstructible.When s = 1 this result was �rst proved in Lov�asz [1972], using an inclusion-exclusionargument. A proof using a form of quotient argument was subsequently presented inStanley [1985]. The argument just used is easily modi�ed to prove that a k-uniformhypergraph on v vertices with e edges is s-edge reconstructible if 2e � �vk� + s. Onthe other hand Lemma 4.4 holds as stated for k-uniform hypergraphs. For graphs, theanalogues of Lemmas 4.4 and 4.5 were �rst proved in Godsil, Krasikov and Roddity [1987].So far our all our applications of the theory of null designs have used only Corollary4.2. We now give an example where Lemma 4.1 is used. A hypergraph is k-chromaticif we can partition its vertex set into k classes such that no edge is a subset of any oneof the classes. It is critically k-chromatic if it is k-chromatic and each of the subgraphsobtained by deleting one edge from it is (k� 1)-chromatic. Thus the cycle on �ve verticesis an example of a critically 3-chromatic 2-uniform hypergraph. The result we are about toprove, due to Lov�asz [1976], asserts that any critically 3-chromatic k-uniform hypergraphwith v vertices has at most �vk� edges. This is an immediate byproduct of the following.4.6 LEMMA (Lov�asz [1976]). Let H be a critically 3-chromatic k-uniform hypergraphwith vertex set V and let B = Bk�1(H) be the incidence matrix for the (k� 1) subsets ofV versus the edges of H. Then the columns of B are linearly independent.Proof. Assume by way of contradiction that the columns of B are linearly dependent.Then there is a null design f of strength (k� 1) on V that is supported by the edges of H.Thus f�, as de�ned by equation (2) above, vanishes on all subsets of V with fewer than kelements. Since f itself vanishes on all subsets of V with more than k elements, it followsfrom (2) that f = f�.Now let (X;Y ) be any partition of V into two classes. Then, from (4) we havefX(;) = X
\X=; f(
):21



Since f = f� it follows from this that the above sum is equal to P
�Y f�(
) and, giventhat f�(
) 6= 0 only when 
 2 E(H), we thus deduce thatfX(;) = (�1)kfY (;):Using (4) once more we obtainX�\X=;f(�) = (�1)k X�\Y=; f(�): (5)To complete the proof we choose an edge � of H such that f(�) 6= 0 and take (X;Y ) to bea 2-colouring of H n�. Then � is the unique edge of H contained in one of the sets X andY . This implies that one side of (5) is zero, but the other is not. Accordingly f cannotexist as described, and so the columns of Bk�1(H) are linearly independent.The above proof is no simpler than the original, and di�ers from it only in the argumentused to derive (5). However it does show how the available information on null designscan be used. There is a closely related result due to Seymour.4.7 LEMMA (Seymour [1974]). The rows of the incidence matrix of a critically 3-chromatic hypergraph are linearly independent over R.Proof. Let H be a critically 3-chromatic hypergraph with incidence matrix B. Assume byway of contradiction that there is a non-zero vector y such that yTB = 0. The hypergraphinduced by the vertices i such that yi = 0 is 2-colourable. Assume that it has been colouredblue and red. Extend this to H by colouring the vertices j such that yj > 0 with blue, andthe remaining vertices red. If b is a column of B then yT b = 0. Hence either yi = 0 forall vertices i in the edge corresponding to b, or else y is positive on one vertex of this edgeand negative on another. This shows that our colouring of the vertices of H is a proper2-colouring, which contradicts our choice of H.This proof is interesting in that it depends on the fact that R is an ordered �eld. Noother example of this comes to mind. The Fano plane shows that the result is not validover �nite �elds.We remark �nally that there is a close connection between the theory of null designsand the representation theory of the symmetric group. The key to this is that we mayidentify a k-subset of a v-set with a \tabloid" having two rows, of size v � k and k. (Asever, we assume 2k � v.) Then the null designs with minimum support constructed inFrankl and Pach [1983] can be viewed as \polytabloids", which span a Specht module forthe symmetric group. For more information on the latter see, e.g., James [1978: Ch. 4].22



5. WALKS IN GRAPHSIn the previous sections our emphasis has been on design theory, but from now it will beon graphs (and directed graphs). We begin by establishing some notation. An edge fu; vgin a graph will be regarded as being formed from the two arcs (u; v) and (v; u). (This usageof the term \arc" is also standard in other situations, e.g., when discussing automorphismgroups of graphs.) Hence we may, when convenient, view a graph as simply a special typeof directed graph. If D is a directed graph with vertex set V then its adjacency matrixA(D) is the matrix with rows and columns indexed by V , and with uv-entry equal to thenumber of arcs in D from u to v. (Our directed graphs may have loops and/or parallelarcs, however our graphs will always be simple.) Note that isomorphic directed graphswill not in general have the same adjacency matrices but, as will become apparent, this isnever the source of any problems.A walk in a directed graph is a sequencev0; e1; v1; : : : ; vn�1; en; vnformed alternately of vertices and arcs, such that ei is the arc (vi�1; vi). The length of theabove walk is n. We explicitly permit walks of length zero; there is one such walk for eachvertex. A walk that starts and �nishes at the same vertex is called closed. All walks, evenin undirected graphs, are directed objects. The basic result concerning walks can now bestated.5.1 LEMMA. Let D be a directed graph with adjacency matrix A. If u and v arevertices of D then (Ak)uv is equal to the number of walks of length k in D that start atu and �nish at v.The proof of this result is a routine induction argument, based on the observationthat Ak = AAk�1. One consequence of this result is that trAk is equal to the number ofclosed walks in D with length k. (And since A0 = I, we thus recon�rm that there is oneclosed walk of length zero on each vertex of D.) We note also that if D is a graph thentrA = 0, trA2 equals twice the number of edges in D and trA3 is equal to six times thenumber of 3-cycles. Given the existence of fast algorithms for matrix multiplication, thelast observation leads to the most e�cient known algorithm for detecting a triangle. Thisalso works whenD is directed, provided we �rst delete all the loops from it. (This approachto �nding 3-cycles has occurred independently to a number of people, so I remain silenton the question of its attribution. The e�ciency of such a \non-combinatorial" algorithmis undoubtedly a source of annoyance in many quarters.)23



The most e�ective way to study walks in graphs is by using generating functions. Todescribe this we �rst need another round of de�nitions. Let D be a directed graph withadjacency matrix A. The walk generating function of D isW (D;x) := (I � xA)�1 =Xk�0xkAk:ThusW (D;x) is a formal power series with coe�cients in a ring of matrices. The uv-entryof W (D;x) will be written as Wuv(D;x) and the trace of W (D;x) will be denoted byC(D;x). (As we have no intention of ever setting x equal to a real or complex number inone of these series, the reader should put all thoughts of convergence from her mind.) Thecharacteristic polynomial det(xI �A) of A will be denoted by �(D;x) and referred to asthe characteristic polynomial of D. If u 2 V (D) then Dnu is the directed graph obtainedby removing u, together with all its attendant arcs. Convenient references for backgroundinformation on adjacency matrices and related topics are Biggs [1974] and Cvetkovi�c, Dooband Sachs [1980]. Walk generating functions are studied at some length in Godsil [1993:Ch. 4]5.2 LEMMA. Let u be a vertex in the directed graph D. Thenx�1Wuu(D;x�1) = �(D nu; x)=�(D;x):Proof. Let B be the adjacency matrix of Dnu. >From Cramer's rule and the de�nition ofW (D;x), we see that Wuu(D;x) = det(I � xB)=det(I � xA). (Remark: the two identitymatrices I in this quotient have di�erent orders. We will frequently be found guilty of thisabuse of notation.) If n = jV (D)j thendet(I � xA) = xn det(x�1I �A) = xn�(D;x�1)and similarly det(xI �B) = xn�1�(D nu; x�1). The lemma follows immediately.The above lemma provides an explicit expression for the diagonal entries of W (D;x).We derive some analogous formulas for the o�-diagonal elements later. We note one sim-ple but useful property of the characteristic polynomial. For the proof see, for exampleCvetkovi�c, Doob and Sachs [1980: Thm. 2.14] or Godsil [1993: Thm. 2.1.5(c)].5.3 LEMMA. For any directed graph D,�0(D;x) = Xu2V (D)�(D nu; x):24



As an immediate consequence of Lemmas 5.2 and 5.3, we infer thatx�1C(D;x�1) = �0(D;x)=�(D;x): (1)This shows that the characteristic polynomial and the closed walk generating function ofa directed graph provide the same information. If we multiply both sides of (1) by �(D;x)and then equate coe�cients, we recover a system of equations connecting the sums of thepowers of the zeros of �(D;x) with its coe�cients.The concept of quotients, as introduced in Section 2, can be applied very usefullyto graphs and directed graphs. It was �rst studied by H. Sachs; a discussion of it fromhis point of view is presented in Cvetkovi�c, Doob and Sachs [1980: Chapter 4]. Here wewill only consider quotients of graphs, a more extensive treatment of this topic is given inGodsil [1993: Ch. 5]. One de�nition is necessary. If G is a graph then a partition � ofV (G) will be called equitable if the pair of partitions (�; �) is equitable in the sense usedin Section 2. We have the following.5.4 LEMMA. Let G be a graph and let � be a partition of V (G) with characteristicmatrix P . Then � is equitable if and only if there is a matrix � such that PA(G) = �P .Here � is a square matrix with rows and columns indexed by the cells of � and with(�)ij equal to the number of arcs that start at a vertex in cell i and �nish on a given vertexin cell j. Thus if G is Petersen's graph, u is a �xed vertex in G and � is the partition ofV (G) induced by the distance in G from u then� = 0B@ 0 1 03 0 10 2 21CA ;which illustrates that � need not be symmetric. We shall �nd it convenient to view � asthe adjacency matrix of a directed graph with the cells of � as its vertices. This directedgraph will be denoted by G=�. The following result can now be derived in a routine fashion.5.5 LEMMA. Let � be an equitable partition of the graph G and set � = A(G=�).Then (�k)ij is equal to the number of walks of length k in G=� that start in cell i and�nish at a speci�ed vertex in cell j.The discrete partition, with each cell a singleton, is always equitable. ConsequentlyLemma 5.5 is a generalisation of the better known Lemma 5.1. The last two results provideall the information on quotients that we need.25



One consequence of Lemma 5.4 is that the characteristic polynomial of G=� dividesthat of G. To see this note �rst that if U is an invariant subspace for A then we havePU = PAU = �PU , showing that PU is an invariant subspace for �. From this, and thefact that the rows of P are linearly independent, it can be shown that the characteristicpolynomial of � divides that of A. In one important case we can compute �(G;x) from�(G=�; x).5.6 THEOREM. Let G be a graph with n vertices, let u be a vertex in G and let � bean equitable partition of G in which fug is a cell. Then if �(G n v; x) is the same for allvertices v in G and H = G=�,�0(G;x)=�(G;x) = n�(H nfug; x)=�(H;x): (2)Proof. Let C1; : : : ; Cr be the cells of � and denote the corresponding vertices of H by1; : : : ; r. Assume that C1 = fug. From Lemma 5.5 we see that if the vertex v of G is incell Ci then Wuv(G;x) =W1i(H;x). The result follows now from Lemmas 5.2 and 5.3.It is not di�cult to show that, when fug is a cell �, (�k)i1=(�k)1i = jCij. Thus,under the hypotheses of Theorem 5.6, we can compute �(G;x) given � = A(H). The mostobvious case where this result can be applied is when Aut(G) is vertex transitive and � isthe partition of V (G) formed by the orbits of a subgroup of Aut(G) that �xes the vertex u.The next result is one of the most important applications of the theory we have described.5.7 COROLLARY. Under the hypotheses of Theorem 5.6, the numerators in the partialfraction expansion of n�(H nfug; x)=�(H;x) are the multiplicities of the zeros of �(G;x).Proof. This is a well known property of the partial fraction expansion of �0(x)=�(x), forany polynomial �(x).Corollary 5.7 thus provides a feasibility condition that a digraph � must satisfy if it tooccur as the quotient with respect to an equitable partition � of a graph G, for which theconditions of Theorem 5.6 hold. This condition can be formulated in a number of di�erentways, and is often referred to as the \eigenvalue method". The key idea is that themultiplicities of the eigenvalues of A(G) can be determined from a fairly limited amount ofinformation. There are surprisingly many situations where this is useful. The \classical"application is in demonstrating the non-existence of classes of, or individual, distance-regular graphs. The most well known, and earliest example, is provided by the work ofHo�man and Singleton [1960] on Moore graphs of diameter two and three. (A convenientdescription of their work, and more recent generalisations, will be found in Biggs [1974].)For another application we mention the proof of the fact that �nite projective planes cannot26



have a null polarity, as presented in Hughes and Piper [1973], and the generalisation ofthis result to the so-called \friendship theorem". (For more details and further references,see Cameron and Van Lint [1991: p. 45].) This method has also recently been applied inModel Theory (Evans [1986]), albeit at a point where the distinction between this subjectand Finite Geometry is hard to discern. Finally McKay [1979] has used Theorem 5.6 andCorollary 5.7 to determine, with the aid of a computer, all vertex-transitive graphs withfewer than 20 vertices.Our approach to Corollary 5.7 is not the standard one, which is based on computationswith the eigenvectors of � = A(�), and places much more restrictive conditions on G(namely that it should be a distance-regular graph). An accessible discussion from thisviewpoint is presented in Biggs [1974]. A detailed exposition along the lines taken abovewill be found in Godsil and McKay [1980].We are now going to derive some information about the o�-diagonal elements ofW (D;x). The adjugate of xI � A, i.e., the transpose of its matrix of cofactors, willbe denoted by 	(A;x). The most important property of 	 is that	(A;x)(xI �A) = det(xI �A)I:If A is the adjacency matrix of the directed graphD then (	(A;x))ii is equal to �(Dni; x).In this case we denote the ij-entry of 	(A;x) by �ij(D;x). It is easy to show thatx�1Wuv(D;x) = �uv(D;x)=�(D;x)If A is an n�n matrix and U � f1; : : : ; ng, we denote by 	U (A;x) the (square) submatrixof 	 with rows and columns indexed by the elements of U . We use A nU to denote thematrix obtained by deleting the rows and columns indexed by U . We need the followingcrucial result, the combinatorial signi�cance of which �rst seems to have been noted byTutte [1947, 1979].5.8 LEMMA (Jacobi [1833]). If A is an n�n matrix and U is a subset of f1; : : : ; ngwith m elements thendet	U (A;x) = (det(xI �A))m�1 det(xI � (AnU)):Proof. We may assume without loss that U = f1; : : : ;mg. Let M be the matrix obtainedby replacing the �rst m columns of the n � n identity matrix with the correspondingcolumns of 	(A;x). Then the product (xI �A)M has the form�det(xI �A) Im 0� xIn�m � (AnU)� (3)27



where the diagonal blocks are square (and the details of the sub-diagonal block are irrele-vant). Now detM = det	U (A;x) and so we have�(A;x) det 	U (A;x) = det�(xI �A)M� = (det(xI �A))m det(xI � (AnU)):(The last term is just the determinant of the matrix in (3).) This equation immediatelyyields the lemma.Lemma 5.8 is in fact a classical result, best described as well forgotten. It is sometimesreferred to as \Jacobi's identity", which is not a particularly useful identi�er. We will onlybe using it when jU j = 2. For ease of reference we restate this case in a modi�ed form.5.9 COROLLARY. Let D be a directed graph with vertices i and j. Then�ij(D;x)�ji(D;x) = �(Gnu; x)�(Gn v; x) � �(G;x)�(Gn fi; jg; x):When D is a graph, �ij(D;x) = �ji(D;x) and so Corollary 5.9 implies that�ij(G;x) =p�(Gnu; x)�(Gn v; x) � �(G;x)�(Gn fi; jg; x) (4)It might appear that the sign of �(D;x) is not determined by this expression, but we knowthat the rational function �ij(D;x)=�(D;x) has non-negative coe�cients when expandedas a series in x�1. This implies that the leading term of �(D;x) is always positive.A very nice application of equation (4) to graph reconstruction was found by Tutte.5.10 THEOREM (Tutte [1979]). If the characteristic polynomial of the graph G isirreducible over the rationals then G is vertex reconstructible.Proof. Let the vertex set of G be f1; : : : ; ng and suppose �(G;x) is irreducible. We provethat for any two distinct vertices i and j of G, the polynomial �(G n ij; x) is determinedby �(G;x), �(Gn i; x) and �(Gn j; x). We have�(Gn i; x)�(Gn j; x) � �(G;x)�(Gn ij; x) = �ij(G;x)2: (5)Now suppose that � is a polynomial such that�(Gn i; x)�(Gn j; x) � �(G;x)� = �2 (6)for some polynomial � of degree at most n�2. Then, subtracting (5) from (6), we obtain:�(G;x) (�(Gn ij; x) � �) = �ij(G;x)2 � �2:28



The right side of this equation is the product of two polynomials, each of degree at mostn � 2. Since this product is divisible by �(G;x), which is irreducible of degree n, we areforced to conclude that � = �(G n ij; x). This proves our claim. As noted in the proofof Lemma 5.3, if H has m vertices then the coe�cient of xm�2 in �(H;x) is equal to �1times the number of edges in H. So, given �(G), �(G n i), �(G n j) and �(G n fi; jg) wecan determine the number of edges joining i to j, i.e., whether or not i and j are adjacent.Therefore when �(G) is irreducible, the �rst three of these polynomials determine whetheri and j are adjacent.To complete the proof we now recall that in Tutte [1979] it is shown that the charac-teristic polynomial of a graphG is determined by the collection of vertex deleted subgraphsof G. Hence G is vertex reconstructible when �(G) is irreducible.The above proof still works if �(G) is not irreducible, but instead has an irreduciblefactor of degree n � 1. For another variation, suppose that �(G n 1) is irreducible. Anargument similar to the one above shows then that �(G), �(Gn1) and �(Gnf1; ig) determine�(Gn i). >From this it follows again that G is vertex reconstructible. This result was �rstproved, in apparently greater generality, in Hong Yuan [1982].There are close connections between the theory of matchings in graphs and the topicswe are discussing. To describe this we require some more notation. A k-matching in agraph is a set of k disjoint edges, no two of which have a vertex in common. The numberof k-matchings in the graph G will be denoted by p(G; k). We call�(G;x) :=Xk (�1)kp(G; k)xn�2kthe matchings polynomial of G. The task of computing this polynomial for a given graphis NP-hard (or, more precisely, #P-complete), since the constant term of �(G;x) countsthe number of perfect matchings in G and counting the number of perfect matchings inbipartite graphs is equivalent in complexity to determining the permanent of 01-matrices.>From Valiant [1979], we know that the latter is NP-hard. One consequence of this is that,unless P=NP, there is no easy way of computing �(G;x).Thus the matchings polynomial is in this regard a more intractable object than thecharacteristic polynomial of a graph. Nonetheless it is known that G is forest if and onlyif �(G;x) = �(G;x) and there are also some simple recurrences that enable us to computethe matchings polynomials of small graphs with some facility. The matchings polynomialsof bipartite graphs are essentially the same as \rook polynomials". (For information onrook polynomials see Riordan [1958]. For the matchings polynomial see Heilmann and29



Lieb [1972], Farrell [1979], Godsil and Gutman [1981] and Godsil [1981b, 1993: Chs. 1 &6].) An unexpected property of the matchings polynomial is that all its zeros are real.The �rst, second and third proofs of this are to be found in the above-mentioned paper ofHeilmann and Lieb. For a Combinatorialist this is perhaps not the easiest paper to read,and it is probably a non-trivial task even to locate all three of the proofs just referred to.)A fourth proof will follow from the next result. The fact that the zeros are real is notwithout combinatorial signi�cance. It implies, for example, that the sequence formed bythe numbers p(G; k) (k = 0; 1; : : :) is log-concave. (This was noted by Heilmann and Lieb.)Another consequence is that, in many cases of interest, the number of edges in a randomlychosen matching has exactly k edges is asymptotically normally distributed. (See Godsil[1981a].)5.11 THEOREM (Godsil [1981b]). Let G be a graph and let u be a vertex in G. LetT = T (G;u) be the tree with the paths in G that start at u as its vertices, and with twosuch paths adjacent if and only if one is a maximal subpath of the other. Then�(Gnu; x)�(G;x) = �(T nu; x)�(T; x) :(In the right side of the above identity, u denotes the one vertex path consisting ofu itself.) As we remarked above, when H is a forest we have �(H;x) = �(H;x). So fromTheorem 5.11 we deduce that all zeros and poles of the rational function �(Gnu; x)=�(G;x)are real. A trivial induction argument on the number of vertices in G now yields theconclusion that all the zeros of �(G;x) are real. Another consequence of Theorem 5.11 isthat �(Gnu; x)=�(G;x) is essentially a generating function for a class of walks in G. (Thisbecause the right hand side can be written as �(T nu; x)=�(T; x) and this is \essentially"a generating function, by Lemma 5.2.)Another connection between linear algebra and the theory of matchings is providedby Pfa�ans. We discuss this brie
y. Let A = (aij ) be a skew-symmetric n � n matrix,i.e., AT = �A. let F(n) be the set of permutations � of f1; : : : ; ng such that all cycles of� have even length. (So F(n) is empty if n is odd. Then it is known thatdetA = � X�2F(n) sig(�)wt(�)�2: (7)Here wt(�) = Qni=1 ai;(i)� and sig(�) = �1. (The exact de�nition of sig(�) will not beneeded.) The sum here is known as the Pfa�an of A. For more information about the30



Pfa�an, the reader is referred to Godsil [1993: Chapter 7], Lov�asz [1979a], Stembridge[1990], or Northcott [1984].Suppose now that we are given a graph G, and that we wish to determine whether ithas a perfect matching. This can be done as follows. Let ~A = aij be a skew-symmetricmatrix such that aij = 0 if i and j are not adjacent in G and, moreover, the numbersfaij : i < j; ij 2 E(G)g are algebraically independent over the rationals. Then from (7)we see that det ~A is non-zero if and only if G has a perfect matching. This fact, togetherwith Lemma 5.8, was used by Tutte to derive his characterisation of graphs with no perfectmatchings.Instead of choosing the entries of ~A to be algebraically independent, we can also choosethem at random. If det ~A 6= 0 then G must have a perfect matching. If det ~A = 0 then weare left uncertain, but by repeating the experiment a number of times we can reduce theuncertainty to any desired level. This strategy was �rst suggested in Edmonds [1967], forbipartite graphs. For an elegant implementation of this idea and some related backgroundinformation, see Mulmuley, Vazirani and Vazirani [1987].6. EIGENVALUE METHODSIn this section our study of adjacency matrices is continued, but now our emphasis will beon their eigenvalues, rather than on walks. We con�ne ourselves almost entirely to graphs,which means that our adjacency matrices will be symmetric and their eigenvalues real. Agreat deal of e�ort has been devoted to the study of the relation between the structure of agraph G and the eigenvalues of A(G). Although this subject has considerable independentinterest, we con�ne ourselves almost entirely to its applications. We begin by introducingtwo fundamental results frommatrix theory, the �rst of which is a version of the well knownPerron-Frobenius theorems. (See, e.g., Cvetkovi�c, Doob and Sachs [1980: Theorem 0.3].)6.1 THEOREM. Let G be a connected graph. Then the largest eigenvalue � of A(G) issimple, and the entries of the corresponding eigenvector are all positive. If � is any othereigenvalue of A(G) then � � ��, with equality holding if and only if G is bipartite. Thelargest eigenvalue of any proper subgraph of G is less than �.(The most general, and most natural, form of the Perron-Frobenius theorem is con-cerned with non-negative matrices; the above version su�ces for most of what we need.) IfG has maximum degree � and largest eigenvalue � then p� � � � �. The �rst inequalityholds because the complete bipartite graphKi;� is a subgraph of G and the second becauseG can be realised as a subgraph of a �-regular graph. (This also shows that we can have� = � if and only if G is regular.) 31



6.2 THEOREM. Let u be a vertex in the graph G. Then the eigenvalues of G n uinterlace those of G (i.e., between any two eigenvalues of Gnu there lies an eigenvalue ofG).Proof. Assume that G has n vertices and let A = A(G). If U is a subspace of Rn, de�ne�U (A) to be the minimum value of xTAx as x ranges over the unit vectors in U . Denotethe k-th largest eigenvalue of A by �k(A). It is known that�k(A) = maxdim(U)=kminx2U xTAxxTx :Let S be an m� n matrix with orthonormal rows, i.e., SST = Im. Then we have�k(SAST ) = maxdim(U)=k �U (SAST ) = maxdim(U)=k �SU (A)whence it follows that �k(SAST ) � �k(A): (1)Applying the same argument to �A, we further deduce that for k = 0; : : : ;m,�m�k(SAST ) � �n�k(A): (2)If we now choose S to consist of n � 1 rows of the identity matrix In then we obtain thetheorem.The interlacing property of the eigenvalues of symmetric matrices was �rst notedin Mechanics, arising in the study of the behaviour of a (mechanical) system as newconstraints are imposed on its parameters. The proof we have given is based on Haemers[1979]. Haemers has used Equations (1) and (2) above to obtain a number of interestingresults in graph theory and design theory. It is worth noting that there is a connection hereto the theory of quotients. Suppose that, in our usual notation, we have PA = �P whereP is the characteristic matrix of an equitable partition. Choose � to be the non-negativediagonal matrix such that �2 = PPT . Then ��1PA = ��1�� � ��1P and so we may setS = ��1P and � = ��1�� to obtain SAST = �. The rows of S are pairwise orthogonaland thus the inequalities (1) and (2) follow.Theorem 6.2 implies that any eigenvalue of G with multiplicity greater than one mustalso be an eigenvalue of any vertex-deleted subgraph G nu. Another consequence is thatthe least eigenvalue of G n u is bounded below by the least eigenvalue of G. Thus, theclass of all graphs with least eigenvalue greater than a �xed number � is closed under the32



operation of taking subgraphs. The study of these classes turns out to be quite interesting,so we discuss it brie
y.Denote the least eigenvalue of G by �min(G). Since the eigenvalues of K2 are �1 and1, it follows that �min(G) � �1 for any graph G with at least one edge. The eigenvaluesof K1;2 are �p2, 0 and p2, whence we deduce that if G is connected and not completethen �min(G) � �p2. A more interesting case is the class of graphs with �min � �2. Itcan be shown that all line graphs have this property, along with the so-called \generalisedline graphs". Considerable e�ort was devoted to characterising the remaining graphs inthis class before Cameron et al [1976] produced a short, ingenious and elegant solution.Their work was all the more interesting in that it was based on a connection with thetheory of root systems. We outline the way this arises. Let G be a graph with vertex setV (G) = f1; : : : ; ng such that A(G)+2I is a positive semide�nite matrix. There is a matrixX, with linearly independent columns, such that A(G) + 2I = XXT . Let xi be the i-throw of X. Then (xi; xj ) = 8<: 2; if i = j;1; if i � j;0; otherwise.Let L be the lattice formed by the set of all integral combinations of the columns of X. Ifx a row of X then the mapping a 7! a � (a; x)x�xes L. (Note that this mapping represents re
ection in the hyperplane in Rm perpen-dicular to x.) From this it follows that the vectors xi, for i in V (G), are a subset of aroot system. (For an elementary and pleasant introduction to root systems, see Grove andBenson [1985].)It would appear that this topic is far from being exhausted. Neumaier [1979] showedthat, with �nitely many exceptions, the strongly regular graphs with �min = �k (for somepositive integer k) belong to one of two in�nite families. (The strongly regular graphs Gwith �min(G) not an integer fall into a third in�nite family.) Ho�man [1977] shows that agraph with �min � �1 � p2 and having \large" valency is a generalised line graph, andconsequently has least eigenvalue at least �2. (Here \large" is determined by Ramseytheory, and is thus only technically �nite.) This is an intriguing result.The eigenvalues of a graph also give information about its chromatic number, and re-lated quantities. Let �max(G) denote the largest eigenvalue of G. We denote the chromaticnumber of G by �(G). 33



6.3 THEOREM (Ho�man [1970]). The chromatic number of a graph G is boundedbelow by 1� �max(G)=�min(G).Proof. Let z be an orthonormal eigenvector of G with eigenvalue �max(G). Assume thatG can be properly coloured with c colours. Such a colouring determines a partition ofV (G) with c cells and characteristic matrix P . Let ~P be the matrix constructed from Pby replacing the non-zero entry in column i of P by the corresponding entry of z, andthen deleting all zero rows. The rows of ~P are not orthonormal, but there is a uniquenon-negative diagonal matrix � such that the rows of S := � ~P are are. There is also avector y such that yTS = zT . ConsequentlyyTSASTy = zTAz = �max(G);which implies that �max(G) � �max(SAST ). On the other hand, since the rows of S arepairwise orthonormal, inequalities (1) and (2) apply. Thus we deduce that �max(G) =�max(SAST ) and accordingly that(c� 1)�min(SAST ) + �max(G) = (c� 1)�min(SAST ) + �max(SAST ):By (2), the left hand side is bounded below by (c� 1)�min(G) + �max(G). The right handside is bounded above by trSAST . It is easy to see that the diagonal entries of SAST areall zero, hence the sum of its eigenvalues is zero. This implies that(c� 1)�min(G) + �max(G) � 0and this yields the theorem.In deriving Theorem 6.3 we did not use the fact that the non-zero entries of A are allequal to 1; in fact a careful reading will show that we have actually proved that if B isa symmetric matrix such that (B)ij = 0 whenever i and j are non-adjacent vertices in Gthen �(G) � 1� �max(B)=�min(B):If �min(B) = �� then C := I+��1B is a positive semide�nite matrix with diagonal entriesequal to 1 and with (C)ij = 0 whenever i and j are distinct non-adjacent vertices in G.This leads us to: 34



6.4 COROLLARY. Let G be a graph on n vertices and let 
(G) be the set of allpositive semide�nite matrices C such that (C)ii = 1 for all vertices i of G, and (C)ij = 0whenever i and j are distinct non-adjacent vertices. Then�(G) � maxC2
(G)�max(C):The complement of the graph G will be denoted by G. The quantitymaxf�max(C) j C 2 
(G)gis usually denoted by �(G). Thus Corollary 6.4 asserts that �(G) � �(G). Now supposethat the vertices in the subset S of V (G) induce a complete subgraph of G. Let CS be the01-matrix with ij-entry equal to 1 when i and j both lie in C, and equal to zero otherwise.Then CS 2 
(G) and �max(CS) = jSj. This shows that �(G) � �(G), or equally that�(G) � �(G). (Here �(G) is the maximum number of vertices in an independent set fromG.) The quantity �(G) was �rst introduced in Lov�asz [1979b], where he established thatit provides a lower bound on the \Shannon capacity" of G. We discuss this brie
y. If Gand H are graphs, let us denote by G �H their strong product. This can be de�ned asthe graph with (A(G) + I)
 (A(H) + I)as its adjacency matrix. (Thus the vertex set of G�H is the Cartesian product of V (G)and V (H), and the pairs (u; v) and (u0; v0) are adjacent if and only if u is equal or adjacentto u0 in G and v is equal or adjacent to v0 in H. The strong product of n copies of G willbe denoted by Gn. It is not hard to show that �(G �H) � �(G)�(H) and from this onecan deduce that the Shannon capacity�(G) := lim sup(�(Gn)1=n)exists. The signi�cance of �(G) stems from the facts that it is an upper bound for �(G),and that it is multiplicative, i.e., �(G � H) = �(G)�(H). Together these imply that�(G) � �(G). (For the proof that �(G) is multiplicative we refer the reader to Lov�asz[1979b].) Note that it is not di�cult to verify that 
(G�H) contains 
(G)

(H), andthis implies that �(G � H) � �(G)�(H). It is proved in Gr�otschel, Lov�asz and Schrijver[1981] that �(G) can be computed in polynomial time. Lov�asz found a number of di�erentexpressions for �(G). One of these is, in a sense, dual to our de�nition.35



6.5 THEOREM. (Lov�asz [1979b].) For any graph G, let M(G) denote the set of allpositive semide�nite matrices such that trB = 1 and (B)ij = 0 if i and j are distinctvertices of G. Then �(G) = minB2M(G) tr(JB):Using the theory he developed, Lov�asz was able to deduce the value of �(G) in manynew cases. (The smallest of these was C5, the cycle on �ve vertices, while �(C7) is stillunknown. This gives some idea of the di�culty of this problem.) Haemers found a simpleargument which sometimes provides a better bound on �(G) than �(G) does. He observedthat, if � 6= 0, then the submatrix of A(G) + �I corresponding to an independent set on svertices is just �Is. Hence it is non-singular and so we deduce that�(G) � rank(A+ �I):>From this it can be shown that rank(A + �I) is an upper bound on �(G). For moreinformation, and examples where this bound is better than �(G), see Haemers [1981].Eigenvalue methods have also been applied to graph factorisation problems. The nextexample is possibly the best known of these.6.6 Lemma (Graham and Pollak [1972]). The edge set of Kn cannot be partitionedinto fewer than n� 1 complete bipartite subgraphs.Proof. Let G be graph on n vertices that is is the edge-disjoint union of subgraphsH1; : : : ;Hr . Assume that each of these subgraphs Hi is a spanning subgraph of G con-sisting of a complete bipartite graph, together with some isolated vertices. We assumewithout proof the easily established fact that if H is a complete bipartite graph on mvertices then there is an m-dimensional subspace U of Rm such that the inner product(u;A(H)u) is non-negative for all u in U . (In fact U is spanned by the eigenvectors ofA(H) with non-negative eigenvalues.) We say that U is non-negative for A(H). It followsthat we can associate to each subgraph Hi an (n � 1)-dimensional subspace of Rn that isnon-negative for A(Hi).The intersection of the r subspaces U1; : : : ; Ur has dimension at least n� r and so, ifr � n � 2, there is a 2-dimensional subspace U 0 of Rn that is non-negative for the A(G).In U 0 we can �nd a non-zero vector z orthogonal to the \all ones" vector j such that(z;A(G)z) � 0. Now suppose that G = Kn. Then A(G) = J � I and so, if z is a non-zerovector orthogonal to j, then (z;A(G)z) = �(z; z) < 0. This shows that r > n� 2.The argument just used can be rephrased in terms of real quadratic forms, and in thissetting even shorter proofs of Lemma 6.6 can be found. One corollary of the above proof36



is that a graph on n vertices with exactly m non-negative eigenvalues cannot be expressedas the edge disjoint union of fewer than n�m complete bipartite graphs. We note anotherresult that can be proved with the method at hand.6.7 Lemma (A. J. Schwenk [1983,1987]). The complete graph on 10 vertices cannotbe expressed as the the edge disjoint union of three copies of Petersen's graph.Proof. Assume that we have J10 � I10 = A +B + Cwhere A, B and C are 01-matrices and A and B are both adjacency matrices of copies ofPetersen's graph. It is known that the eigenvalues of Petersen's graph are �2, 1 and 3, andthat the eigenvalue 1 has multiplicity six. Let T and U be the eigenspaces associated to theeigenvalue 1 of A and B respectively. Since j is an eigenvector with eigenvalue 3 for bothA and B, it follows that T and U both lie in the 9-dimensional subspace of R10 formed bythe vectors orthogonal to j. Consequently they must have a non-zero common subspace,which we assume is spanned by a vector z. Then (J � I)z = �z and so Cz = (�3)z.Thus C has �3 as an eigenvalue, and so cannot be the adjacency matrix of (a copy of)Petersen's graph.Note that the matrix C must be the adjacency matrix of a cubic graph and that,by Theorem 6.1, a cubic graph with least eigenvalue equal to �3 is bipartite. Thus theabove method is providing more information than is contained in the statement of thelemma, and it also can easily be applied to other situations. It could, for example, be usedto study the possibility of partitioning the edges of Kn into three copies of some givenstrongly regular graph (on n vertices).Mohar [1992] develops a relation between graph eigenvalues and Hamiltonicity. Oneconsequence of this theory is a proof that the Petersen graph does not contain a Hamiltoncycle. There is an amusing direct proof of this using interlacing, which we now describe.Suppose by way of contradiction that there was a Hamilton cycle in the Petersen graph.Then the line graph L(P ) of the Petersen graph would contain an induced copy of C10 andso, by interlacing, �i(C10) � �i(L(P )) for i + 1; : : : ; 10. But in fact �7(C10) > �7(L(P )),so the Hamilton cycle cannot exist. (This argument fails to prove that the Coxeter graphhas no Hamilton cycle; it would be very interesting to �nd an extension of this argumentwhich would work for the Coxeter graph.)Our next topic is the connection between graph eigenvalues and connectivity. For thisit is sometimes convenient to use modi�ed forms of adjacency matrices. We discuss thembrie
y. 37



If G is a graph on n vertices, let � = �(G) be the n � n diagonal matrix with �iiequal to the valency of the i-th vertex of G. The incidence matrix of B = B(G) of G is the01-matrix with rows indexed by the vertices of G, columns by the edges and with (B)ijequal to 1 if and only if vertex i is in edge j. Then we haveBBT = �(G) +A(G); BTB = 2I +A(L(G));where L(G) denotes the line graph of G. (Remark: since BTB is positive semide�nite, itfollows that �min(L(G)) � �2, as we mentioned in the discussion following Theorem 6.2.)An orientation of G can be de�ned to be a function � on V � V such that �(u; v) =��(v; u), and is zero if u and v are not adjacent. If �(u; v) = 1 we call v the head and uthe tail of the edge fu; vg. The pair (G;�) is an oriented graph. The incidence matrix B�of (G;�) is de�ned by (B�)x;e =8<: 1; if x is the head of e;�1; if x is the tail of e;0; otherwise.The pertinent property of B� is thatB�(B�)T = �(G)�A(G): (3)Much of our notational e�ort is gone to waste, since the right hand side of (3) is clearlyindependent of the orientation �. We do deduce, however, that ��A is a positive semidef-inite matrix. The multiplicity of 0 as an eigenvalue of � � A is equal to the dimensionof the null-space of B�. This is in turn is known to equal n � c, where c is the numberof connected components of G. (One reference for the unproved assertions here is Biggs[1974].) (If G is bipartite then � � A and � + A are similar matrices. I know of noreference for this. However in this case it is easy enough to �nd a diagonal matrix �, withdiagonal entries equal to �1, such that B� = �B. Then �(� � A)� = �(�� A)� and,since � = ��1, this proves the claim.)Let �2(G) denote the second smallest of the n eigenvalues of � � A. From ourremarks above we see that �2(G) 6= 0 if and only if G is connected. A study of the relationbetween �2 and connectivity has been made by Fiedler [1973]. We observe that that ifwe delete the �rst row and column from ��A we obtain a matrix, D say, di�ering from�(Gn1)�A(Gn1) by the addition of some non-negative terms to its diagonal. >From thisit can be deduced that the i-the eigenvalue of D is at least as large as the i-th eigenvalue of�(Gn1)�A(Gn1). Since the eigenvalues of this latter matrix interlace those of ��A, we38



conclude that �2(Gn1) � �2(G). This implies, as noted by Fiedler, that �2(G) is a lowerbound on the vertex connectivity of G. In fact it can be argued that it is more naturalhere to consider edge-deleted subgraphs, rather than vertex deleted subgraphs of G. Forif e 2 E(G) and H := Gn e than the di�erence between �(G) �A(G) and �(H) �A(H)is a matrix with rank one. This implies that the eigenvalues of Gn e interlace those of G.If X � V (G), let @X denote the number of edges of G with one end in X and theother not in X. We have:6.8 LEMMA. Let G be a graph with n vertices and let X be a subset of V (G). Thenj@Xj � �2(G)jXjjV nXj=n:Proof. Let j be the vector with all entries equal to 1. Since the rows and columns of ��Aall sum to 0, we always have (��A)j = 0. This implies that�2(G) = minf(z; (� �A)z) j (z; j) = 0; kzk = 1g:We also have (z; (��A)z) = Xij2E(G)(zi � zj)2:Now de�ne z by setting zi equal to � when i 2 X, and to � otherwise. Choose � and � sothat (z; j) = 0 and kzk = 1. Then (z; (� �A)z) = j@Xj(� � �)2. After some calculationwe arrive at the statement of the lemma.A more general result, using the same basic approach of \guessing" a trial eigenvectorz for �2, can be found in Alon and Milman [1985: Lemma 2.1]. Their work is devotedto a study of \expanders". We will not discuss these further, but instead refer the readerto Chapter 32 in this handbook. This subject is perhaps the most important recentapplication of graph eigenvalues to combinatorics.ACKNOWLEDGEMENTI wish to thank the combinatorialists at Queen's University (Kingston), in particular Do-minique de Caen and Sylvia Monson. They worked through a draft of this chapter in theirseminar, and supplied me with a list of the errors they noted.39



7. APPENDIX: RANDOM WALKS, EIGENVALUES, AND RESISTANCE(L. Lov�asz)The results of sections 5 and 6 concerning the walk generating functions of graphs areclosely related to random walks on graphs and to the theory of �nite Markov chains, andalso to the electrical resistance of the graph. For more on this topic, see Lov�asz [1979a],second edition, Chapter 11.Let G be a d-regular connected graph on n vertices with adjacency matrix A. (Mostof the results below extend to non-regular graphs, but the formulations are much simplerfor regular graphs. We can reduce the general case to this by adding a su�cient numberof loops at each vertex; here, a loop adds only 1 to the degree.)Consider a random walk on G: starting at a node v0, at each step we are at a vertexvt, and move to each neighbor with probability 1=d. Let vt be the random vertex we areat after t steps. Clearly, the sequence of random vertices (vt : t = 0; 1; : : :) is a symmetricMarkov chain, and P = d�1A is the matrix of transition probabilities. (In fact, everysymmetric Markov chain can be viewed as random walk on a graph, if we allow weightededges. Most facts mentioned below extend quite naturally to all symmetric Markov chains;many extend even to non-symmetric ones.)Random walks arise in many models in mathematics and physics. For example, con-sider the shu�ing of a deck of cards. Construct a graph whose vertices are all permutationsof the deck, and two of them are adjacent if they come by one shu�e move, dependeningon how we shu�e. Then repeated shu�e moves correspond to a random walk on this graph(see Diaconis [1988]). Models in statistical mechanics can be viewed as a random walk onthe set of states.Random walks have important algorithmic applications. They can be used to reach\obscure" parts of large sets, and also to generate random elements in large and compli-cated sets, such as the set of lattice points in a convex body or the set of perfect matchingsin a graph (which, in turn, can be used to the asymptotic enumeration of these objects).See Aleliunas, Karp, Lipton, Lov�asz, and Racko� [1979], Sinclair and Jerrum [1988], Dyer,Frieze and Kannan [1989] for some of these applications.The probability ptij that, starting at i, we reach j in t steps is the ij-entry of P t. Wede�ne the probability generating function for the random walks on G to beP (G;x) := 1Xt=0 xtP t = (I � xP )�1: (1)40



This is of the same form as the walk generating functions studied earlier, and one canapply much of the theory described in the last two sections.Since P is symmetric, its eigenvalues are real. A trivial eigenvalue of P is 1, with thecorresponding eigenvector (1; : : : ; 1)T . It follows from the Frobenius{Perron theory thatthis eigenvalue is unique and that P has spectral radius 1. The value �1 is an eigenvalueof P i� G is bipartite.Let 1 = �1 � : : : � �n be the eigenvalues of P (these are just the eigenvalues of Adivided by d), and let v1; : : : ; vn be corresponding eigenvectors (normed to unit length).Let vk = (vk1; : : : ; vkn)T . Clearly we can take v1i = 1=pn.Expressing A in terms of its eigenvectors, we getA = nXk=1�kvkvTkand hence p(t)ij = nXk=1�tkvkivkj = 1n + nXk=2�kvkivkj : (2)We shall see how this basic formula can be applied in the analysis of randomwalks; but�rst let us introduce some parameters that are signi�cant in the algorithmic applicationsmentioned above.(a) The mean access time �ij is the expected number of steps required to reach avertex j, starting from a vertex i. The sum 
ij = �ij + �ji is called the mean commutetime.(b) Themean cover time is the expected number of steps to reach every vertex (startingat the vertex for which this is maximum).(c) The mixing rate is a measure of how fast the random walk converges to its limitingdistribution. (How long should we shu�e a pack of cards?) This can be de�ned as follows.If the graph is non-bipartite, then p(t)ij ! 1=n as t!1, and the mixing rate is� = lim supt!1 maxi;j ����p(t)ij � 1n ����1=t :(For a bipartite graph with bipartition fV1; V2g, the distribution of vt oscillates between\almost uniform on V1" and \almost uniform on V2". The results for bipartite graphs aresimilar, just a bit more complicated to state, so we ignore this case.)We have to walk about (1 � �)�1 steps before the distribution of vt will be closeto uniform. The surprising fact, allowing the algorithmic applications mentioned above,41



is that this number may be much less than the number of nodes; for an expander, forexample, this takes only a constant number of steps.An algebraic formula for the mixing rate is easily obtained. Let � = maxfj�2j; j�njg,then it follows by (2) that ����p(t)ij � 1n ���� < �t nXk=2 jvkivkj j < �t:So � � �; it is not di�cult to argue that equality must hold here.7.1 THEOREM. The mixing rate of a random walk on a non-bipartite graph G ismaxfj�2j; j�njg:Lemma 6.8 has established a connection between the second-largest eigenvalue of A(equivalently, of P ) and a certain edge-connectivity property of the graph. We de�ne theconductance � = �(G) of the graph G as the minimum of n@X=(djXjjV n Xj) over allnon-empty sets X � V . Combining Lemma 6.8 with results of Sinclair and Jerrum [1988]we obtain the following (cf. Alon [1986], Diaconis and Stroock [1991], and also Chapter32, Theorems 3.1 and 3.2):7.2 THEOREM. �2=4 � 1� �2 � �.7.3 COROLLARY. ����p(t)ij � 1n���� � �1� �24 �t :The mean access time and the mean commute time can be estimated by elementarymeans (but, as we shall see later, eigenvalues provide more powerful formulas). We remark�rst that in a very long random walk, every vertex is visited on the average in every nthstep and every edge is traversed in each direction on the average in every 2mth step, wherem is the number of edges. (This second assertion remains valid also for random walks overnon-regular graphs.) Hence it follows that if we start from node i, and j is an adjacentnode, then within 2m steps we can expect to pass through the edge ji; hence the meancommute time for two adjacent nodes is bounded by 2m. It follows that the mean commutetime between two nodes at distance r is at most 2mr < n3. A similar bound follows forthe mean cover time.Let q(t)ij denote the probability that the random walk starting at i hits vertex j the�rst time in the tth step. Then we have the following identity by easy case distinction:p(t)ij = tXs=0 q(s)ij p(t�s)jj :42



Hence we get for the generating functions fij (x) = P1t=0 p(t)ij xt and gij(x) = P1t=0 q(t)ij xtthat fij(x) = gij(x)fjj (x):Now here fij (x) = 1Xt=0 nXk=1vkivkj�txt = nXk=1 vkivkj1� �kx ;and so gij(x) = nXk=1 vkivkj1� �kx, nXk=1 v2kj1� �kxNow �ij = g0ij(1); from this explicit formula we get7.4 THEOREM. The mean access time is given by�ij = n nXk=2 v2kj � vkivkj1� �k :7.5 COROLLARY. The mean commute time is given by
ij = n nXk=2 (vki � vkj)21� �k :Since the vectors ui = (vik)nk=1 are mutually orthogonal unit vectors, we can derivethe following bound on the mean commute time between any pair of nodes:
ij = n nXk=2 (vki � vkj)21� �k � n 11� �2 nXk=2(vki � vkj)2= n 11� �2 (ui � uj)2 = 2n=(1� �2):Using Theorem 7.2, we get 
ij � 8n�2 ;which is better than the elementary bound if, e.g., the graph is an expander. In this casewe obtain that 
ij = O(n). It also follows from Corollary 7.5 that the mean commutetime between any two vertices of any regular graph on n nodes is at least n, so this is bestpossible for expanders. The best known bound for the mean commute time in a generalregular graph is O(n2), which follows from the analogous bound for the mean cover timebelow.No eigenvalue formula for the mean cover time is known, but a rather good boundfollows by elementary probability theory (Matthews [1988]):43



7.6 PROPOSITION. The mean cover time of a randomwalk on a graph with n verticesis at most O(log n) times the maximum of the mean access times between all pairs ofvertices..The mean cover time of a regular graph is O(n2) (Kahn, Linial, Nisan and Saks [1989];this issue of J. Theor. Prob. contains many other interesting papers on this problem). Thisgives a surprisingly narrow range for cover times. It is conjectured that the graph withsmallest cover time is the complete graph (whose cover time is � n logn).There is an interesting connection between random walks on graphs and electricalnetworks. We may consider a graph G on n vertices as an electrical network, every edgecorresponding to unit resistance. The network has some resistance Rij between any pairof vertices. A whole book has been written on this connection (Doyle and Snell [1984]);here we only formulate one surprising identity (Nash-Williams [1959], Chandra, Raghavan,Ruzzo, Smolensky, and Tiwari [1989]):7.7 THEOREM. The mean commute time between vertices i and j is ndRij .The proof (which is only sketched) is connected to yet another interesting notion. Wecall a function � : V (G)! R harmonic with poles s and t ifXi2N(j)�(i) = d�(j)for every j 6= u; v. It is easy to see that if we normalize so that �(s) = 1 and �(t) = 0,then the harmonic function with given poles is uniquely determined.There are (at least) two rather natural ways to construct such harmonic functions.(1) Consider the graph as an electrical network as above. Give voltage 1 to s andvoltage 0 to t. Then the voltage �(i) of vertex i de�nes a harmonic function.(2) Let �(i) denote the probability that a random walk starting at i hits s before ithits t. It is trivial that this de�nes a harmonic function.Now the resistance Rst is 1=(total current) = 1=Pi2N(t) �(i). On the other hand,consider a very long random walk, with K steps, say. This hits t about K=n times. Calla hit interesting if after it the random walk hits s before it hits t again. Between twointeresting hits, the average number of steps is 
st. Now the probability that a given hitis interesting is 1dPi2N(t) �(i), by interpretation (2) of the harmonic function. Hence thenumber of interesting hits is about 1dPi2N(t) �(i)(K=n), and so the average number ofsteps between them is nd=(Pi2N(t) �(i)) = ndRst.44
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