
CO452/652: Integer Programming — Winter 2009

Instructor: Chaitanya Swamy

Assignment 4

Due: April 3, 2009 before class

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and sources of external help.

The undergraduate (i.e., CO452) students may omit one of the following: Q1(c) or Q7(a), or attempt
these as bonus questions.

Q1:
(a) Consider the knapsack polytope PKnap = PI , where P = {x ∈ [0, 1]n : aT x ≤ B} with a ≥ 0 and

B ≥ 0. Recall that we showed that if C ⊆ {1, . . . , n} is a dependent set, i.e.,
∑

i∈C ai > B, then
defining E(C) := C ∪ {j : aj ≥ ai for all i ∈ C}, the inequality

∑
i∈E(C) xi ≤ |C| − 1 is valid

for PKnap. Show that this inequality has Chvátal rank at most 1 (relative to P ). (5 marks)

(b) Let V = {1, . . . , n}. Consider the TSP polytope for the n-node complete graph:

PTSP = PI where P = {x ∈ Rn : x(δ(v)) = 2 ∀v ∈ V, x(E(S)) ≤ |S|−1 ∀S 6= ∅, V, 0 ≤ x ≤ e}.

A comb is a subgraph induced by a node-set (H,W1,W2, . . . ,Wk) satisfying the following con-
ditions: (i) H ∩ Wi 6= ∅, Wi \ H 6= ∅ for all i; (ii) Wi ∩ Wj = ∅ for all i 6= j; and (iii) k ≥ 3
and is odd. The set H is called the handle of the comb and the Wis are called the teeth of
the comb. Given a comb (H,W1, . . . ,Wk), prove that the following comb inequality is valid for
PTSP by showing that it has Chvátal rank at most 1.

x(E(H)) +
k∑

i=1

x(E(Wi)) ≤ |H|+
k∑

i=1

(|Wi| − 1)−
⌈

k

2

⌉
(5 marks)

(c) Given a graph G = (V,E), consider its stable-set polytope STAB(G) := conv
(
{χS : S ⊆

V is a stable set}
)

= PI , where P := {x ∈ Rn : xu + xv ≤ 1 ∀(u, v) ∈ E, 0 ≤ x ≤ e}. Let
C be a clique of G. Give a tight bound on the Chvátal rank of the clique-inequality x(C) ≤ 1
(which is valid for STAB(G)). That is, you should establish lower and upper bounds on the
Chvátal rank that are within a constant factor of each other. (One can in fact compute the
Chvátal rank exactly.)

You may use the fact that the Chvátal closure of P , which is defined as P ′ := P ∩ {x ∈ Rn :
x satisfies all rank-1 Chvátal-Gomory inequalities for P}, is a polyhedron, if necessary. Thus,
defining P (0) := P and P (i+1) :=

(
P (i)

)′, we obtain that each P (k) is a polyhedron. (5 marks)

Q2: The purpose of this question is to introduce a notion of duality for integer programs based
on (nondecreasing) superadditive functions. (Throughout, when we say that F is superadditive,
we also require that F (0) = 0.) Let (IP): max cT x s.t. x ∈ PI be an integer program, where
P = {x : Ax ≤ b, x ≥ 0} ⊆ Rn. Let A have m rows, and Aj ∈ Rm denote the j-th column of A.
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(a) Prove the following weak-duality statement. If F : Rm 7→ R is a nondecreasing superadditive
function such that F (Aj) ≥ cj for all j = 1, . . . , n, and x is a feasible solution to (IP), then
cT x ≤ F (b). (2 marks)

(b) Show that for every inequality αT x ≤ β that is valid for PI , there exists a nondecreasing
superadditive function F : Rm 7→ R such that F (Aj) ≥ αj for all j = 1, . . . , n and F (b) ≤ β.

You may use the fact that every valid inequality for PI has finite Chvátal rank, and that P (k)

(as defined in Q1(c)) is a polyhedron for all k ≥ 0. (7 marks)

(c) Deduce from parts (a) and (b) that if (IP) has an optimal solution, then its optimal value is
equal to

min F (b) s.t. F (Aj) ≥ cj ∀j = 1, . . . , n, F (0) = 0, F : Rm 7→ R is nondecr., superadditive.
(6 marks)

Q3: This question considers a generalization of the lifting procedure (not lift-and-project) described
in class for strengthening valid inequalities, where we simultaneously lift more than one variable at
a time. Let P ⊆ [0, 1]n be a polyhedron with PI 6= ∅. Let J ⊆ {1, . . . , n}, and z be a vector in
{0, 1}J . Define S := {x ∈ PI : xj = zj for all j ∈ J} and suppose S 6= ∅. Suppose

∑
j /∈J πjxj ≤ δ is

a valid inequality for S. Consider the set

Q :=
{

α ∈ RJ :
∑
j∈J

αj(xj − zj) +
∑
j /∈J

πjxj ≤ δ is valid for PI

}
.

Prove that Q is a non-empty polyhedron, and it is pointed iff projJ(PI) is full-dimensional (i.e.,
dim

(
projJ(PI)

)
= |J |), where projJ(PI) denotes the projection of PI onto the (xj)j∈J -space. Argue

that if α̂ is an extreme point of Q, then the inequality
∑

j∈J α̂jxj +
∑

j /∈J πjxj ≤ δ +
∑

j∈J α̂jzj

defines a face of PI of dimension at least dim
(
{x ∈ S :

∑
j /∈J πjxj = δ}

)
+ |J |. (15 marks)

Q4: Let K be the set of solutions to

2x1 − 2x2 ≤ 1 (1)
2x1 − 2x2 ≥ −1 (2)

0 ≤ x1 ≤ 1 (3)
0 ≤ x2 ≤ 1. (4)

(a) Using the Balas-Ceria-Cornuéjols lift-and-project method compute P1(K). Also compute N(K)
using the Lovász-Schrijver lift-and-project procedure.

(b) Verify (geometrically) that P1(K) is indeed equal to conv
(
{x ∈ K : x1 ∈ {0, 1}}

)
, and that

N(K) ⊆ P1(K) ∩ P2(K).
(15 marks)

Q5: Consider the integer program

min xn+1 s.t. 2x1 + 2x2 + · · ·+ 2xn + xn+1 = n, x ∈ {0, 1}n+1.

Prove that a branch-and-bound algorithm that branches by setting a fractional variable to 0 or 1
will require the enumeration of an exponential (in n) number of subproblems when n is odd.

(10 marks)
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Q6:
(a) Consider an undirected graph G = (V,E) with distinct vertices s, t and nonnegative edge costs

{ce}. Call an s-t path is odd if it contains an odd number of edges. Show that one can find an
minimum-cost odd s-t-path in time polynomial in the input length. (7 marks)

(Hint: Let G1, G2 be two disjoint copies of G, and ui, i = 1, 2 denote the copy of u in Gi. Let
G′ be the graph obtained by taking the union of G1 and G2 \ {s2, t2} (i.e., the graph obtained
by removing s2, t2, and their incident edges, from G2). Add suitable edges connecting the nodes
of G1 and G2, and give these edges suitable costs so that a minimum-cost perfect matching
in G′, if one exists, corresponds to a minimum-cost odd s-t path in G. You may use the fact
that minimum-cost perfect matchings in arbitrary (i.e., not necessarily bipartite) graphs can
be computed in polynomial time.)

(b) Given a graph G with nonnegative edge costs {ce}, the Maxcut problem is to find a set
∅ 6= S ( V that maximizes c(δ(S)). An odd circuit is a cycle with an odd number of edges and
no repeated nodes. Consider the following polyhedron.

P := {x ∈ RE : x(C) ≤ |C| − 1 for every odd circuit C; 0 ≤ x ≤ e}.

Show that max cT x s.t. x ∈ PI is equal to the optimal value of the Maxcut problem on G.
Show that one can solve max cT x s.t. x ∈ P in polynomial time. (8 marks)

(c) (Bonus part) There was an error in this question, which has been corrected below.

A semidefinite program (SDP) is an optimization problem involving a symmetric matrix X
that has the following form:

max
∑
i,j

cijXij s.t.
∑
i,j

a
(`)
ij Xij ≤ b(`) ∀` = 1, . . . , k, X � 0 (SDP)

where X � 0 denotes the constraint that X is required to be positive semidefinite (PSD).
Consider the following semidefinite-programming relaxation for the Maxcut problem.

max
∑

e=(u,v)∈E

ce

(1− zT
u zv

2

)
s.t. zT

u zu = 1 for all u ∈ V. (MC-SDP)

This is a semidefinite program because if we use X to denote ZZT , where Z is an n× d matrix
(for some d) with rows zT

u for u = 1, . . . , n, then substituting Xuv for zT
u zv, we obtain a problem

of the form (SDP). Moreover, if X is a PSD matrix representing a solution to this resulting
SDP, then by a well-known result called the Cholesky decomposition, we can write X = ZZT

for some n×d matrix Z; hence, X encodes a solution to (MC-SDP). (MC-SDP) is a relaxation
of the Maxcut problem, because given any cut (S, V \ S) we can set zu for all u ∈ S to some
common unit vector, and zv for all v /∈ S to the opposite unit vector, so that the objective
function of (MC-SDP) evaluates precisely to c(δ(S)).

Now define K ∈ RE+V as the set of feasible solutions to the following system.

de ≥ xu − xv, de ≥ xv − xu, de ≤ xu + xv, de ≤ 2− xu − xv ∀e = (u, v) ∈ E,

0 ≤ de, xu ≤ 1 ∀e ∈ E, u ∈ V.

3



The integer program max
∑

e cede s.t. (d, x) ∈ Z(K) is a valid formulation for the Maxcut
problem, where xu indicates which side of the cut (the 0-side or 1-side) u is on, and de thus
encodes if edge e is cut. Let M+(K) be the convex set in the higher-dimensional space obtained
by applying the semidefinite version of the Lovász-Schrijver procedure to K. Prove that M+(K)
yields a relaxation for Maxcut that is at least as strong as (MC-SDP) by showing that any
point in M+(K) maps to a solution to (MC-SDP) of no smaller value. (Thus, the maximum
value of cT d over points in M+(K) is at most the optimal value of (MC-SDP).) (10 marks)

Q7: In this question, we compare the Chvátal-Gomory (CG) procedure for generating valid inequal-
ities with the Balas-Ceria-Cournuéjols (BCC) lift-and-project method.

(a) Consider again the sable-set polytope STAB(G) for a graph G, the polyhedron P defined in
Q1(c), which we now denote as K, and a clique inequality x(C) ≤ 1 obtained from a clique C
of G. Show that starting with the polyhedron K, one requires at least |C| − 3 sequential appli-
cations of the BCC lift-and-project method (no matter what sequence of variables is chosen)
before we obtain a polyhedron for which this clique inequality is valid. (5 marks)

(b) (Bonus part) Consider the polyhedron

K := {(x, y) ∈ R2 : x ≤ B, x ≤ B2y, x ≥ 0, 0 ≤ y ≤ 1},

where B is a positive integer. Notice that x ≤ B2y denotes a big-M constraint that, for integer
y, forces y = 1 if x > 0, and thus, Z(P ) = {(0, 0)} ∪ {(x, 1) : 0 ≤ x ≤ B, x ∈ Z}. Observe that
this big-M constraint can be strengthened to x ≤ By, that is, x ≤ By is valid for KI . It is easy
to see that Py(K) = KI . (Although we defined the lift-and-project operators in the context
pure {0,1}-IPs, one can also apply them to (mixed) IPs where only a subset of the variables are
{0,1}-variables. The only difference is that now only the {0,1}-variables xj are candidates for
multiplying our constraint-system by xj and (1 − xj); the linearization, and projection steps
are unchanged.)

Show however that the Chvátal-rank of x ≤ By is at least γB−δ for some constants γ, δ, γ > 0.
(10 marks)
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