
CO452/652: Integer Programming — Winter 2009

Instructor: Chaitanya Swamy

Assignment 1

Due: January 30, 2009 before class

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and sources of external help.

Q5, marked (*), is a regular question for graduate (i.e., CO652) students, and a bonus question for
undergraduate (i.e., CO452) students.

Q0: (Do Not Hand This In) Prove the following version of Farkas’ Lemma. Exactly one of the
following hold:
(1) the system Ax ≤ b has a feasible solution, where A ∈ Rm×n.
(2) there exists y ∈ Rm such that yT A = 0, y ≥ 0 and yT b < 0.

Q1: Let {x : Ax ≤ b} be non-empty. Show that the following set is convex.

S := {c ∈ Rd : (max cT x s.t. Ax ≤ b) ≤ K}.
(10 marks)

Q2: This question seeks to prove the duality theorem stated in class. Consider the following primal
linear program

max cT x s.t. Ax ≤ b, x ∈ Rn, (P)

where aT
1 , . . . , aT

m are the rows of A, and its dual

min yT b s.t. yT A = cT , y ≥ 0, y ∈ Rm. (D)

(a) Prove weak duality: if x is a feasible solution to (P) and y is a feasible solution to (D), then
cT x ≤ yT b. (2 marks)

(b) Suppose (P) and (D) have optimal solutions x∗ and y∗ respectively. Use part (a) and Farkas’
Lemma (in any form) to prove that cT x∗ = y∗T b. Hence, argue that x∗ and y∗ are optimal
primal and dual solutions iff they are feasible and y∗i > 0 =⇒ aT

i x∗ = bi. These latter
conditions are called the complementary slackness conditions. (8 marks)

(c) Finally, prove that (P) has an optimal solution iff (D) has an optimal solution. The statement
of part (b) along with this fact is often referred to as strong duality. (5 marks)

You may use the so called fundamental theorem of linear programming, which states that every
linear program is either infeasible, or has an optimal solution, or is unbounded.

Q3: Let P := {x ∈ Rd : Ax ≤ b} be a non-empty polyhedron. Prove that the following are
equivalent.

(a) A has full column-rank, i.e., rank(A) = d.

(b) There exists x0 ∈ P such that for every non-zero z ∈ Rd, x0 + z /∈ P or x0 − z /∈ P (or both).
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(c) There exists x0 ∈ P and some vector c ∈ Rd such that x0 is the unique optimal solution to the
LP: max cT x s.t. x ∈ P .

(15 marks)

Q4:
(a) Consider the system of inequalities Ax = b, x ≥ 0, where x ∈ Rd, and assume that it has

a feasible solution. Show that there exists a feasible solution x0 such that the columns of A
corresponding to the non-zero components of x0 are linearly independent (and thus, x0 has at
most rank(A) non-zero components). You may use the result of Q3 if needed. (8 marks)

(b) Consider a system of inequalities Ax ≤ b, where x ∈ Rd. Show that if this system is infeasible,
then there exists a subsystem of at most rank(A) + 1 ≤ d + 1 inequalities that is infeasible.

(7 marks)

Q5: (*) Let S ⊆ Rd be a set of n points. Prove that there exists a point z ∈ Rd (possibly from
the set S) such that for every hyperplane H passing through z, there are at least n

d+1 points of
S contained in both the halfspaces defined by H. That is, for every π ∈ Rd defining the hyper-
plane H := {x : πT x = πT z} passing through z, we have |S ∩ {x : πT x ≤ πT z}| ≥ n

d+1 and
|S ∩ {x : πT x ≥ πT z}| ≥ n

d+1 . Such a point may be viewed as a “center point” of S. (15 marks)

(Hint: Argue that for z to be a center point, it is sufficient if z lies in the convex hull of every set
T ⊆ S with |T | > n− n

d+1 . (In fact, this condition is also necessary.) Represent these convex hulls
by polyhedra and use the result of Q4(b).)
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