
Quantum Morphisms HW

Summer 2021

1. Review Chapter 5 here if necessary.

2. A matrixM ∈ Cn×n which maps quantum states to quantum states must satisfy 〈ψ|M∗M |ψ〉 =
1 for all unit vectors |ψ〉 ∈ Cn. Show that this implies that M∗M = I .

3. Suppose that |ψ0〉 and |ψ1〉 form an orthonormal basis of C2. Show that if a quantum
system is in state |ψi〉 with probability 1/2 for each i = 0, 1, then the density matrix
describing this system is 1

2I ∈ C2×2. Prove the analogous result with 2 replaced with n.

4. Show that
1√
2

(|00〉+ |11〉) :=
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) ∈ C2 ⊗ C2

is entangled, i.e., cannot be written as |ψ1〉 ⊗ |ψ2〉 for any |ψ1〉, |ψ2〉 ∈ C2.

5. Suppose that the density matrix ρ ∈ CdA×dA ⊗ CdB×dB is the state of a composite sys-
tem consisting of system A (corresponding to CdA×dA) and system B (corresponding to
CdB×dB ). Show that if we measure system A with measurement A = (E1, . . . , Ek) and
then measure systemB of the post-measurement state with measurementB = (F1, . . . , Fr),
the probability of obtaining outcome i from the first measurement and j from the second
measurement is the same of the probability of obtaining outcome (i, j) from the global
measurement (E1 ⊗ F1, E1 ⊗ F2, . . . , Ek ⊗ Fr). Also show that the probability of obtain-
ing outcome j from the measurement on system B does not depend on the choice of
measurement A performed on system A.

6. Let |ψ〉 = 1√
2

(|00〉+ |11〉) ∈ C2 ⊗ C2. Show that performing a full basis measurement on
the first qubit using basis |φ0〉, |φ1〉 ∈ C2 results in outcome i ∈ {0, 1} with probability
1/2 and the post-measurement state in this case is |φi〉 ⊗ |φi〉. Conclude that performing
a full basis measurement on the second qubit using basis |φ0〉, |φ1〉 will always result in
the same outcome as the first measurement described above.

7. Let vec denote the linear function that takes |a〉〈b| to |a〉⊗ |b〉, i.e., creates a column vector
from a matrix by stacking (the transpose of) its rows on top of each other. Use this to
show that the quantum state

|Ψd〉 =
1√
d

d−1∑
0

|ψi〉 ⊗ |ψi〉 ∈ Cd ⊗ Cd

is the same for any choice of orthonormal basis |ψ0〉, . . . , |ψd−1〉 ∈ Cd. This state is often
called the maximally entangled state in local dimension d.

8. Show that
(M ⊗N) vec(X) = vec(MXNT ) (1)
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for all M,N,X such that the product MXNT is defined. Use this and the fact that
vec(A)∗vec(B) = Tr(A∗B) for A,B ∈ Cm×n to show that

〈Ψd|M ⊗N |Ψd〉 =
1

d
Tr(MNT ). (2)

for M,N ∈ Cd×d.

9. Recall that in the CHSH game both Alice and Bob’s input and output sets are {0, 1} and
the verifier sends each possible pair of inputs with uniform probability, and they win if
their inputs x, y and outputs a, b satisfy x∧ y = a⊕ b where ∧ denotes the AND function
and ⊕ denotes xor or the sum modulo 2.

Suppose that Alice and Bob play the CHSH game with shared state |ψ〉 and projective
measurements (i.e. measurements whose operators are all projections) E0 = (E00, E01),
E1 = (E10, E11) for Alice and F0 = (F00, F01), F1 = (F10, F11) for Bob. Define A0 =
E00 − E01, A1 = E10 − E11, and analogously for Bi (these are called observables). Note
that A2

i = B2
i = I for all i. Show that the expression

1

4
〈ψ|
(
A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1

)
|ψ〉 (3)

is equal to the bias of their strategy, i.e., their probability of winning minus their proba-
bility of losing. By bounding the maximum eigenvalue of the square of the operator in
parentheses in (3), show that the bias of any quantum strategy using projective measure-
ments for the CHSH game is at most

√
2
2 . In fact it is known that any quantum correlation

can be produced by a strategy that uses projective measurements, thus we have shown
that the optimal quantum bias for CHSH is at most

√
2
2 .

Now show that this bias can be obtained by letting |ψ〉 = |Ψ2〉, and A0 = Z, A1 = X ,

B0 = 1√
2

(Z +X), B1 = 1√
2

(Z −X), where Z =

(
1 0
0 −1

)
and X =

(
0 1
1 0

)
respectively

(these are the Pauli X and Z matrices). These are the observables corresponding to the
strategy presented in class.

10. Recall that a correlation p : OA ×OB × IA × IB is non-signalling if∑
b∈OB

p(a, b|x, y) is independent of y ∈ IB, and

∑
a∈OA

p(a, b|x, y) is independent of x ∈ IA.
(4)

Find a non-signalling correlation that wins the CHSH game with probability 1.

11. Show that if P1, . . . , Pk are projections such that
∑k

i=1 Pi = I , then PiPj = δijPi where δij
is the Kronecker delta.

12. Suppose that Alice and Bob play the (G,H)-homomorphism game with shared state
|ψ′〉 ∈ CdA×dB and POVMs E ′g = {E′gh ∈ CdA×dA : h ∈ V (H)} for g ∈ V (G) for Alice
and F ′g = {F ′gh ∈ CdB×dB : h ∈ V (H)} for g ∈ V (G) for Bob. By considering the singular
value decomposition of the dA × dB matrix X such that vec(X) = |ψ′〉, we can write

|ψ′〉 =

d∑
i=1

λi|αi〉 ⊗ |βi〉
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where |α1〉, . . . , |αd〉 ∈ CdA and |β1〉, . . . , |βd〉 ∈ CdB are orthonormal sets of vectors and
λi > 0 for all i (this is called the Schmidt decomposition of |ψ′〉. Define

PA :=
d∑

i=1

|i〉〈αi| ∈ Cd×dA ;

PB :=

d∑
i=1

|i〉〈βi| ∈ Cd×dB ;

|ψ〉 := PA ⊗ PB|ψ′〉 =

d∑
i=1

λi|ii〉;

Egh := PAE
′
ghP

∗
A;

Fgh := PBF
′
ghP

∗
B.

Verify that Eg = {Egh ∈ Cd×d : h ∈ V (H)} and Fg = {Fgh ∈ Cd×d : h ∈ V (H)} are
valid POVMs for g ∈ V (G) and that using these with the state |ψ〉 produces the same
correlation as the original strategy, i.e.,

〈ψ|Egh ⊗ Fg′h′ |ψ〉 = 〈ψ′|E′gh ⊗ F ′g′h′ |ψ′〉 for all g ∈ V (G), h ∈ V (H).

Conclude that we can always assume that the state used in a quantum strategy has the
form

∑d
i=1 λi|ii〉 ∈ Cd ⊗ Cd with λi > 0 for all i.

13. Suppose that A,B,X ∈ Cd×d are Hermitian matrices satisfying AX = AXB = XB and
X is positive definite (i.e., positive semidefinite and invertible). Show that A = B and
this is a projection that commutes with X (not necessarily in that order).

14. Suppose that the quantum strategy using shared state |ψ〉 =
∑d

i=1 λi|ii〉 ∈ Cd ⊗ Cd with
λi > 0 for all i, and POVMs Eg and Fg for g ∈ V (G) for Alice and Bob respectively wins
the (G,H)-homomorphism game with probability 1. Note that this implies that

〈ψ|Egh ⊗ Fgh′ |ψ〉 = 0 if h 6= h′.

Use this and the identities in Exercise 8 to show that EghXF
T
gh′ = 0 if h 6= h′ where

X =
∑d

i=1 λi|i〉〈i| is the matrix in Cd×d such that vec(X) = |ψ〉. Combine this with the
result of Exercise 13 (and properties of POVMs) to show that Egh = F T

gh and these are
projections that commute with X for all g ∈ V (G) and h ∈ V (H). Use this to show that

〈ψ|Egh ⊗ Fg′h′ |ψ〉 = 0⇔ EghF
T
g′h′ = 0.

From this conclude that replacing |ψ〉 with vec
(

1√
d
I
)

= |Ψd〉 gives a quantum strat-
egy whose correlation is zero precisely when the correlation of the original strategy was
zero, and therefore the latter is a perfect quantum strategy for the (G,H)-homomorphism
game. Finally, combine all of the above results from this exercise with those of Exercise 12
to obtain our “Main Theorem” from class, i.e., that if there is a perfect quantum strategy
for the (G,H)-homomorphism game then there is one using shared state |Ψd〉 for some d
and Egh = F T

gh are projections.

15. Use the “Main Theorem” from class (see also Exercise 14) to prove the “Main Corollary”,
i.e., that G

q−→ H if and only if there exist projections Egh ∈ Cd×d for g ∈ V (G) and
h ∈ V (H) satisfying

EghEg′h′ = 0 if (g = g′ & h 6= h′) or (g ∼ g′ & h 6∼ h′);∑
h∈V (H)

Egh = I for all g ∈ V (G). (5)
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16. Show that the relation
q−→ is transitive, i.e., if G

q−→ H and H
q−→ K, then G

q−→ K.

17. Suppose that there are projections Egh for g ∈ V (G), h ∈ V (H) that give a quantum
homomorphism from G to H and these projections pairwise commute. Show that there
exists a homomorphism from G to H .

18. Show that for any graph G, there is a non-signalling correlation that wins the (G,K2)-
homomorphism game perfectly. Show that there is no correlation that wins the (G,K1)-
homomorphism game unless G has no edges.

19. Prove that χq(Kn) = n.

20. Show that if H is vertex transitive (i.e. for any h, h′ ∈ V (H) there is an automorphism
σ of H such that σ(h) = h′), and there is a quantum homomorphism from G to H , then
there is a quantum homomorphism from G to H using projections of all the same rank.

21. Show that if G has a rank-1 quantum 3-coloring then it is 3-colorable.

22. Show that if D ∈ Cd×d is a diagonal matrix and F ∈ Cd×d is a flat unitary, then F ∗DF
has constant diagonal.

23. Can you find projections that give a quantum 4-coloring of K4 that do not all pairwise
commute? What about a quantum 3-coloring of K3? What about a quantum 3-coloring
of K2? Neither the ‘3’ nor the ‘2’ in the previous sentence is a typo. This question may be
challenging.

24. If projections Egh for g ∈ V (G), h ∈ V (H) give a quantum homomorphism from G to
H , we say that it is a locally commuting quantum homomorphism if EghEg′h′ = Eg′h′Egh

whenever g ∼ g′. We then define the locally commuting quantum chromatic number of
a graph G, denoted χlc

q (G), as the minimum n such that G has a locally commuting
quantum homomorphism toKn. Show that if G′ is the graph obtained from G by adding
an apex vertex (i.e., a new vertex adjacent to all vertices of G), then

χlc
q (G′) = χlc

q (G) + 1.

Recall that this is not the case for χq.

25. Show that if G
q−→ H , then ωp(G) ≤ ωp(H) and ξf (G) ≤ ξf (H). It’s fine to just prove one

of the statements.

26. Show that if αq(G) = k, then G has a projective packing of value k and therefore αq(G) ≤
αp(G).

27. Show that if E1, . . . , Ek ∈ Cd×d are projections, then their sum is a projection if and only
if they are mutually orthogonal. In the case where they are mutually orthogonal, show
that their sum is the identity if and only if the sum of their ranks is d.

28. The lexicographic and disjunctive products of graphs G and H , denoted G[H] and G ∗ H
respectively, have vertex sets V (G)× V (H), and adjacencies

(a) (g, h) ∼ (g′, h′) in G[H] if g ∼ g′ or (g = g′ and h ∼ h′);
(b) (g, h) ∼ (g′, h′) in G ∗H if g ∼ g′ or h ∼ h′.

Thus G[H] is a subgraph of G ∗H . Show that

αp(G)αp(H) ≤ αp(G ∗H) ≤ αp(G[H]) ≤ αp(G)αp(H)
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and thus there is equality throughout. This means that αp is multiplicative with respective
to the lexicographic and disjunctive products. It may be helpful to think of assigning
subspaces to vertices rather than projections. The projective rank ξf is also multiplicative
with respect to these products, and the proof is very similar.

29. Let G ∪ H denote the disjoint union of the graphs G and H . Show that αp(G ∪ H) =
αp(G) + αp(H).

30. In class we saw that αq(G) ≤ αp(G) ≤ χf (G) ≤ χ(G), where χf is the fractional chro-
matic number. We further saw (but did not prove) that if there is a projective packing
of value χ(G) (i.e., αp(G) = χ(G) and this value is attained by some projective packing),
then αq(G) = χ(G). Prove the following strengthening: there exists a projective packing
of G of value χf (G) if and only if there exists an r ∈ N such that αq(G[Kr]) = rχf (G)
if and only if there exists an r ∈ N such that αq(rG) = rχf (G) (where rG denotes the
disjoint union of r copies of G). Exercises (28) and (29) may be useful for part of this.
You may freely use the fact that χf

(
G[Kr]

)
= rχf (G). There are many formulations of

fractional chromatic number, one that is useful for this problem is that χf (G) is equal to
the minimum n/r such that there exist n (not necessarily distinct) independent sets in G
such that every vertex appears in exactly r of them.

31. Below is a pair of dual semidefinite programs whose optimal values are equal to Lovasz’
theta function of the complement of a graph G, denoted ϑ̄(G). Note that u 6' v means
that the vertices u, v are neither adjacent nor equal, and sum(B) is the sum of all of the
entries of the matrix B. Suppose that B is a feasible solution of objective value d to the
maximization program and M is a feasible solution of objective value p to the minimiza-
tion program. Show that Tr(MB) = p − d. Conclude that M and B are both optimal
if and only if MB = 0. Further show that any feasible solution B to the maximization
program is optimal if and only if ϑ(G)Buu =

∑
v Buv for all u ∈ V (G).

PRIMAL DUAL

ϑ̄(G) = min t
s.t. Muu = t− 1 for u ∈ V (G)

Muv = −1 for u ∼ v
M � 0

= max sum(B)
s.t. Buv = 0 for u 6' v

tr(B) = 1
B � 0

(6)

32. Use whatever formulation(s) you like to prove that ϑ̄(Kn) = n.

33. Prove that ϑ(G)ϑ̄(G) ≥ |V (G)| with equality if G is vertex transitive. The formulations
in Equation 6 can be used to do this.

34. Recall from class that we saw the following two formulations of ϑ:

ϑ(G) = maxλmax(
∑

u∈V (G)

Eu) s.t. u 7→ Eu is a projective packing of G

ϑ(G) = max
∑

u∈V (G)

| 〈ϕ|ψu〉 |2 s.t. u 7→ |ψu〉 is an orthogonal representation of G, |ϕ〉 a unit vector

Prove that these two formulations are in fact equivalent.

35. Let M ∈ Cn×n. Recall that a subspace U ⊆ Cn is M -isotropic if 〈ψ|M |φ〉 = 0 for all
|ψ〉, |φ〉 ∈ U . Show that if U is M -isotropic, then

U ∩ span{|ψ〉 ∈ Cn : M |ψ〉 = λ|ψ〉 for some λ > 0} = {0}.
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36. Let G be a graph. Show that if U ⊆ CV (G) is an M -isotropic subspace for all weighted
adjacency matrices M , then span{v ∈ V (G) : |v〉 /∈ U⊥} is an independent set of G. Here
U⊥ = {|ψ〉 ∈ CV (G) : 〈φ|ψ〉 = 0 for all |φ〉 ∈ U}.

37. Let G be a graph. We say that a matrix M ∈ CV (G)×V (G) fits G if Muv = 0 whenever
u and v are distinct non-adjacent vertices of G. This differs from a weighted adjacency
matrix of G in that the diagonal entries are allowed to be nonzero for a matrix that fits G.
Show that α(G) is equal to the maximum number r ∈ N such that there exist orthonormal
vectors |ψ1〉, . . . , |ψr〉 ∈ CV (G) such that 〈ψi|M |ψj〉 = 0 if i 6= j for any matrix M that fits
G.

38. For any d ∈ N let αd(G) denote maximum number r ∈ N such that there exist orthonor-
mal vectors |ψ1〉, . . . , |ψr〉 ∈ CV (G) ⊗ Cd such that 〈ψi|M ⊗ Id|ψj〉 = 0 if i 6= j for any
matrix M that fits G. Thus α1(G) = α(G) by the previous exercise. Show that

αp(G) = sup
d

αd(G)

d
.

The parameter αd(G) is equal to the one-shot zero-erro classical capacity of the quantum
channel consisting of a noiseless quantum channel of dimension d and a noisy classical
channel with confusability graph equal to G. See arXiv:1002.2514 for definitions.

39. Suppose that Egh are projections that give a quantum homomorphism from G to H . Let
g, g′ ∈ V (G) and suppose there is a walk of length ` between g, g′, i.e., there are vertices
g0 = g, g1, . . . , g` = g′ such that gi−1 ∼ gi for i ∈ [`]. Show that if EghEg′h′ 6= 0, then h and
h′ have a walk of length ` between them.

40. Let Cn be the cycle of length n. Show that Cn
q−→ H if and only if Cn → H for any graph

H .

41. Let G be a connected graph. Show that if G
q−→ H then there is a connected component

H ′ of H such that G
q−→ H ′.

42. Let p : (V (G) ∪ V (H))4 → [0, 1] be a non-signalling correlation that wins the (G,H)-
isomorphism game. Show that

p(h, h|g, g) = p(h, g|g, h) = p(g, h|h, g) = p(g, g|h, h)

for all g ∈ V (G), h ∈ V (H). Use this to prove that the V (G) × V (H) matrix D such that
Dgh = p(h, h|g, g) is doubly stochastic. Finally, show that AGD = DAH . Thus if there is
a non-signalling correlation that wins the (G,H)-isomorphism game, then G ∼=f H .

43. Recall from class that graphs G and H are fractionally isomorphic if and only if they
have a common equitable partition. This means that there are partitions (C1, . . . , Cr) and
(C ′1, . . . , C

′
r) of V (G) and V (H) respectively with |Ci| = |C ′i| for all i ∈ [r] and there are

numbers dij for i, j ∈ [r] such that the number of neighbors a vertex in Ci (respectively
C ′i) has inCj (respectivelyC ′j) is dij . Use such a common equitable partition ofG andH to
construct a non-signalling correlation that wins the (G,H)-isomorphism game. Together
with the previous exercise this shows that there is a winning non-signalling correlation
for the (G,H)-isomorphism game if and only if G ∼=f H .

44. Suppose that P = (Pij) ∈ Mn(Cd×d) is such that Pij = P 2
ij = P ∗ij for all i, j ∈ [n]. Show

that P is unitary if and only if it is a quantum permutation matrix.
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45. Recall that a tracial state on a C∗-algebra A is a linear functional s : A → C such that
s(1) = 1, s(x∗x) ≥ 0 for all x ∈ A, and s(xy) = s(yx) for all x, y ∈ A. Show that the only
tracial state on the algebra of d× d complex matrices is

tr(M) =
1

d

d∑
i=1

Mii.

46. Let p1, . . . , pk be projections in a C∗-algebra, i.e., pi = p2i = p∗i for all i = 1, . . . , k. Show
that if

∑k
i=1 pi = 1, where 1 is the identity element, then pipj = 0 for i 6= j. This does

not hold for arbitrary algebras. Hint: use the GNS theorem. If you find a short proof that
does not use this, please let me know. How does this proof compare to your proof from
Exercise 11?

47. Let M ∈ Zm×n
2 and b ∈ Zm

2 . Also let S` = {i ∈ [n] : M`i = 1} and letH be a Hilbert space.
Show that the existence of projections P `

f ∈ B(H) for ` ∈ [m] and f : S` → Z2 satisfying

(a)
∑

f :S`→Z2
P `
f = I for all ` ∈ [m],

(b) P `
f = 0 if

∑
i∈S`

f(i) 6= b`, and

(c) P `
fP

k
f ′ = 0 if there is i ∈ S` ∩ Sk such that f(i) 6= f ′(i),

is equivalent to the existence of Ai ∈ B(H) for i ∈ [n] satisfying

(a) Ai = A∗i and A2
i = I for all i ∈ [n],

(b) AiAj = AjAi whenever there exists ` ∈ [m] such that i, j ∈ S`, and

(c)
∏

i∈S`
Ai = (−1)b`I for all ` ∈ [m],

i.e., the Ai form a quantum solution for Mx = b.

48. Show that the following system of equations over Z2 has no quantum solution:

x1 + x2 + x3 = 1

x1 + x4 + x5 = 0

x2 + x4 + x6 = 0

x3 + x5 + x6 = 0

Hint: the coefficient matrix for this system is the incidence matrix ofK4, so you can think
of the variables as the edges of K4 and the equations as its vertices.

49. Recall that given a binary linear system Mx = b with M ∈ Zm×n
2 and b ∈ Zm

2 we let
S` = {i ∈ [n] : M`i = 1}, and the graph G(M, b) has vertex set⋃

`∈[m]

{f : S` → Z2|
∑
i∈S`

f(i) = b`}

and vertices f : S` → Z2 and f ′ : Sk → Z2 are adjacent if there exists i ∈ S` ∩Sk such that
f(i) 6= f ′(i). Prove that the following are equivalent:

(a) Mx = b has a solution;

(b) G(M, b) ∼= G(M, 0);

(c) α(G(M, b)) = m.
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50. Let A be a C∗-algebra with a unit 1, and faithful tracial state s : A → C. Recall that this
means that s is linear, s(1) = 1, s(xy) = s(yx) for all x, y ∈ A, and s(x∗x) ≥ 0 for all
x ∈ A with equality if and only if x = 0. Suppose that pi ∈ A for i ∈ [k] are projections
(i.e., pi = p∗i = p2i ) such that pipj = 0 for i 6= j. Show that

∑k
i=1 pi = 1 if and only if∑k

i=1 s(pi) = 1.

51. Complete the proof of the reduction of binary linear system games to isomorphism
games from class (for the q-case) by showing that if G(M, b) has a projective packing of
value m (i.e., the number of equations in Mx = b), then Mx = b has a finite dimensional
quantum solution. It may help to recall from Lecture 9 that having a finite dimensional
quantum solution is equivalent to the existence of a particular set of projections satisfying
certain constraints.

52. Now check that essentially the same proof works for the qc-case by showing that if
G(M, b) has a tracial packing of value m then Mx = b has a quantum solution. A tra-
cial packing of a graph G is an assignment g → Eg ∈ A of projections to the vertices of
G such that EgEg′ = 0 for g ∼ g′ and where A is a unital C∗-algebra that has a faithful

tracial state s. The value of a tracial packing is
∑

g s(Eg) = s
(∑

g Eg

)
. Exercise 50 may

help here.

53. In class we proved that Mx = b having a quantum solution implies that G(M, b) ∼=qc

G(M, 0) purely in terms of the games, i.e., we did not take a quantum solution to Mx =
b and use this to construct a quantum permutation matrix certifying that G(M, b) ∼=qc

G(M, 0). However, our proof does implicitly provide a way of doing this. Do this. Does
the quantum permutation matrix you construct have a special form? For instance, is it
block diagonal? If so, each of the blocks is themselves is a quantum permutation matrix.
Do these blocks have some special form? For instance, within a block do all of the entries
commute? How many distinct entries are there in each block?

54. Let G be a graph and let Aut(G) = {P ∈ CV (G)×V (G) : P is a perm mtx & AGP = PAG}
be the automorphism group ofG viewed as permutation matrices. Define uij : Aut(G)→
C to be the function defined as uij(P ) = Pij . Show that the quantum permutation matrix
U = (uij) commutes with AG.

55. Let G be a graph and define A(G) to be the universal C∗-algebra generated by elements
pij for i, j ∈ V (G) satisfying the relations

(a) pij = p2ij = p∗ij for all i, j ∈ V (G);
(b)

∑
k pik = 1 =

∑
` p`j for all i, j ∈ V (G);

(c) AGP = PAG where P = (pij);
(d) the pij pairwise commute.

Recall that in class we saw a proposition stating that there is a ∗-isomorphism φ : A(G)→
C(Aut(G)) such that φ(pij) = uij (where uij is defined as in the above exercise). We did
not give a complete proof, but noted that the universal C∗-algebra construction of A(G)
implies the existence of a surjective ∗-homomorphism φ : A(G) → C(Aut(G)) such that
φ(pij) = uij . Complete the proof by showing that this φ must be injective.

56. Prove that the matrix M1,2 ∈ CV (G)×V (G)2 defined as M1,2(ei ⊗ ej) = δijei is a (1, 2)-
intertwiner of Qut(G) by showing that PM1,2 = M1,2P⊗2 for any quantum permutation
matrix P .

57. Let P be an n×n quantum permutation matrix. Show that the matrix S ∈ Cn2×n2
defined

as S(ei⊗ej) = ej⊗ei commutes withP⊗2 if and only if the entries ofP pairwise commute.
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58. Let P be an n×n quantum permutation matrix and let ψ =
∑n

i=1 ei⊗ei ∈ Cn⊗Cn. Show
that P⊗2ψ = ψP⊗0. Recall that P⊗0 is a 1× 1 matrix with entry 1.
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