
CO452/652: Integer Programming — Winter 2009

Instructor: Chaitanya Swamy

Assignment 3

Due: March 9, 2009 before class

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and sources of external help.

Q5, marked (*), is a regular question for graduate (i.e., CO652) students, and a bonus question for
undergraduate (i.e., CO452) students.

In all the formulation questions describe briefly what your variables and constraints represent.

Q1:
(a) Let Pi = {z ∈ Rd : T (i)z ≤ u(i)} be a non-empty polyhedron for each i = 1, . . . ,m. Consider

the following mathematical program:

max cT x s.t. Ax ≤ b and max {zT x : z ∈ Pi} ≤ β(i) ∀i = 1, . . . ,m. (M-P)

Encode (M-P) by an equivalent linear program. Assume that (M-P) is feasible and the optimum
value exists. The size of your formulation, that is, the number of variables and constraints,
should be polynomial in m, d, and the total number of rows in the T (i) matrices. (6 marks)

(b) In class, we considered the following integer program for the traveling salesman problem (TSP)
on n nodes. Here e indexes the edges of the n-node complete graph.

min
∑

e

wexe (TSP-IP)

s.t. x(δ(v)) = 2 for all v = 1, . . . , n (1)
x(δ(S)) ≥ 2 for all S ⊆ V, 1 ≤ |S| ≤ n− 1 (2)

xe ∈ {0, 1} for all e.

The formulation (TSP-IP) has an exponential (in n) number of constraints of the form (2).
Show that one can obtain an equivalent formulation of size polynomial in n. (7 marks)

You may use the following result. Given an undirected graph G = (V,E) with nonnegative costs
{ce}e∈E on the edges, and two distinguished nodes s, t ∈ V , the min s-t-cut problem seeks to
find a set S ⊆ V such that s ∈ S, t /∈ S that minimizes c(δ(S)). (If s ∈ S, t /∈ S, the partition
(S, V \ S) is called an s-t cut.) The min s-t cut problem can be modeled by introducing a
variable ye for every edge e that is 1 if e ∈ δ(S) and 0 otherwise, and zv for each node v that
is 0 if v ∈ S (i.e., if v is on the s-side of the s-t cut) and 1 otherwise. We seek to

min
∑

e

ceye

s.t. zs = 0, zt = 1
zu − zv ≤ yuv, zv − zu ≤ yuv for all (u, v) ∈ E

z, y ≥ 0.

Although, this is a linear program, it is known that the extreme points of the feasible region
are {0,1}-vectors, and hence this linear program encodes the min s-t cut problem.
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(c) Consider the linear program: max cT x s.t. Ax ≤ b, where A is an m × d matrix. Suppose
now that the entries of A are not known precisely. But we are told that the (i, j)-th entry of
A lies in the interval [aij −∆ij , aij + ∆ij ] for every i, j, and that in every row i, at most Γi of
the entries deviate from aij , where Γi ∈ {0, 1, . . . , d}. In the presence of such uncertainty, one
may seek to find the best solution x that remains feasible under every possible realization Ã of
the matrix A (satisfying the above conditions). Thus, defining

Ai(Γi) := {ãi ∈ Rd : ãij ∈ [aij−∆ij , aij+∆ij ] ∀j, at most Γi of the ãij values deviate from aij},

we obtain the following robust optimization problem.

max cT x s.t. ãT
i x ≤ bi for all ãi ∈ Ai(Γi), ∀i = 1, . . . m. (Rob-P)

Assume that (Rob-P) is feasible and the optimum value exists, and argue that (Rob-P) can be
encoded by a linear program of size polynomial in m and d. (7 marks)

Q2: Given a complete directed graph on n nodes (that is, there is an arc (i, j) for every pair
of nodes i, j) with costs {cij}i,j on the arcs, the linear ordering problem is to find a permutation
π : {1, . . . , n} 7→ {1, . . . , n} of the nodes that maximizes

∑
i,j:π(i)<π(j) cij . Using binary ordering

variables δij to indicate if π(i) < π(j), this can be formulated as

max
∑
i,j

cijδij (LO-IP)

s.t. δij + δji = 1 for all i < j (3)
δj1j2 + · · ·+ δjrj1 ≤ |C| − 1 for all cycles C = {j1, . . . , jr} (4)

δij ∈ {0, 1} for all i, j. (5)

Let Q := {δ ∈ Rn(n−1)
+ : (3), (4) hold}, and PLO = QI be the convex hull of feasible solutions to

(LO-IP).

(a) Let Q′ be the polyhedron obtained from Q by dropping the inequalities (4) for |C| ≥ 4. Show
that Q′ = Q. (6 marks)

(b) Prove that dim(PLO) = n(n−1)
2 , and the inequalities (4) for |C| = 3 define facets of PLO.

(9 marks)

Q3: Let P = {x : Ax ≤ b} be a non-empty pointed polyhedron, where A is a rational matrix. Let
aT

1 , . . . , aT
m be the rows of A, and suppose that aT

i x ≥ 0 for all x ∈ P . Give a mixed integer program
(MIP) of size polynomial in m and d whose feasible solutions correspond to extreme points of P .
That is, any feasible solution to your MIP should map to an extreme point of P , and conversely,
any extreme point of P should map to a feasible solution to your MIP. (10 marks)

Q4: In the popular puzzle Sudoku, which many of you might be familiar with, there is a 9 × 9
grid, with some squares already filled in with a numbers from 1, . . . , 9. The goal is to complete the
grid by filling in each square with a number from 1 to 9, so that each row, each column, and each
3× 3 grid (see below) contains all the numbers from 1, . . . , 9 (so each number from 1, . . . , 9 appears
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1 2 6

1 9

4 6 2 5

5 2 4 9

7 5

4 7 6 3

2 9 7 8

8 3

9 3 4

1 2 6 9 3 5 8 4 7

8 5 7 1 4 2 6 9 3

9 4 3 8 6 7 2 1 5

3 1 5 2 8 4 7 6 9

6 7 2 3 1 9 4 5 8

4 9 8 7 5 6 3 2 1

2 3 9 4 7 1 5 8 6

5 8 4 6 9 3 1 7 2

7 6 1 5 2 8 9 3 4

Figure 1: A 9× 9 Sudoku puzzle, and its solution.

exactly once in every row, column and 3× 3 grid). A Sudoku puzzle is guaranteed to have a unique
solution. Figure 1 gives an example puzzle, and its solution.

One can easily generalize the puzzle to an arbitrary N × N grid, where N = n2 for an integer
n. We number the columns 1, . . . , N from left to right, and the rows 1, . . . , N from top to bottom.
Call an n× n grid, a principal n× n grid if its bottommost and rightmost square (i, j) is such that
both i and j are multiples of n. In the N ×N puzzle, again some of the squares are filled initially
with numbers from 1, . . . , N , and we need to fill in the remaining squares so that every row, every
column, and every principal n× n grid contains all the numbers from 1 to N . (Thus, the standard
Sudoku puzzle is the case where N = 9, n = 3.) As before, a puzzle is supposed to have a unique
solution.

(a) Formulate an integer program (IP) of size polynomial in n that given an N × N (N = n2)
Sudoku puzzle checks if the puzzle has a unique solution. You may choose any convenient way
for representing the input puzzle. Your IP solution should (i) yield a valid completion of the
puzzle if one exists; and (ii) if there are two or more valid completions (i.e., the puzzle does not
have a unique solution) then it should yield two distinct valid completions. (7 marks)

(b) Formulate an integer program that generates an N × N (N = n2) Sudoku puzzle with the
fewest number of filled squares. As mentioned earlier, a valid Sudoku puzzle is required to have
exactly one valid completion. You may choose any convenient way for specifying the output
puzzle.

The size of your formulation need not be polynomially bounded in n. (8 marks)

Q5: (*) Let G = (V,E) be a connected graph. A (straight-line) planar drawing of G is a mapping
f : V 7→ R2 such that for each edge (u, v), the line segment joining f(u) and f(v) (which represents
the edge (u, v)) does not contain f(w) for any node w 6= u, v. Note that if |V | ≥ 3, this implies that
f(u) 6= f(v) for distinct nodes u and v. The number of crossings of such a planar drawing is the
number of (unordered) pairs of edges whose corresponding line segments intersect. The rectilinear
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crossing number of G, denoted rcr(G), is the smallest number of crossings of a planar drawing of G.
(A planar graph has rectilinear crossing number equal to 0.)

Let M be a large enough integer. Formulate an integer program to compute the M -grid crossing
number of G, which is the smallest number of crossings of a planar drawing of G, where each node
u is mapped to a (distinct) point (xu, yu), with xu, yu ∈ {1, . . . ,M}. (Assume M is large enough
that a feasible planar drawing exists.) You may use both continuous and integer variables in your
formulation. The size of your formulation should be polynomial in M and |V |. (15 marks)

Remark. The definition of rcr(G) does not make it clear that there exists an optimum planar
drawing where the nodes are mapped to rational points in R2, but this is easy to infer via a
perturbation argument. Thus, there exists some (large) integer M such that the M -grid crossing
number of G is equal to rcr(G).
Determining rcr(G) is a major computational open problem even for moderately-sized graphs. In
fact, even the value of rcr(K18), where K18 is the complete graph on 18 nodes, is not known. I do
not know if the approach of writing an integer program yields a computationally feasible approach.

Open Questions: Recall the formulation (TSP-IP) for the traveling salesman problem (TSP) on
n nodes that was considered in class. Here e indexes the edges of the n-node complete graph. Let
PTSP denote the convex hull of the feasible solutions to (TSP-IP). Any tour has n edges, thus if
G is a connected graph on n-nodes that does not contain a Hamiltonian cycle then any tour may
contain at most n− 1 edges of G, so

x(E(G)) ≤ n− 1 (*)

is a valid inequality for PTSP. Let Gn denote the collection of all n-node connected non-Hamiltonian
graphs. There are certain known classes of graphs for which (*) is a facet-defining inequality for
PTSP. It seems unlikely that one would be able to obtain a “good” characterization of all (or a “rich
enough” subset of) graphs for which (*) yields a facet of PTSP. However, even the answer to the
following basic question seems to be not known:

Is PTSP = {x : x satisfies (1), (*) for all G ∈ Gn, 0 ≤ xe ≤ 1 for all e}?

Does equality hold above if we add the subtour-elimination constraints (2)?

Both these questions are more likely to have negative answers (and it may not be hard to give
counterexamples), which motivates one to consider the following strengthening of (*). Given any
graph G on at most n nodes (connected or not), define T (G) to be the maximum value of |T ∩E(G)|
among all tours T (on n-nodes). Clearly T (G) ≤ n− 1 for all G ∈ Gn. Now one can strengthen (*)
as follows:

x(E(G)) ≤ T (G), (**)

which (by definition) is a valid inequality for PTSP. Notice that (2) (in the form x(E(S)) ≤ |S| − 1)
is an inequality of this form obtained by taking G to be the complete graph on the node-set S. In
fact, it is not hard to see that every valid inequality αT x ≤ β for PTSP, where α is a {0,1}-vector,
is implied by some constraint of the form (**). Again, it is an open question whether

PTSP = {x : x satisfies (1), (**) for all graphs G, 0 ≤ xe ≤ 1 for all e}?

The above observations make it tempting to conjecture that the answer is positive (and if so, it may
not be hard to prove this).
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