C0452/652: Integer Programming — Winter 2009

Instructor: Chaitanya Swamy

Assignment 4
Due: April 3, 2009 before class

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and sources of external help.

The undergraduate (i.e., CO452) students may omit one of the following: Q1(c) or Q7(a), or attempt
these as bonus questions.

Q1:

(a) Consider the knapsack polytope Pknap = Pr, where P = {z € [0,1]" : a2 < B} with a > 0 and
B > 0. Recall that we showed that if C' C {1,...,n} is a dependent set, i.e., Y ..~ a; > B, then
defining E(C) := CU{j : a; > a; for all i € C}, the inequality > ;c gy i < |C] — 1 is valid
for Pxnap. Show that this inequality has Chvatal rank at most 1 (relative to P). (5 marks)

(b) Let V. ={1,...,n}. Consider the TSP polytope for the n-node complete graph:
Prsp = Pr where P={z e R": z(0(v))=2VYo eV, z(ES))<I|S|-1VS#0,V, 0<z<

A comb is a subgraph induced by a node-set (H, Wy, Wa, ..., W) satisfying the following con-
ditions: (i) HNW; # 0, W; \ H # 0 for all 4; (ii) W; N W; = 0 for all ¢ # j; and (iii) k > 3
and is odd. The set H is called the handle of the comb and the W;s are called the teeth of
the comb. Given a comb (H,Wq,..., Wy), prove that the following comb inequality is valid for
Prgp by showing that it has Chvatal rank at most 1.

k k k
o(B(H) + Y o(BOV) < ]+ 3wl - 1) - [ ]
. . (5 marks)

(c) Given a graph G = (V, E), consider its stable-set polytope STAB(G) := conv({XS 85 C
V is a stable set}) = P, where P:={z € R" : 2, + 2, <1 V(u,v) € B, 0<zx <e}. Let
C be a clique of G. Give a tight bound on the Chvétal rank of the clique-inequality z(C') <1
(which is valid for STAB(G)). That is, you should establish lower and upper bounds on the
Chvatal rank that are within a constant factor of each other. (One can in fact compute the
Chvatal rank exactly.)

You may use the fact that the Chvdtal closure of P, which is defined as P’ := PN {z € R":
x satisfies all rank-1 Chvatal-Gomory inequalities for P}, is a polyhedron, if necessary. Thus,
defining P := P and PO+D .= (P(i)),, we obtain that each P(*) is a polyhedron. (5 marks)

Q2: The purpose of this question is to introduce a notion of duality for integer programs based
on (nondecreasing) superadditive functions. (Throughout, when we say that F' is superadditive,
we also require that F(0) = 0.) Let (IP): max ¢’z s.t. 2 € P; be an integer program, where
P={x:Ax <b, © >0} CR". Let A have m rows, and Aj € R™ denote the j-th column of A.

e}.



(a) Prove the following weak-duality statement. If F': R™ +— R is a nondecreasing superadditive
function such that F'(A;) > ¢; for all j = 1,...,n, and z is a feasible solution to (IP), then
'z < F(b). (2 marks)

(b) Show that for every inequality a’z < f that is valid for Pj, there exists a nondecreasing

superadditive function F' : R™ — R such that F'(A;) > o for all j =1,...,n and F(b) < .
You may use the fact that every valid inequality for P; has finite Chvétal rank, and that P(®*)

(as defined in Q1(c)) is a polyhedron for all £ > 0. (7 marks)
(c) Deduce from parts (a) and (b) that if (IP) has an optimal solution, then its optimal value is
equal to
min F(b) st. F(Aj;)>c¢; Vj=1,...,n, F(0)=0, F:R"™~ Risnondecr., superadditive.

(6 marks)

Q3: This question considers a generalization of the lifting procedure (not lift-and-project) described
in class for strengthening valid inequalities, where we simultaneously lift more than one variable at
a time. Let P C [0,1]" be a polyhedron with P; # 0. Let J C {1,...,n}, and z be a vector in
{0,1}. Define S :={z € P; : z; = z; for all j € J} and suppose S # (). Suppose Dojgs Ty < 0 s
a valid inequality for S. Consider the set

Q= {a eR’: Zozj(xj —z) + ijxj < ¢ is valid for PI}.
jel ¢l
Prove that @ is a non-empty polyhedron, and it is pointed iff proj;(Pr) is full-dimensional (i.e.,

dim(proj;(Pr)) = |J|), where proj;(Pr) denotes the projection of P onto the (z;);cs-space. Argue
that if & is an extreme point of @, then the inequality szJ Gz + ij mix; <0+ ZjeJ &z

defines a face of Py of dimension at least dim({z € S': D T = 6}) +1J1. (15 marks)
Q4: Let K be the set of solutions to

2x1 —2z9 < 1 (1)

221 — 2xy > —1 (2)

0<z; <1 (3)

0<xy < 1. (4)

(a) Using the Balas-Ceria-Cornuéjols lift-and-project method compute P; (K). Also compute N (K)

using the Lovész-Schrijver lift-and-project procedure.

(b) Verify (geometrically) that Py(K) is indeed equal to conv({z € K : z; € {0,1}}), and that
N(K) € P(K) 1 Po(K).
(15 marks)

Q5: Consider the integer program
min xp41 s.t. 2x; + 2w+ -+ 22, +Tpe1 =n, x € {0, 1}"+1.

Prove that a branch-and-bound algorithm that branches by setting a fractional variable to 0 or 1
will require the enumeration of an exponential (in n) number of subproblems when n is odd.
(10 marks)



Q6:
(a)

(b)

Consider an undirected graph G = (V, E) with distinct vertices s,t and nonnegative edge costs
{cc}. Call an s-t path is odd if it contains an odd number of edges. Show that one can find an
minimum-cost odd s-t-path in time polynomial in the input length. (7 marks)

(Hint: Let G1, Gy be two disjoint copies of G, and w;, i = 1,2 denote the copy of u in G;. Let
G’ be the graph obtained by taking the union of G; and G3 \ {s2,t2} (i.e., the graph obtained
by removing s, t2, and their incident edges, from G2). Add suitable edges connecting the nodes
of G; and G3, and give these edges suitable costs so that a minimum-cost perfect matching
in G', if one exists, corresponds to a minimum-cost odd s-t path in G. You may use the fact
that minimum-cost perfect matchings in arbitrary (i.e., not necessarily bipartite) graphs can
be computed in polynomial time.)

Given a graph G with nonnegative edge costs {c.}, the MAXCUT problem is to find a set
) # S C V that maximizes ¢(6(S)). An odd circuit is a cycle with an odd number of edges and
no repeated nodes. Consider the following polyhedron.

P = {ze€R¥: 2(C)<|C|—-1 for every odd circuit C; 0<z<e}.

Ty s.t. x € P is equal to the optimal value of the MAXCUT problem on G.

Tz s.t. z € P in polynomial time. (8 marks)

Show that max ¢
Show that one can solve max ¢

(Bonus part) There was an error in this question, which has been corrected below.

A semidefinite program (SDP) is an optimization problem involving a symmetric matrix X
that has the following form:

max Y Xy st Y alXy<v® w=1...k  X>=0 (SDP)
2% 12

where X > 0 denotes the constraint that X is required to be positive semidefinite (PSD).
Consider the following semidefinite-programming relaxation for the MAXCUT problem.

1— T
max Z ce<$) s.t. 2Pz, =1 forallueV. (MC-SDP)
e=(u,v)€E

This is a semidefinite program because if we use X to denote ZZT, where Z is an n x d matrix
(for some d) with rows z. for v = 1,..., n, then substituting X, for 2! z,, we obtain a problem
of the form (SDP). Moreover, if X is a PSD matrix representing a solution to this resulting
SDP, then by a well-known result called the Cholesky decomposition, we can write X = ZZ7
for some n x d matrix Z; hence, X encodes a solution to (MC-SDP). (MC-SDP) is a relaxation
of the MAXCUT problem, because given any cut (S,V \ S) we can set z, for all u € S to some
common unit vector, and z, for all v ¢ S to the opposite unit vector, so that the objective
function of (MC-SDP) evaluates precisely to ¢(6(.5)).

Now define K € RF*V as the set of feasible solutions to the following system.

de > Ty — Ty, de > Ty — Ty, de < Ty + 2y, de <2—13y — 1y VSZ(’U,,’L))GE,
0<de,xyy <1 Vee E,ueV.



Q7:

ities

(b)

The integer program max ) _cede s.t. (d,z) € Z(K) is a valid formulation for the MAxcuT
problem, where z,, indicates which side of the cut (the 0-side or 1-side) w is on, and d. thus
encodes if edge e is cut. Let M (K) be the convex set in the higher-dimensional space obtained
by applying the semidefinite version of the Lovdsz-Schrijver procedure to K. Prove that M (K)
yields a relaxation for MAXCUT that is at least as strong as (MC-SDP) by showing that any
point in MT(K) maps to a solution to (MC-SDP) of no smaller value. (Thus, the maximum
value of ¢!'d over points in MT(K) is at most the optimal value of (MC-SDP).) (10 marks)

In this question, we compare the Chvétal-Gomory (CG) procedure for generating valid inequal-
with the Balas-Ceria-Cournuéjols (BCC) lift-and-project method.

Consider again the sable-set polytope STAB(G) for a graph G, the polyhedron P defined in
Q1(c), which we now denote as K, and a clique inequality (C) < 1 obtained from a clique C
of G. Show that starting with the polyhedron K, one requires at least |C'| — 3 sequential appli-
cations of the BCC lift-and-project method (no matter what sequence of variables is chosen)
before we obtain a polyhedron for which this clique inequality is valid. (5 marks)

(Bonus part) Consider the polyhedron
K:={(z,y)eR*: z<B, z<B%, x>0, 0<y<I1},

where B is a positive integer. Notice that < B?y denotes a big-M constraint that, for integer
y, forces y = 1 if x > 0, and thus, Z(P) = {(0,0)} U{(z,1) : 0 <2z < B, = € Z}. Observe that
this big-M constraint can be strengthened to x < By, that is, x < By is valid for K. It is easy
to see that Py(K) = K;. (Although we defined the lift-and-project operators in the context
pure {0,1}-IPs, one can also apply them to (mixed) IPs where only a subset of the variables are
{0,1}-variables. The only difference is that now only the {0,1}-variables z; are candidates for
multiplying our constraint-system by x; and (1 — x;); the linearization, and projection steps
are unchanged.)

Show however that the Chvatal-rank of z < By is at least vB — ¢ for some constants v, d, v > 0.
(10 marks)



