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Abstract—We give the first black-box reduction from
arbitrary approximation algorithms to truthful approx-
imation mechanisms for a non-trivial class of multi-
parameter problems. Specifically, we prove that every
packing problem that admits an FPTAS also admits a
truthful-in-expectation randomized mechanism that is an
FPTAS. Our reduction makes novel use of smoothed
analysis, by employing small perturbations as a tool in
algorithmic mechanism design. We develop a “duality”
between linear perturbations of the objective function of
an optimization problem and of its feasible set, and use
the “primal” and “dual” viewpoints to prove the running
time bound and the truthfulness guarantee, respectively,
for our mechanism.

Keywords-Mechanism Design; Truthful Approximation
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I. I NTRODUCTION

Algorithmic mechanism designstudies optimization
problems where the underlying data — such as a value
of a good or a cost of performing a task — is a
priori unknown to the algorithm designer, and must
be elicited from self-interested participants (e.g., via
a bid). The high-level goal of mechanism design is
to design a protocol, or “mechanism”, that interacts
with participants so that self-interested behavior yields
a desirable outcome.Algorithmic mechanism design
adopts computational tractability as an equally impor-
tant requirement.

An important research agenda, suggested roughly ten
years ago [1], is to understand rigorously what can and
cannot be efficiently computed when the problem data
is held by selfish agents, thereby reconciling strategic
concerns with the computational requirements custom-
ary in computer science. The central question in the
field is:
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To what extent is “incentive-compatible” efficient
computation fundamentally less powerful than
“classical” efficient computation?

This question remains poorly understood, despite
some recent positive results for single-parameter prob-
lems1 and negative results for deterministic mechanisms
(discussed further below). A starry-eyed mechanism
designer might hope for the best-possible answer:

Not at all: If an optimization problemΠ admits
a polynomial-timeα-approximation algorithmA,
then it admits a polynomial-timeα-approximate
incentive-compatible mechanism.

Since such a result makes no hypotheses about the
algorithm A beyond those on its running time and
approximation factor, it would presumably be proved
via a “black-box reduction” — a generic method that
invokesA at most polynomially many times, and re-
stores incentive-compatibility without degradingA’s
approximation factor.

The primary contribution of this paper is the first
such black-box reduction for a non-trivial class of
multi-parameter problems.

In this paper, by “incentive compatible” we mean
a (possibly randomized) mechanism such that every
participant maximizes its expected payoff by truthfully
revealing its information to the mechanism, no matter
how the other participants behave. Such mechanisms are
called truthful in expectation, and are defined formally
in Section II. Our main result can be summarized as
follows.
Main Result (Informal): If a packing problemΠ ad-
mits an FPTAS, then it admits a truthful-in-expectation
randomized mechanism that is an FPTAS.

Recall that afully polynomial-time approximation
scheme (FPTAS)for a maximization problem takes as

1Informally, a mechanism design problem issingle-parameterif
every participant’s utility function can be described naturally using a
single real number, and ismulti-parameterotherwise.



input an instance and an approximation parameterǫ, and
returns a feasible solution with objective function value
at least1− ǫ times that of an optimal solution, in time
polynomial in the size of the instance and in1/ǫ.

Thus the requirement of (randomized) incentive-
compatibilityimposes no loss in performancein packing
problems that admit an FPTAS. Our main result is
arguably the first to suggest the intriguing possibility
of very general black-box (randomized) reductions in
algorithmic mechanism design.

A. Executive Summary of Results and Techniques

We follow the most general approach known for
designing (randomized) truthful multi-parameter mech-
anisms, via maximal-in-distributional range (MIDR)
algorithms [2]. An MIDR algorithm fixes a set of
distributions over feasible solutions — thedistributional
range— independently of the reported player utilities,
and outputs a random sample from the distribution
that maximizes expected welfare. These algorithms are
randomized analogues ofmaximal-in-rangealgorithms
(see e.g. [1], [3]). Since the VCG payment scheme
renders an MIDR algorithm truthful in expectation,
we can focus on the purely algorithmic problem of
designing an MIDR FPTAS.

Our primary and most sweeping result concernsbi-
nary packing problems of polynomial dimension, in-
stances of which are described by a feasible setS ⊆
{0, 1}d and an objective functionv ∈ R

d
+, whered is

polynomial in the description ofS andS is downward-
closed (i.e., ifx ∈ S andy ≤ x component-wise, then
y ∈ S). The goal is to maximizevTx over x ∈ S. In
a mechanism design context, the objective functionv
is the sum

∑
i ui of several players’ utility functions.

(See Sections IV and V for several concrete examples.)
Consider such a problemΠ that admits an FPTAS, and
hence — via a recent result of Röglin and Teng [4] —
admits an exact algorithmA with polynomial smoothed
complexity. (See Section II for precise definitions.)

As a naive starting point, suppose we apply a per-
turbation to a given instance ofΠ and then invoke the
smoothed polynomial-time algorithmA to compute an
optimal solution to the perturbed instance. The good
news is that this solution will be near-optimal for the
unperturbed instance provided the perturbation is not
too large. The two-fold bad news is that an algorithm
with smoothed polynomial running time has polynomial
expected running time only when the magnitude of
perturbations is commensurate with that of the input
numbers (to within a polynomial factor, say); and,
moreover, exact optimization using perturbed valuations
does not generally yield a truthful mechanism. On the

first point, simultaneously learning the scale of players’
utility functions and using this knowledge to compute
an outcome seems incompatible with the design of
truthful mechanisms, particularly for multi-parameter
problems where essentially only minor variations on the
VCG mechanism are known to be truthful. Is there a
way to apply truthfully perturbations of the necessary
magnitude? Since we use perturbations only as an
algorithmic tool internal to our algorithm, we bear no
burden of ensuring that the perturbations are “natural”
in any sense (unlike in traditional smoothed analysis).

We provide an affirmative answer to the above ques-
tion by developing a simple “duality theory” for per-
turbations of the following form: for a randomd × d
matrixP and a given objective functionv, the perturbed
objective function is defined asPv. We observe that ex-
act maximization of the perturbed objective functionPv
over the feasible solutions of an instance is equivalent
to exact maximization of the true objective functionv
over a set of “perturbed solutions” with the “adjoint”
perturbation matrixPT . WhenP satisfies certain condi-
tions, each such perturbed solution can be expressed as
a probability distribution over solutions. In this case, the
“adjoint problem” can be solved truthfully via an MIDR
algorithm. Moreover, a valuation-independent perturba-
tion of the feasible solutions is necessarily “scale free”,
and we show that if it designed appropriately, it dualizes
to a perturbation of the valuations at the correct scale.
Thus the “dual perspective” and the use of perturbed
solutions allow us to argue truthfulness for perturba-
tion schemes that seem, at first blush, fundamentally
incompatible with truthful mechanisms. Blending these
ideas together, we design a perturbation scheme that,
in effect, learns the scale of the objective functionv
and applies perturbations of the appropriate magnitude,
thereby obtaining simultaneously expected polynomial
running time, an approximation factor of(1 − ǫ) for
arbitrary ǫ > 0, and an MIDR (and hence truthful-in-
expectation) implementation.

We also extend our main result in various ways:
to binary covering problems in Section V-A; to non-
packing binary maximization problems in Section V-B;
and to certain problems that do not have polynomial
dimension in the full version of the paper (including
multi-unit auctions, thereby recovering the main result
of [2]).

B. Comparison to Previous Work

There are three known black-box reductions from ap-
proximation algorithms to truthful approximation mech-
anisms forsingle-parametermechanism design prob-
lems, where outcomes can be encoded as vectors inR

n
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(wheren is the number of players) and the utility of
a player i for an outcomex is uixi, where ui is a
parameter privately known toi (the value per allocation
unit). The space of truthful mechanisms for single-
parameter problems is well understood and reasonably
forgiving: an approximation algorithm can be used in
a truthful mechanism if and only if it is monotone,
meaning that the computed allocationxi for playeri is
non-decreasing in the reported utilityui (holding other
players’ reported utilities fixed). See [5] for precise defi-
nitions and many examples of monotone approximation
algorithms. The first black-box reduction is due to Briest
et al. [6], who proved that every single-parameter binary
optimization problem with polynomial dimension that
admits an FPTAS also admits a truthful mechanism
that is an FPTAS. Their black-box reduction is also
deterministic. Second, Babaioff et al. [7] exhibit a black-
box reduction that converts an approximation algorithm
for a single-parameter problem to a truthful mechanism.
However, their reduction degrades the approximation
factor by a super-constant factor. Finally, Hartline and
Lucier [8] consider the weaker goal of implementation
in Bayes-Nash equilibria — as opposed to in dominant
strategies, the notion considered here and in most of
the algorithmic mechanism design literature — and
show that for every single-parameter welfare maxi-
mization problem, every non-monotone approximation
algorithm can be made monotone without degrading
the expected approximation factor. All three of these
black-box reductions rely heavily on the richness of
the monotone algorithm design space, and do not admit
obvious extensions to multi-parameter problems.2

For multi-parameter problems, the result of Lavi and
Swamy [9] is in the spirit of black-box reductions. They
show how to convert certain approximation algorithms
to truthful in expectation mechanisms without degrading
the approximation ratio. However, their result imposes
non-trivial extra requirements on the approximation
algorithm that is to be converted into a truthful approx-
imation mechanism. For many problems, it is not clear
if there are near-optimal approximation algorithms that
meet these extra requirements.

On the negative side, there is no general and lossless
black-box reduction from approximation algorithms to
deterministic truthful approximation mechanisms for
multi-parameter problems. This fact was first estab-

2For example, the black-box reduction in [6] uses a simple
truncation trick that preserves monotonicity but violatesthe weak
monotonicity condition needed for truthfulness in multi-parameter
problems; it also uses a monotonicity-preserving MAX operator to
effectively learn the scale of the valuations, which again appears
possible only in a single-parameter context.

lished by Lavi et al. [10], and Papadimitriou et al. [11]
gave a quantitatively much stronger version of this lower
bound. Additional evidence of the difficulty of multi-
parameter mechanism design was provided in [3] and
[12], in the context of combinatorial auctions. These
negative results do not apply to randomized mecha-
nisms, however, and Dobzinski and Dughmi [2] showed
that, for a variant of multi-unit auctions, truthful-in-
expectation mechanisms are strictly more powerful than
deterministic ones.

Finally, we know of only one previous application
of smoothed analysis techniques to the design of new
algorithms: Kelner and Spielman [13] used an iterative
perturbation approach to design a randomized simplex-
type algorithm that has (weakly) polynomial expected
running time.

II. PRELIMINARIES

A. Binary Packing Problems

An instance of abinary maximization problemΠ is
given by afeasible setS encoded — perhaps implicitly
— as vectors in{0, 1}d, as well as a non-negative
vectorv ∈ R

d
+ of coefficients. The goal is to compute

a feasible solutionx ∈ S that maximizes the linear
objective vTx. Many natural maximization problems
arepacking problems, meaning that ifx belongs to the
feasible setS andyi ≤ xi for all i, theny ∈ S as well.
(Binary covering problems can be defined analogously;
see Section V-A.)

We are interested in binary packing mechanism de-
sign problems, where the objective functionvTx is the
welfare of self-interested players with private utility
functions. Consider a feasible setS ⊆ {0, 1}d and
n players, where playeri has utility

∑d
j=1 uijxj for

eachx ∈ S. The corresponding welfare maximization
problem — computing the outcomex that maximizes
the sum of players’ utilities — is then the binary
maximization problem withvj =

∑n

i=1 uij for each
j = 1, 2, . . . , d. We next give a simple example to make
these definitions concrete for the reader; see Sections IV
and V for several more examples.

Example II.1 (Multi-Parameter Knapsack) In the
multi-parameter knapsackproblem, there arem
projects andn players. Each projectj has a publicly
known cost sj , and the feasible sets correspond to
subsets of projects that have total cost at most a
publicly known budgetC. Each playeri has a private
utility uij for each projectj. Welfare maximization
for multi-parameter knapsack instances is a binary
packing problem: the feasible set is naturally encoded
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as the vectorsx in {0, 1}m with
∑

j sjxj ≤ C, and
the coefficientvj is defined as the total utility

∑
i uij

to all players of selecting the projectj.

The binary packing problem in Example II.1 haspoly-
nomial dimension, meaning that the numberd of deci-
sion variables has size polynomial in the description of
the feasible set. Our most sweeping results (Section IV)
are for problems with polynomial dimension, but our
techniques also extend to some interesting problems
with exponential dimension – we defer details to the
full version of the paper.

B. Mechanism Design Basics

We consider direct-revelation mechanisms for binary
optimization mechanism design problems. Such a mech-
anism comprises anallocation rule, which is a function
from (hopefully truthfully) reported utility functions
u1, . . . , un to an outcomex ∈ S, and apayment rule,
which is a function from reported utility functions to
a required payment from each player. We allow the
allocation and payment rules to be randomized.

A mechanism with allocation and payment rulesA
and p is truthful in expectationif every player always
maximizes its expected payoff by truthfully reporting
its utility function, meaning that

E[ui(A(u))−pi(u)] ≥ E[ui(A(u′
i, u−i))−pi(u

′
i, u−i)]

(1)
for every playeri, (true) utility functionui, (reported)
utility function u′

i, and (reported) utility functionsu−i

of the other players. The expectation in (1) is over
the coin flips of the mechanism. If the mechanism
is deterministic and satisfies this condition, then it is
simply calledtruthful.

The mechanisms that we design can be thought of as
randomized variations on the classical VCG mechanism,
as we explain next. Recall that theVCG mechanismis
defined by the (generally intractable) allocation rule that
selects the welfare-maximizing outcome with respect to
the reported utility functions, and the payment rule that
charges each playeri a bid-independent “pivot term”
minus the reported welfare earned by other players in
the selected outcome. This (deterministic) mechanism
is truthful; see e.g. [14].

Now let dist(S) denote the probability distributions
over a feasible setS, and let R ⊆ dist(S) be a
compact subset of them. The correspondingMaximal
in Distribution Range (MIDR)mechanism has the fol-
lowing (randomized) allocation rule: given reported
utility functions u1, . . . , un, return an outcome that
is sampled randomly from a distributionD∗ ∈ R
that maximizes the expected welfareEx∼D[

∑
i,j uijxj ]

over all distributionsD ∈ R. Analogous to the VCG
mechanism, there is a (randomized) payment rule that
can be coupled with this allocation rule to yield a
truthful-in-expectation mechanism (see [2]).

We will need the following fact, that probability dis-
tributions over MIDR allocation rules are again MIDR
allocation rules.

Lemma II.2 An allocation rule that chooses an MIDR
allocation rule randomly from an arbitrary distribution
over such rules is also an MIDR allocation rule.

Proof: We fix a feasible setS and consider an
allocation ruleA that randomly picks an MIDR allo-
cation rule to run. We assume thatA runs the MIDR
allocation ruleAk with probability pk, and useRk to
denote the range ofAk. We letDv

k be the distribution
over outcomes sampled from byAk given the valu-
ations v. (As usual,vj denotes

∑
i uij , where ui is

the private utility function of playeri.) By definition,
Dv

k ∈ argmaxD∈Rk
{Ex∼D[vTx]}. Now, the induced

distribution over outcomes in the allocation ruleA for v
can be written asDv =

∑
k pkD

v
k. Similarly, the range

of A is a subset of

R =

{
∑

k

pkDk : Dk ∈ Rk

}
.

SinceDv
k maximizes welfare over all elements ofRk for

everyv andk, Dv maximizes expected welfare overR
— and hence also over the range ofA — for everyv.
Therefore,A is an MIDR allocation rule.

C. Smoothed Complexity Basics

Smoothed complexity was defined by Spielman and
Teng [15]; our formalism is similar to that in Beier and
Vöcking [16] and Röglin and Teng [4]. Aperturbed
instanceof a binary packing problemΠ consists of a
fixed feasible setS ⊆ {0, 1}d andd random variables
v1, . . . , vd, where eachvi is drawn independently from
a distribution with support in[0, vmax] and a density
function that is bounded above everywhere byφ/vmax.
The parameterφ measures the maximum concentra-
tion of the distributions of thevi’s. We say that an
algorithm A for a binary packing problemΠ runs in
smoothed polynomial timeif its expected running time
is polynomial in the description length ofS andφ for
every perturbed instance.

Our work relies on the fact that every FPTAS for
a binary optimization problem with polynomial dimen-
sion can be converted into an algorithm that runs in
smoothed polynomial time. This is a special case of a
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result of Röglin and Teng [4], who strengthen a result
of Beier and Vöcking [16].

Proposition II.3 ([16], [4]) For every FPTASF for a
binary maximization problemΠ of polynomial dimen-
sion, there is an exact algorithmAF for Π that runs in
smoothed polynomial time.

Moreover, the quite natural algorithmAF in Proposi-
tion II.3 treatsF as an “oracle” or “black box”, meaning
that its behavior depends only on the outputs ofF and
not on the actual description ofF .3

III. PERTURBATION SCHEMESTHAT Y IELD

TRUTHFUL FPTASES

A. Perturbation Schemes

A perturbation schemefor a binary packing prob-
lem Π is a randomized algorithmΨ that takes as input
an instance(S, v) of Π and an approximation parameter
ǫ and outputs another objective functionv̂ = Ψ(v,S, ǫ)
of the same dimension asv. Such a scheme isapproxi-
mation preservingif for every instance(S, v) of Π and
parameterǫ > 0,

E[vT argmax
x∈S

(v̂Tx)] ≥ (1− ǫ)max
x∈S

vTx,

where the expectation is over the random coin flips of
the scheme.

B. An Overly Simplistic Approach

Suppose we design an exact algorithmA and an
approximation-preserving perturbation schemeΨ for a
binary packing problemΠ such that, for every instance
(S, v) and ǫ > 0, algorithmA has expected running
time polynomial in the instance size and1/ǫ when the
instance is perturbed byΨ. Then, we immediately get
an FPTAS forΠ: given an instance ofΠ andǫ, use the
schemeΨ to perturb the instance and the algorithmA
to efficiently solve the perturbed instance. SinceΨ is
approximation preserving, this algorithm gives a(1−ǫ)-
approximation (in expectation).

Can we design such a perturbation scheme so that
the resulting FPTAS can be used in a truthful-in-
expectation mechanism? We face two quandaries. First,
the perturbations have to be at the same “scale” as
the largest coefficientvmax of the objective function

3The results in [16], [4] are stated as conversions from randomized
pseudopolynomial-time algorithms to smoothed polynomial-time al-
gorithms. Proposition II.3 follows since every FPTAS for a binary
optimization problem of polynomial dimension can be converted
easily to a pseudopolynomial-time exact algorithm in a black-box
manner.

(recall Section II); but truthfulness seems to preclude
explicitly learning and subsequently using this scale in
a mechanism. Second, exactly optimizing a randomly
perturbed objective function does not generally yield a
truthful mechanism. To address both of these issues, we
require another idea.

C. Adjoint Perturbations

We now narrow the discussion tolinear perturbation
schemes, whereΨ(S, v, ǫ) = Pv for a (random) ma-
trix P whose distribution is independent ofv. We next
develop a “duality” for such schemes. We will need both
the “primal” and “dual” viewpoints to prove the running
time bound and the truthfulness guarantee, respectively,
of our final mechanism.

Here is a trivial observation: for every fixed per-
turbation matrixP , objective functionv, and feasible
solutionx ∈ S, the value(Pv)Tx of the solutionx with
respect to the perturbed objectivePv equals the value
vT (PTx) of the “perturbed solution”PTx with respect
to the true objectivev. We say that the perturbationPT

is adjoint toP . Taking this alternative adjoint viewpoint,
solving a linearly perturbed instance(S, Pv) of a binary
packing problem is the same as solving the optimization
problem

maximize vT x̃
subject to x̃ ∈ PTS,

(2)

where x̃ = PTx and PTS = {x̃ : x ∈ S}. See
Figures 1 and 2 for an illustration of this relationship.

The adjoint problem (2) is meaningful when we can
associate everỹx ∈ PTS with a probability distribution
over the feasible solutionsS that has expectatioñx.
This is possible if and only ifPTS ⊆ convexhull(S).
Assume that we have designedP to possess this prop-
erty, and for everyx ∈ S let Dx be an arbitrary
distribution overS with expectationx̃ = PTx. Let
R = {Dx}x∈S

denote the corresponding distributional
range. By linearity, the adjoint problem (2) is then
equivalent to the problem of maximizing the expected
objective function value overR:

maximize Ey∼Dx
[vT y]

subject to Dx ∈ R.
(3)

The key point is thatthis is precisely the type of
optimization problem that can be solved — truthfully —
using an MIDR allocation rule and the corresponding
payment rule(recall Section II).

D. Structure of the Black-Box Reduction

The next theorem formalizes our progress so far:
designing truthful-in-expectation mechanisms reduces
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Figure 1. PerturbationP rotatesv by an angleθ to ṽ.

v

θ

Figure 2. This is the same, relatively speaking, as rotatingeach
feasible solution by an angle of−θ.

to designing perturbation schemes that meet a number
of requirements.

For a linear perturbation schemeΨ for a binary
packing problemΠ, we say thatΨ is feasible if, for
every instance(S, v) of Π, Ψ’s random perturbation
matrix P satisfiesPTS ⊆ convexhull(S) with prob-
ability 1. Such a scheme istractable if it runs (i.e.,
outputs the matrixP ) in polynomial time; and if for
every instance(S, v), feasible solutionx ∈ S, and
possible perturbation matrixP , the distributionDx with
expectationPTx can be sampled from in polynomial
time. A FLAT perturbation scheme is one that is feasi-
ble, linear, approximation preserving, and tractable. The
outline of our black-box reduction is displayed below
as Algorithm 1.

Theorem III.1 For every binary packing problemΠ
and FLAT perturbation schemeΨ, the corresponding
perturbation-based (PB) allocation rule (Algorithm 1)
satisfies the following properties:

(a) it is MIDR and hence defines a truthful-in-
expectation mechanism;

(b) for every instance ofΠ and ǫ > 0, it outputs a
feasible solution with expected objective function

Algorithm 1 Perturbation-Based (PB) Allocation Rule
for a Binary Packing ProblemΠ.
Parameter: Approximation parameterǫ > 0.
Parameter: Exact algorithmA for Π.
Parameter: FLAT perturbation schemeΨ for Π.
Input: Instance(S, v).
Output: Solutiony ∈ S

1: Draw P ∼ Ψ(S, ǫ).
2: Let x = A(S, Pv).
3: Let Dx be a distribution overS with expectation

PTx, chosen independently ofv.
4: Return a sampley ∼ Dx.

value at least(1− ǫ) times the maximum possible;
(c) its worst-case expected running time is bounded by

a polynomial plus that of the exact algorithmA on
a perturbed instance(S, Pv).

The key point of Theorem III.1 is part (a), which
guarantees truthfulness while permitting remarkable
freedom in designing perturbation schemes.

Proof of Theorem III.1: First, we note that the
choice of P in Step 1 is independent ofv by the
definition of a linear scheme and Step 3 is well defined
becauseΨ is feasible. Part (c) follows immediately from
the assumption thatΨ is tractable. Part (b) follows from
the definition of an approximation-preserving scheme,
the fact thatA is an exact algorithm, and the fact that the
expected value of the solutiony returned by the PB allo-
cation rule equalsEy∼Dx

[vT y] = vT (PTx) = (Pv)Tx,
which is the objective function value (with respect to the
perturbed objectivePv) of the solution returned byA.

To prove part (a), consider an instance(S, v) and
approximation parameterǫ. To begin, condition on the
choice ofP by Ψ(S, ǫ) in Step 1 of the PB allocation
rule. LetDx be the distribution overS with expectation
PTx that the allocation rule chooses in Step 3 in the
event thatx = A(S, Pv), and setR = {Dx : x ∈ S}.
By the definition of this step, the rangeR depends only
onS andǫ and is independent of the valuationsv. Since
the allocation rule explicitly computes the solutionx∗

that maximizes(Pv)Tx and then samples an outcome
from the corresponding distributionDx∗ , and thisx∗ is
the same solution that maximizesEy∼Dx

[vT y] overx ∈
S (i.e., overDx in R), the output of the allocation rule
is the same (for eachv) as that of the MIDR allocation
rule with distributional rangeR.

We have established that for each fixed choice ofP ,
the PB allocation rule is an MIDR rule. Since the
random choice ofP is independent of the valuationsv,
the PB allocation rule is a probability distribution over
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MIDR rules. By Lemma II.2, it is an MIDR allocation
rule.

IV. T HE MAIN RESULT

A. The Random Singleton Scheme

We now describe a FLAT perturbation scheme that
leads to our main result: every binary packing problem
with polynomial dimension that admits an FPTAS also
admits a truthful-in-expectation mechanism that is an
FPTAS.

We call our FLAT scheme theRandom Singleton
(RS)perturbation scheme, and we first describe it via
its adjoint. Let (S, v) be an instance of a binary
packing problemΠ with polynomial dimension, with
S ⊆ {0, 1}d. SinceΠ is a packing problem, the all-
zero vector lies inS, and we can assume without loss
of generality that each basis vectore1, . . . , ed lies in S
(if ei /∈ S then we can ignore coordinatei). Given
x ∈ S and a parameterǫ > 0, we consider the following
randomized algorithm:
(1) for eachi = 1, 2, . . . , d, draw δi uniformly from

the interval[0, ǫ/d];
(2) output a random solutiony ∈ S according to the

following distribution: output the given solutionx
with probability1−ǫ, the “singleton”ej with prob-
ability (

∑d

i=1 δixi)/d (for eachj = 1, . . . , d); and
the all-zero solution with the remaining probability.

The motivation of the random choices in the first
step is to ensure that the distribution defined by the
perturbation is diffuse enough to permit algorithms with
polynomial smoothed complexity (cf., the parameterφ
in Section II). The motivation of the random choices
in the second step is to reward a solutionx ∈ S
with a “bonus” of a random singleton with probability
δi for each coordinatei with xi = 1. Since there
exists a singletonej with value vj that is at least a
1/d fraction of the optimal valuemaxx∈S vTx, these
bonuses effectively ensure that the perturbations occur
at the correct “scale.”

We now make this vague intuition precise. After
conditioning on the random choices in step (1), the
expectationx̃ of the distributionDx over solutionsS
defined by step (2) can be expressed via the adjoint
perturbationPT given by

x̃ = PTx = (1 − ǫ)x+

(
d∑

i=1

δixi

)


d∑

j=1

ej
d




Let δ denote thed-vector of δi’s. SincePT can be
written as(1−ǫ)I+ 1

d
~1δT , dualizing gives the following

formal definition of the RS perturbation scheme forΠ,

given (S, v) and ǫ and conditioned on the random
choices of theδi’s:

P = (1 − ǫ)I +
δ~1T

d

This corresponds to the perturbation

vi 7→ (1− ǫ)vi +
δi
d

d∑

j=1

vj (4)

for each coefficienti. This perturbation depends on
the vi’s and might appear unsuitable for deployment
in a truthful mechanism. But its use is justified by our
development of adjoint perturbations.

Lemma IV.1 For every binary packing problemΠ of
polynomial dimension, the RS perturbation scheme is
FLAT.

Proof: Since the choice of the perturbation ma-
trix P depends only on the feasible setS, the approx-
imation parameterǫ, and the (valuation-independent)
choices of theδi’s, the RS scheme is linear. It is feasible
because it is defined explicitly via the adjointPT and
the distributionsDx over solutions whose expectations
agree withPTx (for eachx ∈ S). It is clearly tractable.
To argue that it is approximation preserving, we observe
from equation (4) that for every possible perturbation
matrix P and feasible solutionx ∈ S, (Pv)Tx ≥
(1− ǫ)vTx. It follows that, with probability 1 over the
choice ofP , maxx∈S(Pv)Tx ≥ (1 − ǫ)maxx∈S vTx.

B. Putting It All Together

We are now prepared to prove our main result.

Theorem IV.2 (Main Result) Every binary packing
problem of polynomial dimension that admits an FPTAS
also admits a truthful-in-expectation mechanism that is
an FPTAS.

Proof: Let Π be a binary packing problem of
polynomial dimension andF and arbitrary FPTAS for
it. By Proposition II.3, there is an exact algorithmAF

for Π that runs in smoothed polynomial time in the
sense of Section II. LetΨ denote the RS perturbation
scheme forΠ, and instantiate the PB allocation rule
with the schemeΨ and algorithmAF . SinceΨ is FLAT
(Lemma IV.1), Theorem III.1 implies that this allocation
rule is MIDR, has an approximation guarantee of1− ǫ
in expectation (for an arbitrary supplied parameterǫ),
and has expected running time bounded by a polynomial
plus that ofAF on the perturbed instance(S, Pv).

7



To analyze the expected running time ofAF

on (S, Pv) and complete the proof, recall the per-
turbation formula (4). Letvmax denote maxdi=1 vi.
Every coordinate ofPv is bounded above byvmax

with probability 1, and these coordinates are indepen-
dent random variables (since theδi’s are independent).
Since

∑d

j=1 vj ≥ vmax and δi is drawn uniformly
from [0, ǫ/d], the density of the random variable(Pv)i
is bounded above everywhere byd

2

ǫvmax

. Thus the con-
centration parameterφ from Section II is bounded by
d2/ǫ. SinceΠ has polynomial dimension andAF has
polynomial smoothed complexity, the expected running
time of AF on (S, Pv) is polynomial in the input size
and1/ǫ.

C. Examples

We feel that the primary point of Theorem IV.2
is conceptual: it shows that requiring (randomized)
incentive-compatibility requires no sacrifice in perfor-
mance for a non-trivial class of multi-parameter prob-
lems, and suggests that even more general “black-box
randomized reductions” might be possible. Of course, a
general result like Theorem IV.2 can be instantiated for
various concrete problems, and we conclude the section
by listing a few examples. Numerous single-parameter
examples are given in Briest et al. [6]. Below we present
some multi-parameter examples, which are beyond the
reach of the results in [6].
MULTI -PARAMETER KNAPSACK: From a purely al-
gorithmic perspective, the problem in Example II.1 is
equivalent to the Knapsack problem and hence admits
a (non-truthful) FPTAS.
ARBORESCENTMULTI -PARAMETER KNAPSACK: This
is a generalization of the multi-parameter Knapsack
problem, where additional constraints are placed on the
feasible solutionsS ⊆ {0, 1}

m. Namely, the projects
[m] are the ground set of a laminar4 set systemL ⊆
2[m], and there is a budgetCT for eachT ∈ L. The
feasible setS is constrained so that

∑
j∈T sj ≤ CT for

eachT ∈ L. A (non-truthful) FPTAS for this problem
was given in [17].
TREE-ORDERED MULTI -PARAMETER KNAPSACK:
This is another generalization of the multi-parameter
Knapsack problem, where precedence constraints
are placed on the projects[m]. Namely, a directed
acyclic graphG with vertices[m] encodes precedence
constraints, and the feasible setS ⊆ {0, 1}

m is
constrained so thatxj ≥ xk whenever(j, k) ∈ E(G)
for every x ∈ S. When G is a directed-out tree,

4A set systemL ⊆ 2[m] is laminar if for eachT, T ′ ∈ L either
T
⋂

T ′ = ∅, or T ⊆ T ′, or T ′ ⊆ T .

a (non-truthful) FPTAS for this problem was given
in [18]. Observe, however, that this is no longer
a binary packing problem. Fortunately, our proof
of Theorem IV.2 relied very little on the packing
assumption: we argue in Section V-B that we only
require~0 ∈ S, which is certainly the case here.
MAXIMUM JOB SEQUENCING WITH DEADLINES: In
this problem,m jobs are to be scheduled on a single
machine. Jobj ∈ [m] has processing timepj and
deadlinedj . There aren players, and playeri has
private utilityuij for each jobj that completes before its
deadlinedj . The goal is to find the welfare-maximizing
subset of the jobs that can be scheduled so that each
finishes before its deadline. Converting such a set of
jobs to a schedule can be done via the obvious greedy
algorithm. This yields a binary packing problem with
a welfare objective. A (non-truthful) FPTAS for this
problem was given in [19].

V. EXTENSIONS

A. Binary Covering Problems

We next use the results of Sections III and IV to
derive truthful-in-expectation approximation schemes
for binary covering problemsof polynomial dimen-
sion. Such problems are defined analogously to binary
packing problems, except that the feasibleS is upward
closed and the goal is to minimizevTx over x ∈ S.

We assume thatvj =
∑n

i=1 cij for each j =
1, 2, . . . , d, whereci denotes the private cost function
of player i.

We show how to use Theorem IV.2 to design an
“additive FPTAS” for binary covering problems. We
will show that this is the best we can hope for by an
MIDR mechanism — and MIDR mechanisms are essen-
tially the only general technique we know for designing
truthful mechanisms for multi-parameter problems — as
no polynomial-time MIDR mechanism obtains a finite
approximation of anNP -hard binary covering problem
(assumingP 6= NP ).

Given a binary covering problemΠ, we can de-
fine the following complementary binary packing prob-
lem Π. For x ∈ {0, 1}

d, let x = ~1 − x. More-
over, for S ⊆ {0, 1}

d let S = {x : x ∈ S}. Π ={
(S, v) : (S, v) ∈ Π

}
is the problem of maximizing

vTx for x ∈ S. It is easy to see that ifx is an optimal
solution toΠ, thenx = ~1 − x is an optimal solution
to Π. We use this complementary relationship in both
directions: First, observe that a (non-truthful) FPTAS
B for Π can be converted, in a black box fashion,
to a (non-truthful) FPTASB for Π using the obvious
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reductionx → 1 − x.5 Applying Theorem IV.2, we
derive an MIDR FPTASA for Π. To establish the
following theorem, it remains to show thatA can be
converted to an MIDR additive FPTASA for Π – we
defer the simple proof of this fact to the full version of
the paper.

Theorem V.1 Let Π be a binary covering problem of
polynomial dimension that admits an FPTAS. There
exists an MIDR algorithmA for Π with approximation
parameterǫ such that the following holds. On input
(S, v), A runs in expected time polynomial in1/ǫ and
the length of the description of the input, and outputs a
solutionx ∈ S such that

E[vTx] ≤ min
y∈S

vT y + ǫvmax

In the above expression,vmax denotesmaxi vi, and the
expectation is taken over the internal random coins of
the algorithm.

The bound in Theorem V.1 becomes an FPTAS in the
multiplicative sense for instances where the value of the
optimal solution can be bounded below by an inverse
polynomial fraction ofvmax. In general, however, this
additive loss is inevitable if we restrict ourselves to
MIDR algorithms.

Lemma V.2 Let Π be a binary minimization problem.
If an MIDR algorithmA provides a finite approximation
ratio for Π, thenA is optimal.

Proof: AssumeA is MIDR, and provides a finite
approximation ratio forΠ. Fix a feasible setS of Π, and
letR be the corresponding distributional range ofA. We
say a feasible solutionx ∈ S is minimal if there does
not existy 6= x in S with yi ≤ xi for all i. It is clear
that for every objectivev ∈ R

d
+, there exists an optimal

solution that is minimal. SinceA is MIDR, it then
suffices to show thatR contains all point distributions
corresponding to minimal feasible solutions.

Consider a minimalx ∈ S, and let the objective
function v be such thatvi = 0 when xi = 1, and
vi = 1 whenxi = 0. By definition we havevTx = 0.
Moreover, sincex is minimal, vT y > 0 for every
y ∈ S with y 6= x. Therefore, the only distribution over

5In more detail, letOPT denote the optimal objective function
value of the covering problem. Invoking the FPTAS with approxi-
mation parameterǫ/d yields a solution with additive error at most
(ǫ/d)OPT ≤ (ǫ/d) · dvmax = ǫvmax, wherevmax = maxn

i=1 vi.
Since the optimal objective function value of the complementary
packing problem is at leastvmax, the complement of the computed
approximate solution is a(1 − ǫ)-approximation for the packing
problem.

S providing a finite approximation ratio forv is the
point distribution corresponding tox. Thus,R contains
all point distributions of minimal feasible solutions, as
needed.

Our negative result for binary covering problems
follows immediately from Lemma V.2.

Theorem V.3 Let Π be an NP-hard binary minimiza-
tion problem. No polynomial-time MIDR allocation
rule provides a finite approximation ratio forΠ unless
P = NP .

Theorem V.3 and its proof also extend to the slightly
more general class ofdistributional affine maximizers
(see [2]), and hence to all known types of VCG-based
mechanisms.

Examples: We conclude the section with a few
multi-parameter problems to which Theorem V.1, and
the complementary negative result in Theorem V.3,
apply. Again, for numerous single-parameter examples
see Briest et al. [6].
M INIMUM JOB SEQUENCING WITH DEADLINES: This
is the minimization variant of Maximum Job Sequenc-
ing with Deadlines. Here, playeri incurs a costcij for
every jobj that completes past its deadlinedj . The goal
is to minimize social cost. This is a binary covering
problem. A (non-truthful) FPTAS for this problem was
given in [20].
CONSTRAINED SHORTESTPATH : We are given a graph
G = (V,E), and two terminalss, t ∈ V . Additionally,
there is latencylj for eachj ∈ E. The mechanism is
interested in selecting a path froms to t of total latency
at mostL. There aren players, and playeri incurs
private costcij if j ∈ E is selected. We consider a
covering variant of this problem, where the mechanism
may select any subgraph ofG connectings to t via a
path of latency at mostL, and the goal is to minimize
social cost. A (non-truthful) FPTAS for this problem
was given in [21].
CONSTRAINED M INIMUM SPANNING TREE ON

TREEWIDTH BOUNDED GRAPHS: We are given
a graph G = (V,E) with bounded treewidth.
Additionally, there is a weightwj for each j ∈ E.
The mechanism is interested in selecting a spanning
tree of G with total weight at mostW . There are
n players, and playeri incurs private costcij if
j ∈ E is selected. We consider the covering variant
of this problem, where the mechanism may select any
spanning subgraph ofG containing a spanning tree of
total weight at mostW , and the goal is to minimize
social cost. A (non-truthful) FPTAS for this problem
was given in [22].

9



B. Non-Packing Binary Maximization Problems

We observe that the packing assumption of Theo-
rem IV.2 can be relaxed. In particular, ifΠ is a binary
maximization problem, it suffices that~0 ∈ S for every
feasible setS of Π. To see this, observe that the only
other property of packing problems that was used in
the proof of Theorem IV.2 was thatej ∈ S for each
j = 1, . . . , d. It is straightforward to modify the proof
to use the following, relaxed, assumption: For each
j = 1, . . . , d, there existsyj ∈ S such thatyjj = 1
(and yj can be identified in polynomial time). Letting
y =

∑
j y

j , we then modifyΨ as follows:δ is drawn

as before, and we letP = (1 − ǫ)I + δyT

d
. The proof

proceeds in a similar fashion. Similarly, Theorem V.1
extends to binary minimization problems where~1 ∈ S
for every feasible setS.

C. Beyond Polynomial Dimension

In the full version of the paper, we show that we can
sometimes exploit the structure of a problem in order
to remove the requirements of polynomial dimension
and unconstrained valuations. We adapt our framework
to the important problem of welfare maximization in
multi-unit auctions, thereby recovering the main result
in [2].
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