CO452/652: Integer Programming — Winter 2009

Instructor: Chaitanya Swamy

Assignment 4

Due: April 3, 2009 before class

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the course webpage. Acknowledge all collaborators and sources of external help.

The undergraduate (i.e., CO452) students may omit one of the following: Q1(c) or Q7(a), or attempt these as bonus questions.

Q1:

- (a) Consider the knapsack polytope $P_{\text{Knap}} = P_I$, where $P = \{x \in [0, 1]^n : a^T x \leq B\}$ with $a \geq 0$ and $B \geq 0$. Recall that we showed that if $C \subseteq \{1, \ldots, n\}$ is a dependent set, i.e., $\sum_{i \in C} a_i > B$, then defining $E(C) := C \cup \{j : a_j \geq a_i \text{ for all } i \in C\}$, the inequality $\sum_{i \in E(C)} x_i \leq |C| 1$ is valid for P_{Knap} . Show that this inequality has Chvátal rank at most 1 (relative to P). (5 marks)
- (b) Let $V = \{1, ..., n\}$. Consider the TSP polytope for the *n*-node complete graph:

$$P_{\text{TSP}} = P_I \text{ where } P = \{ x \in \mathbb{R}^n : x(\delta(v)) = 2 \ \forall v \in V, \quad x(E(S)) \le |S| - 1 \ \forall S \ne \emptyset, V, \quad 0 \le x \le e \}.$$

A comb is a subgraph induced by a node-set $(H, W_1, W_2, \ldots, W_k)$ satisfying the following conditions: (i) $H \cap W_i \neq \emptyset$, $W_i \setminus H \neq \emptyset$ for all i; (ii) $W_i \cap W_j = \emptyset$ for all $i \neq j$; and (iii) $k \geq 3$ and is odd. The set H is called the handle of the comb and the W_i s are called the teeth of the comb. Given a comb (H, W_1, \ldots, W_k) , prove that the following comb inequality is valid for P_{TSP} by showing that it has Chvátal rank at most 1.

$$x(E(H)) + \sum_{i=1}^{k} x(E(W_i)) \le |H| + \sum_{i=1}^{k} (|W_i| - 1) - \left\lceil \frac{k}{2} \right\rceil$$
(5 marks)

(c) Given a graph G = (V, E), consider its stable-set polytope $\operatorname{STAB}(G) := \operatorname{conv}(\{\chi^S : S \subseteq V \text{ is a stable set}\}) = P_I$, where $P := \{x \in \mathbb{R}^n : x_u + x_v \leq 1 \ \forall (u, v) \in E, 0 \leq x \leq e\}$. Let C be a clique of G. Give a tight bound on the Chvátal rank of the clique-inequality $x(C) \leq 1$ (which is valid for $\operatorname{STAB}(G)$). That is, you should establish lower and upper bounds on the Chvátal rank that are within a constant factor of each other. (One can in fact compute the Chvátal rank exactly.)

You may use the fact that the *Chvátal closure* of P, which is defined as $P' := P \cap \{x \in \mathbb{R}^n : x \text{ satisfies all rank-1 Chvátal-Gomory inequalities for <math>P\}$, is a polyhedron, if necessary. Thus, defining $P^{(0)} := P$ and $P^{(i+1)} := (P^{(i)})'$, we obtain that each $P^{(k)}$ is a polyhedron. (5 marks)

Q2: The purpose of this question is to introduce a notion of duality for integer programs based on (nondecreasing) superadditive functions. (Throughout, when we say that F is superadditive, we also require that F(0) = 0.) Let (IP): max $c^T x$ s.t. $x \in P_I$ be an integer program, where $P = \{x : Ax \leq b, x \geq 0\} \subseteq \mathbb{R}^n$. Let A have m rows, and $A_j \in \mathbb{R}^m$ denote the j-th column of A.

- (a) Prove the following weak-duality statement. If $F : \mathbb{R}^m \to \mathbb{R}$ is a nondecreasing superadditive function such that $F(A_j) \ge c_j$ for all j = 1, ..., n, and x is a feasible solution to (IP), then $c^T x \le F(b)$. (2 marks)
- (b) Show that for every inequality $\alpha^T x \leq \beta$ that is valid for P_I , there exists a nondecreasing superadditive function $F : \mathbb{R}^m \mapsto \mathbb{R}$ such that $F(A_j) \geq \alpha_j$ for all j = 1, ..., n and $F(b) \leq \beta$. You may use the fact that every valid inequality for P_I has finite Chvátal rank, and that $P^{(k)}$ (as defined in Q1(c)) is a polyhedron for all $k \geq 0$. (7 marks)
- (c) Deduce from parts (a) and (b) that if (IP) has an optimal solution, then its optimal value is equal to

min F(b) s.t. $F(A_j) \ge c_j \ \forall j = 1, ..., n, \quad F(0) = 0, \quad F : \mathbb{R}^m \mapsto \mathbb{R}$ is nondecr., superadditive. (6 marks)

Q3: This question considers a generalization of the lifting procedure (not lift-and-project) described in class for strengthening valid inequalities, where we simultaneously lift more than one variable at a time. Let $P \subseteq [0,1]^n$ be a polyhedron with $P_I \neq \emptyset$. Let $J \subseteq \{1,\ldots,n\}$, and z be a vector in $\{0,1\}^J$. Define $S := \{x \in P_I : x_j = z_j \text{ for all } j \in J\}$ and suppose $S \neq \emptyset$. Suppose $\sum_{j \notin J} \pi_j x_j \leq \delta$ is a valid inequality for S. Consider the set

$$Q := \Big\{ \alpha \in \mathbb{R}^J : \sum_{j \in J} \alpha_j (x_j - z_j) + \sum_{j \notin J} \pi_j x_j \le \delta \text{ is valid for } P_I \Big\}.$$

Prove that Q is a non-empty polyhedron, and it is pointed iff $\operatorname{proj}_J(P_I)$ is full-dimensional (i.e., $\dim(\operatorname{proj}_J(P_I)) = |J|$), where $\operatorname{proj}_J(P_I)$ denotes the projection of P_I onto the $(x_j)_{j\in J}$ -space. Argue that if $\hat{\alpha}$ is an extreme point of Q, then the inequality $\sum_{j\in J} \hat{\alpha}_j x_j + \sum_{j\notin J} \pi_j x_j \leq \delta + \sum_{j\in J} \hat{\alpha}_j z_j$ defines a face of P_I of dimension at least $\dim(\{x \in S : \sum_{j\notin J} \pi_j x_j = \delta\}) + |J|$. (15 marks)

Q4: Let K be the set of solutions to

$$2x_1 - 2x_2 \le 1 \tag{1}$$

$$2x_1 - 2x_2 \ge -1 \tag{2}$$

 $0 \le x_1 \le 1 \tag{3}$

$$0 \le x_2 \le 1. \tag{4}$$

- (a) Using the Balas-Ceria-Cornuéjols lift-and-project method compute $P_1(K)$. Also compute N(K) using the Lovász-Schrijver lift-and-project procedure.
- (b) Verify (geometrically) that $P_1(K)$ is indeed equal to $\operatorname{conv}(\{x \in K : x_1 \in \{0,1\}\})$, and that $N(K) \subseteq P_1(K) \cap P_2(K)$.

(15 marks)

Q5: Consider the integer program

min
$$x_{n+1}$$
 s.t. $2x_1 + 2x_2 + \dots + 2x_n + x_{n+1} = n$, $x \in \{0, 1\}^{n+1}$

Prove that a branch-and-bound algorithm that branches by setting a fractional variable to 0 or 1 will require the enumeration of an exponential (in n) number of subproblems when n is odd.

(10 marks)

Q6:

(a) Consider an undirected graph G = (V, E) with distinct vertices s, t and nonnegative edge costs $\{c_e\}$. Call an s-t path is odd if it contains an odd number of edges. Show that one can find an minimum-cost odd s-t-path in time polynomial in the input length. (7 marks)

(**Hint:** Let G_1, G_2 be two disjoint copies of G, and u_i , i = 1, 2 denote the copy of u in G_i . Let G' be the graph obtained by taking the union of G_1 and $G_2 \setminus \{s_2, t_2\}$ (i.e., the graph obtained by removing s_2, t_2 , and their incident edges, from G_2). Add suitable edges connecting the nodes of G_1 and G_2 , and give these edges suitable costs so that a minimum-cost perfect matching in G', if one exists, corresponds to a minimum-cost odd *s*-*t* path in G. You may use the fact that minimum-cost perfect matchings in arbitrary (i.e., not necessarily bipartite) graphs can be computed in polynomial time.)

(b) Given a graph G with nonnegative edge costs $\{c_e\}$, the MAXCUT problem is to find a set $\emptyset \neq S \subsetneq V$ that maximizes $c(\delta(S))$. An odd circuit is a cycle with an odd number of edges and no repeated nodes. Consider the following polyhedron.

$$P := \{ x \in \mathbb{R}^E : x(C) \le |C| - 1 \text{ for every odd circuit } C; \quad 0 \le x \le e \}.$$

Show that max $c^T x$ s.t. $x \in P_I$ is equal to the optimal value of the MAXCUT problem on G. Show that one can solve max $c^T x$ s.t. $x \in P$ in polynomial time. (8 marks)

(c) (Bonus part) There was an error in this question, which has been corrected below.

A semidefinite program (SDP) is an optimization problem involving a symmetric matrix X that has the following form:

$$\max \quad \sum_{i,j} c_{ij} X_{ij} \quad \text{s.t.} \quad \sum_{i,j} a_{ij}^{(\ell)} X_{ij} \le b^{(\ell)} \quad \forall \ell = 1, \dots, k, \qquad X \succeq 0$$
(SDP)

where $X \succeq 0$ denotes the constraint that X is required to be positive semidefinite (PSD). Consider the following semidefinite-programming relaxation for the MAXCUT problem.

$$\max \sum_{e=(u,v)\in E} c_e\left(\frac{1-z_u^T z_v}{2}\right) \quad \text{s.t.} \quad z_u^T z_u = 1 \quad \text{for all } u \in V.$$
 (MC-SDP)

This is a semidefinite program because if we use X to denote ZZ^T , where Z is an $n \times d$ matrix (for some d) with rows z_u^T for u = 1, ..., n, then substituting X_{uv} for $z_u^T z_v$, we obtain a problem of the form (SDP). Moreover, if X is a PSD matrix representing a solution to this resulting SDP, then by a well-known result called the *Cholesky decomposition*, we can write $X = ZZ^T$ for some $n \times d$ matrix Z; hence, X encodes a solution to (MC-SDP). (MC-SDP) is a relaxation of the MAXCUT problem, because given any cut $(S, V \setminus S)$ we can set z_u for all $u \in S$ to some common unit vector, and z_v for all $v \notin S$ to the opposite unit vector, so that the objective function of (MC-SDP) evaluates precisely to $c(\delta(S))$.

Now define $K \in \mathbb{R}^{E+V}$ as the set of feasible solutions to the following system.

$$\begin{array}{ll} d_e \geq x_u - x_v, & d_e \geq x_v - x_u, & d_e \leq x_u + x_v, & d_e \leq 2 - x_u - x_v & \forall e = (u, v) \in E, \\ & 0 \leq d_e, x_u \leq 1 & \forall e \in E, u \in V. \end{array}$$

The integer program max $\sum_{e} c_e d_e$ s.t. $(d, x) \in \mathbb{Z}(K)$ is a valid formulation for the MAXCUT problem, where x_u indicates which side of the cut (the 0-side or 1-side) u is on, and d_e thus encodes if edge e is cut. Let $M^+(K)$ be the convex set in the higher-dimensional space obtained by applying the semidefinite version of the Lovász-Schrijver procedure to K. Prove that $M^+(K)$ yields a relaxation for MAXCUT that is at least as strong as (MC-SDP) by showing that any point in $M^+(K)$ maps to a solution to (MC-SDP) of no smaller value. (Thus, the maximum value of $c^T d$ over points in $M^+(K)$ is at most the optimal value of (MC-SDP).) (10 marks)

Q7: In this question, we compare the Chvátal-Gomory (CG) procedure for generating valid inequalities with the Balas-Ceria-Cournuéjols (BCC) lift-and-project method.

- (a) Consider again the sable-set polytope STAB(G) for a graph G, the polyhedron P defined in Q1(c), which we now denote as K, and a clique inequality $x(C) \leq 1$ obtained from a clique C of G. Show that starting with the polyhedron K, one requires at least |C| 3 sequential applications of the BCC lift-and-project method (no matter what sequence of variables is chosen) before we obtain a polyhedron for which this clique inequality is valid. (5 marks)
- (b) (Bonus part) Consider the polyhedron

$$K := \{ (x, y) \in \mathbb{R}^2 : x \le B, x \le B^2 y, x \ge 0, 0 \le y \le 1 \},\$$

where B is a positive integer. Notice that $x \leq B^2 y$ denotes a big-M constraint that, for integer y, forces y = 1 if x > 0, and thus, $\mathbb{Z}(P) = \{(0,0)\} \cup \{(x,1) : 0 \leq x \leq B, x \in \mathbb{Z}\}$. Observe that this big-M constraint can be strengthened to $x \leq By$, that is, $x \leq By$ is valid for K_I . It is easy to see that $P_y(K) = K_I$. (Although we defined the lift-and-project operators in the context pure $\{0,1\}$ -IPs, one can also apply them to (mixed) IPs where only a subset of the variables are $\{0,1\}$ -variables. The only difference is that now only the $\{0,1\}$ -variables x_j are candidates for multiplying our constraint-system by x_j and $(1 - x_j)$; the linearization, and projection steps are unchanged.)

Show however that the Chvátal-rank of $x \leq By$ is at least $\gamma B - \delta$ for some constants $\gamma, \delta, \gamma > 0$. (10 marks)