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Abstract—We give the first black-box reduction from To what extent is “incentive-compatible” efficient
arbitrary approximation algorithms to truthful approx- computation fundamentally less powerful than

imation mechanisms for a”non-tr|V|aI class of multi- “classical” efficient computation?
parameter problems. Specifically, we prove that every . . i .

packing problem that admits an FPTAS also admits a This question ‘remains p00r|y_UnderSt00d, despite
truthful-in-expectation randomized mechanism that is an ~ some recent positive results for single-parameter prob-

FPTAS. Our reduction makes novel use of smoothed |emg and negative results for deterministic mechanisms
analysis, by employing small perturbations as a tool in (discussed further below). A starry-eyed mechanism

algorithmic mechanism design. We develop a “duality” . . . )
between linear perturbations of the objective function of designer might hope for the best-possible answer:

an optimization problem and of its feasible set, and use Not at all: If an optimization problenil admits
the “primal” and “dual” viewpoints to prove the running a polynomial-timea-approximation algorithmA,
time bound and the truthfulness guarantee, respectively, then it admits a polynomial-time-approximate
for our mechanism. . . . .
incentive-compatible mechanism.

Since such a result makes no hypotheses about the
algorithm A beyond those on its running time and
approximation factor, it would presumably be proved
via a “black-box reduction” — a generic method that

Algorithmic mechanism desigstudies optimization invokes.A at most polynomially many times, and re-
problems where the underlying data — such as a valugtores incentive-compatibility without degrading’s
of a good or a cost of performing a task — is a approximation factor.
priori unknown to the algorithm designer, and must The primary contribution of this paper is the first

a bid). The high-level goal of mechanism design is multi-parameter problems.

to design a protocol, or “mechanism”, that interacts
with participants so that self-interested behavior yield
a desirable outcomeAlgorithmic mechanism design

Keywords-Mechanism Design; Truthful Approximation
Algorithms; Smoothed Analysis

|. INTRODUCTION

In this paper, by “incentive compatible” we mean
Sa (possibly randomized) mechanism such that every
: - ; participant maximizes its expected payoff by truthfully
adopts computational tractability as an equally Impor'revealing its information to the mechanism, no matter

tant requirement. how the other participants behave. Such mechanisms are

An |mportanF research agendq, suggested roughly te alledtruthful in expectationand are defined formally
years ago [1], is to understand rigorously what can an n Section Il. Our main result can be summarized as
cannot be efficiently computed when the problem datq‘ollows

is held by selfish agents, thereby reconciling strategiqvIain Result (Informal): If a packing problenil ad-

concerns with the computational requirements CUStoMz i a0 FPTAS, then it admits a truthful-in-expectation
ary in computer science. The central question in thg . omized mechanism that is an FPTAS

field is: Recall that afully polynomial-time approximation

*Supported by NSF Grant CCF-0448664 and a Siebel FoundatioScheme (FPTASpr a maximization problem takes as
Scholarship.

TSupported in part by NSF CAREER Award CCF-0448664, an lInformally, a mechanism design problem sigle-parameterif
ONR Young Investigator Award, an ONR PECASE Award, an AFOSR every participant’s utility function can be described mally using a
MURI grant, and an Alfred P. Sloan Fellowship. single real number, and imulti-parameterotherwise.



input an instance and an approximation parametend  first point, simultaneously learning the scale of players’
returns a feasible solution with objective function value utility functions and using this knowledge to compute
at leastl — € times that of an optimal solution, in time an outcome seems incompatible with the design of
polynomial in the size of the instance andlipe. truthful mechanisms, particularly for multi-parameter

Thus the requirement of (randomized) incentive-problems where essentially only minor variations on the
compatibilityimposes no loss in performanitepacking VCG mechanism are known to be truthful. Is there a
problems that admit an FPTAS. Our main result isway to apply truthfully perturbations of the necessary
arguably the first to suggest the intriguing possibility magnitude? Since we use perturbations only as an
of very general black-box (randomized) reductions inalgorithmic tool internal to our algorithm, we bear no
algorithmic mechanism design. burden of ensuring that the perturbations are “natural”
. . in any sense (unlike in traditional smoothed analysis).
A. Executive Summary of Results and Techniques Weyprovide(an affirmative answer to the aboveyque)s—

We follow the most general approach known for tion by developing a simple “duality theory” for per-
designing (randomized) truthful multi-parameter mech-tyrbations of the following form: for a random x d
anisms, viamaximal-in-distributional range (MIDR) matrix P and a given objective function the perturbed
algorithms [2]. An MIDR algorithm fixes a set of opjective function is defined aBv. We observe that ex-
distributions over feasible solutions — tHestributional ¢t maximization of the perturbed objective functiBn
range— independently of the reported player utilities, gver the feasible solutions of an instance is equivalent
and outputs a random sample from the distributiontg exact maximization of the true objective function
that maximizes expected welfare. These algorithms ar@yer a set of “perturbed solutions” with the “adjoint”
randomized analogues afiaximal-in-rangealgorithms  perturbation matrix””. When P satisfies certain condi-
(see e.g. [1], [3]). Since the VCG payment schemetions, each such perturbed solution can be expressed as
renders an MIDR algorithm truthful in expectation, a probability distribution over solutions. In this casee th
we can focus on the purely algorithmic problem of “adjoint problem” can be solved truthfully via an MIDR
designing an MIDR FPTAS. algorithm. Moreover, a valuation-independent perturba-

Our primary and most sweeping result concebis  tjon of the feasible solutions is necessarily “scale free”,
nary packing problems of polynomial dimensidn-  and we show that if it designed appropriately, it dualizes
stances of which are described by a feasible$el  tg a perturbation of the valuations at the correct scale.
{0,1}% and an objective functiom € RY, whered is  Thus the “dual perspective” and the use of perturbed
polynomial in the description of andS is downward-  splutions allow us to argue truthfulness for perturba-
closed (i.e., ifz € S andy < = component-wise, then tjon schemes that seem, at first blush, fundamentally
y € S). The goal is to maximize” = overz € S. In incompatible with truthful mechanisms. Blending these
a mechanism design context, the objective function jdeas together, we design a perturbation scheme that,
is the sum}_, u; of several players’ utility functions. i effect, learns the scale of the objective function
(See Sections IV and V for several concrete examples.&nd app]ies perturbations of the appropriate magnitude’
Consider such a probletti that admits an FPTAS, and  thereby obtaining simultaneously expected polynomial
hence — via a recent result of Roglin and Teng [4] — rynning time, an approximation factor ¢i — ¢) for
admits an exact algorithtd with polynomial smoothed arbitrarye > 0, and an MIDR (and hence truthful-in-
complexity. (See Section |l for precise definitions.) expectation) implementation.

As a naive starting point, suppose we apply a per- we also extend our main result in various ways:
turbation to a giVen instance &f and then invoke the to binary Covering prob'ems in Section V_A' to non-
smoothed polynomial-time algorithod to compute an  packing binary maximization problems in Section V-B;
optimal solution to the perturbed instance. The goodand to certain problems that do not have polynomial
news is that this solution will be near-optimal for the dimension in the full version of the paper (inc]uding

unperturbed instance provided the perturbation is nomulti-unit auctions, thereby recovering the main result
too large. The two-fold bad news is that an algorithmef [2]).

with smoothed polynomial running time has polynomial ) )

expected running time only when the magnitude ofB- Comparison to Previous Work

perturbations is commensurate with that of the input There are three known black-box reductions from ap-
numbers (to within a polynomial factor, say); and, proximation algorithms to truthful approximation mech-
moreover, exact optimization using perturbed valuationsanisms forsingle-parametemechanism design prob-
does not generally yield a truthful mechanism. On thelems, where outcomes can be encoded as vectd®$ in



(wheren is the number of players) and the utility of lished by Lavi et al. [10], and Papadimitriou et al. [11]
a playeri for an outcomezx is u;x;, wherewu; is a  gave a quantitatively much stronger version of this lower
parameter privately known to(the value per allocation bound. Additional evidence of the difficulty of multi-
unit). The space of truthful mechanisms for single- parameter mechanism design was provided in [3] and
parameter problems is well understood and reasonablji?], in the context of combinatorial auctions. These
forgiving: an approximation algorithm can be used in negative results do not apply to randomized mecha-
a truthful mechanism if and only if it is monotone, nisms, however, and Dobzinski and Dughmi [2] showed
meaning that the computed allocationfor playeri is  that, for a variant of multi-unit auctions, truthful-in-
non-decreasing in the reported utility (holding other  expectation mechanisms are strictly more powerful than
players’ reported utilities fixed). See [5] for precise defi- deterministic ones.

nitions and many examples of monotone approximation Finally, we know of only one previous application
algorithms. The first black-box reduction is due to Briestof smoothed analysis techniques to the design of new
et al. [6], who proved that every single-parameter binaryalgorithms: Kelner and Spielman [13] used an iterative
optimization problem with polynomial dimension that perturbation approach to design a randomized simplex-
admits an FPTAS also admits a truthful mechanismtype algorithm that has (weakly) polynomial expected
that is an FPTAS. Their black-box reduction is alsorunning time.

deterministic. Second, Babaioff et al. [7] exhibit a black-
box reduction that converts an approximation algorithm
fora smgle-pe_\rameterlproblem to a truthful mechams_mA Binary Packing Problems
However, their reduction degrades the approximation ) ) o )
factor by a super-constant factor. Finally, Hartline and An instance of ainary maximization problenil is
Lucier [8] consider the weaker goal of implementation 9iven by afeasible sets encoded — perhaps implicitly

in Bayes-Nash equilibria — as opposed to in dominant— &s vectors in{0, 1}d3 as well as a non-negative
strategies, the notion considered here and in most ofectorv € R{ of coefficients. The goal is to compute
the algorithmic mechanism design literature — and@ feasible solutionz € S that maximizes the linear
show that for every single-parameter welfare maxi- Objective vz, Many natural maximization problems
mization problem, every non-monotone approximation@€Packing problemsmeaning that ifr belongs to the
algorithm can be made monotone without degrading€asible setS andy; < z; for all i, theny € S as well.

the expected approximation factor. All three of these(Binary covering problems can be defined analogously;
black-box reductions rely heavily on the richness ofS€€ Section V-A) _ _

the monotone algorithm design space, and do not admit We are interested in binary packing mechanism de-
obvious extensions to multi-parameter probleéms. sign problems, where the objective fqnctmﬁx is the.

For multi-parameter problems, the result of Lavi andwelfa_re of self-llnterested players with private utility
Swamy [9] is in the spirit of black-box reductions. They functions. Consider a feasible set <. {0,1}* and
show how to convert certain approximation algorithms” Players, where playet has utility > ;_, ui;z; for
to truthful in expectation mechanisms without degrading@chz € S. The corresponding welfare maximization
the approximation ratio. However, their result imposesProblem — computing the outcome that maximizes
non-trivial extra requirements on the approximationth® sum of players’ utilities — is then the binary
algorithm that is to be converted into a truthful approx-Maximization problem withv; = 3°77, u;; for each
imation mechanism. For many problems, it is not clear/ = 1, 2; - - -, d. We next give a simple example to make
if there are near-optimal approximation algorithms thatthese definitions concrete for the reader; see Sections IV
meet these extra requirements. and V for several more examples.

On the negative side, there is no general and lossless i
black-box reduction from approximation algorithms to Ex@mple 1.1 (Multi-Parameter Knapsack) In  the

deterministic truthful approximation mechanisms for Multi-parameter knapsackproblem, there arem
multi-parameter problems. This fact was first estab-Proiects andn players. Each projecf has a publicly
known costs;, and the feasible sets correspond to
2For example, the black-box reduction in [6] uses a simple SUbS_etS of projects that have total cost at .mOSt a
truncation trick that preserves monotonicity but violatee weak  publicly known budgetC. Each player has a private
monotonicity condition needed for _truthfulnes‘s in mulirameter utiIity Ui for each projectj. Welfare maximization
problems; it also uses a monotonicity-preserving MAX opmrdo f It ter Kk K inst . bi
effectively learn the scale of the valuations, which agappears or mu I-parameter nap§ac |ns_ ances Is a Dbinary
possible only in a single-parameter context. packing problem: the feasible set is naturally encoded

Il. PRELIMINARIES



as the vectors: in {0,1}™ with 3°.s;z; < C, and  over all distributionsD € R. Analogous to the VCG
the coefficientv; is defined as the total utility ", u;; mechanism, there is a (randomized) payment rule that
to all players of selecting the projegt can be coupled with this allocation rule to yield a
. . . truthful-in-expectation mechanism (see [2]).

The binary packing problem in Example 1.1 hasly- v il need the following fact, that probability dis-

n_omlal qllmen5|onmgan|ng that t_he_numbelrof d_eq- tributions over MIDR allocation rules are again MIDR
sion variables has size polynomial in the description of llocation rules

the feasible set. Our most sweeping results (Section IV
are for problems with polynomial dimension, but our
techniques also extend to some interesting problem
with exponential dimension — we defer details to the
full version of the paper.

emma 1.2 An allocation rule that chooses an MIDR
allocation rule randomly from an arbitrary distribution
over such rules is also an MIDR allocation rule.

B. Mechanism Design Basics Proof: We fix a feasible setS and consider an

We consider direct-revelation mechanisms for binaryallocation ruleA that randomly picks an MIDR allo-
optimization mechanism design problems. Such a mech<ation rule to run. We assume that runs the MIDR
anism comprises aallocation rulg which is a function allocation ruleA;. with probab|llt3v/pk, and useR;, to
from (hopefully truthfully) reported utility functions denote the range ofl;. We let Dy be the distribution
u1, ..., u, to an outcomer € S, and apayment rule  OVer outcomes sampled from by, given the va!u-
which is a function from reported utility functions to ationsv. (As usual,v; denotes}_; Uig where u; is
a required payment from each player. We allow thethe private utility function o[fplayen.) By defmmon,
allocation and payment rules to be randomized. Dy € argmaxpeg, {Es~plv” z]}. Now, the induced

A mechanism with allocation and payment rulds distribution over outcomes in the allocation rudefor v
and p is truthful in expectatiorif every player always Can be written ad” =5, p;, Dy Similarly, the range
maximizes its expected payoff by truthfully reporting Of A is & subset of
its utility function, meaning that

Blus(A() ~ pi(w)] = Blus( Al )~ it u ) " {;“D’“ e R’“} |

@ .
for every playeri, (true) utility functionw;, (reported) SinceD} maximizes ngfgre over all elements&f; for
utility function «/, and (reported) utility functions_;, ~ €veryv andk, D maximizes expected welfare ov&r
of the other players. The expectation in (1) is over— and hence also over the range.4f— for everyo.
the coin flips of the mechanism. If the mechanism Therefore,A is an MIDR allocation rule. u
is deterministic and satisfies this condition, then it is
simply calledtruthful.

The mechanisms that we design can be thought of as Smoothed complexity was defined by Spielman and
randomized variations on the classical VCG mechanismTeng [15]; our formalism is similar to that in Beier and
as we explain next. Recall that th&CG mechanisns ~ Vocking [16] and Roglin and Teng [4]. Averturbed
defined by the (generally intractable) allocation rule thatinstanceof a binary packing problenil consists of a
selects the welfare-maximizing outcome with respect tdfixed feasible setS C {0,1}?¢ andd random variables
the reported utility functions, and the payment rule thatvy, . . ., v4, Where eachy; is drawn independently from
charges each playera bid-independent “pivot term” a distribution with support in0, vm.x] and a density
minus the reported welfare earned by other players irffunction that is bounded above everywheredi,,.x.
the selected outcome. This (deterministic) mechanisnThe parameterp) measures the maximum concentra-
is truthful; see e.qg. [14]. tion of the distributions of they;'s. We say that an

Now let dist(S) denote the probability distributions algorithm .4 for a binary packing problenil runs in
over a feasible setS, and letR C dist(S) be a smoothed polynomial timi¢ its expected running time
compact subset of them. The correspondmMaximal is polynomial in the description length & and ¢ for
in Distribution Range (MIDR)mechanism has the fol- every perturbed instance.
lowing (randomized) allocation rule: given reported Our work relies on the fact that every FPTAS for

C. Smoothed Complexity Basics

utility functions ug,...,u,, return an outcome that a binary optimization problem with polynomial dimen-
is sampled randomly from a distributioD* € R  sion can be converted into an algorithm that runs in
that maximizes the expected welfdig..p[}_; ; u;;z;]  smoothed polynomial time. This is a special case of a



result of Roglin and Teng [4], who strengthen a result(recall Section I1); but truthfulness seems to preclude

of Beier and Vocking [16].

Proposition 1.3 ([16], [4]) For every FPTASF for a

binary maximization problenil of polynomial dimen-
sion, there is an exact algorithpd” for II that runs in

smoothed polynomial time.

Moreover, the quite natural algorithtd” in Proposi-
tion I1.3 treatsF as an “oracle” or “black box”, meaning
that its behavior depends only on the outputsFoénd
not on the actual description ¢f.

Ill. PERTURBATION SCHEMES THAT YIELD

TRUTHFUL FPTASES

A. Perturbation Schemes

A perturbation schemédor a binary packing prob-
lem IT is a randomized algorithn¥ that takes as input
an instanc€S, v) of IT and an approximation parameter
e and outputs another objective function= ¥ (v, S, €)
of the same dimension as Such a scheme &pproxi-
mation preservingf for every instancegS, v) of II and
parameteg > 0,

E[v” argmax(?”2)] > (1 — ¢) maxv” z,
z€S z€S

where the expectation is over the random coin flips of

the scheme.

B. An Overly Simplistic Approach

Suppose we design an exact algorithnand an
approximation-preserving perturbation schemndor a
binary packing problenil such that, for every instance
(S,v) ande > 0, algorithm A has expected running
time polynomial in the instance size amde when the
instance is perturbed by. Then, we immediately get
an FPTAS forll: given an instance dfl ande, use the
schemeV to perturb the instance and the algorittvin
to efficiently solve the perturbed instance. Sinkeis
approximation preserving, this algorithm givesla-¢)-
approximation (in expectation).

Can we design such a perturbation scheme so that
the resulting FPTAS can be used in a truthful-in-
expectation mechanism? We face two quandaries. First

the perturbations have to be at the same “scale”
the largest coefficient,,,. of the objective function

3The results in [16], [4] are stated as conversions from rarized
pseudopolynomial-time algorithms to smoothed polynottimé al-
gorithms. Proposition 11.3 follows since every FPTAS for mdry
optimization problem of polynomial dimension can be cotegr
easily to a pseudopolynomial-time exact algorithm in a lblaox
manner.

explicitly learning and subsequently using this scale in

a mechanism. Second, exactly optimizing a randomly

perturbed objective function does not generally yield a

truthful mechanism. To address both of these issues, we
require another idea.

C. Adjoint Perturbations

We now narrow the discussion timear perturbation
schemes, wher&(S,v,e) = Pv for a (random) ma-
trix P whose distribution is independent of We next
develop a “duality” for such schemes. We will need both
the “primal” and “dual” viewpoints to prove the running
time bound and the truthfulness guarantee, respectively,
of our final mechanism.

Here is a trivial observation: for every fixed per-
turbation matrixP, objective functionv, and feasible
solutionz € S, the valug(Pv)Tz of the solutionz with
respect to the perturbed objectiv& equals the value
vT (PTz) of the “perturbed solutionP”'z with respect
to the true objective. We say that the perturbatiad”
is adjointto P. Taking this alternative adjoint viewpoint,
solving a linearly perturbed instan¢§, Pv) of a binary
packing problem is the same as solving the optimization
problem

maximize v7%
subjectto 7 € PTS,

)

wherez = PTz and PTS = {7:2¢€ S}. See
Figures 1 and 2 for an illustration of this relationship.

The adjoint problem (2) is meaningful when we can
associate every € PT'S with a probability distribution
over the feasible solution$§ that has expectation.
This is possible if and only iP”'S C convexhull(S).
Assume that we have designétto possess this prop-
erty, and for everyr € S let D, be an arbitrary
distribution overS with expectationz = P7x. Let
R = {D.},.s denote the corresponding distributional
range. By linearity, the adjoint problem (2) is then
equivalent to the problem of maximizing the expected
objective function value oveR:

maximize E,.p, [vTy]

subjectto D, € R. ®)

‘'The key point is thatthis is precisely the type of

a‘(ciptimization problem that can be solved — truthfully —

using an MIDR allocation rule and the corresponding
payment ruleg(recall Section ).
D. Structure of the Black-Box Reduction

The next theorem formalizes our progress so far:
designing truthful-in-expectation mechanisms reduces



v Algorithm 1 Perturbation-Based (PB) Allocation Rule
K for a Binary Packing Problerfl.
’ ’ Parameter: Approximation parameter > 0.
Parameter: Exact algorithmA for II.
Parameter: FLAT perturbation schem#& for II.
Input: Instance(S, v).
Output: Solutiony € §
1: Draw P ~ ¥(S,¢).
2: Let x = A(S, Pv).
3: Let D, be a distribution ovetrS with expectation
PTz, chosen independently of
4: Return a samplg ~ D,..

Figure 1. Perturbatior rotatesv by an angled to v.
v value at least(1 — ¢) times the maximum possible;
(c) its worst-case expected running time is bounded by
a polynomial plus that of the exact algorithmion
a perturbed instancés, Pv).

The key point of Theorem IIl.1 is part (a), which
guarantees truthfulness while permitting remarkable
freedom in designing perturbation schemes.

Proof of Theorem III.1: First, we note that the
choice of P in Step 1 is independent of by the
Figure 2. This is the same, relatively speaking, as rotatagh definition Qf a “n_ear scheme and Ste_p 3is We” defined
feasible solution by an angle ef6. becausel is feasible. Part (c) follows immediately from

the assumption thak is tractable. Part (b) follows from

the definition of an approximation-preserving scheme,
to designing perturbation schemes that meet a numbehe fact thatA is an exact algorithm, and the fact that the
of requirements. expected value of the solutignreturned by the PB allo-

For a linear perturbation schem& for a binary cation rule equal®,p, [v7y] = vT'(PTz) = (Pv)Tx,
packing problemll, we say thatV is feasibleif, for  which is the objective function value (with respect to the
every instance(S,v) of II, ¥’s random perturbation perturbed objectivé’v) of the solution returned by.
matrix P satisfiesP”S C convexhull(S) with prob- To prove part (a), consider an instant8,v) and
ability 1. Such a scheme igactable if it runs (i.e.,  approximation parameter To begin, condition on the
outputs the matrixP) in polynomial time; and if for  choice of P by W(S,¢) in Step 1 of the PB allocation
every instance(S,v), feasible solutionz € S, and rule. LetD, be the distribution ove$ with expectation
possible perturbation matri, the distributionD,, with P73 that the allocation rule chooses in Step 3 in the
expectationPTz can be sampled from in polynomial event thatr = A(S, Pv), and setR = {D,. : = € S}.
time. A FLAT perturbation scheme is one that is feasi-By the definition of this step, the range depends only
ble, linear, approximation preserving, and tractable. Theon S ande and is independent of the valuationsSince
outline of our black-box reduction is displayed below the allocation rule explicitly computes the solutiof
as Algorithm 1. that maximizes( Pv)”z and then samples an outcome

from the corresponding distributioP,.-, and thisz* is
Theorem Ill.1 For every binary packing problenil  the same solution that maximizBs,..p, [vy] overz €
and FLAT perturbation schem&, the corresponding S (i.e., overD, in R), the output of the allocation rule
perturbation-based (PB) allocation rule (Algorithm 1) is the same (for each) as that of the MIDR allocation

satisfies the following properties: rule with distributional range.
(@) it is MIDR and hence defines a truthful-in- We have established that for each fixed choicé’of
expectation mechanism; the PB allocation rule is an MIDR rule. Since the

(b) for every instance ofl and e > 0, it outputs a random choice of is independent of the valuations
feasible solution with expected objective functionthe PB allocation rule is a probability distribution over



MIDR rules. By Lemma I1.2, it is an MIDR allocation given (S,v) and ¢ and conditioned on the random
rule. [ | choices of the;’s:
IV. THE MAIN RESULT 617

P=01-¢l+ —
(1-9r+=

A. The Random Singleton Scheme : .
) ] This corresponds to the perturbation
We now describe a FLAT perturbation scheme that

. . . d
leads to our main result: every binary packing problem 0;
with polynomial dimension that admits an FPTAS also vir (1= + q Z”ﬂ' )
admits a truthful-in-expectation mechanism that is an =t
FPTAS. for each coefficient;. This perturbation depends on

We call our FLAT scheme th&kandom Singleton the v;’s and might appear unsuitable for deployment
(RS) perturbation scheme, and we first describe it viain a truthful mechanism. But its use is justified by our
its adjoint. Let (S,v) be an instance of a binary development of adjoint perturbations.
packing problemIl with polynomial dimension, with
S C {0,1}% Sincell is a packing problem, the all- Lemma IV.1 For every binary packing problerfil of
zero vector lies inS, and we can assume without loss polynomial dimension, the RS perturbation scheme is
of generality that each basis vectar, ..., eq lies in S FLAT.

(if e, ¢ S then we can ignore coordinatg. Given

x € § and a parameter> 0, we consider the following

randomized algorithm:

(1) for eachi = 1,2,...,d, draw §; uniformly from
the interval|0, ¢/d];

(2) output a random solutiop € S according to the
following distribution: output the given solution
with probability1—e, the “singleton”e; with prob-

Proof: Since the choice of the perturbation ma-
trix P depends only on the feasible s&t the approx-
imation parametek, and the (valuation-independent)
choices of the);’s, the RS scheme is linear. It is feasible
because it is defined explicitly via the adjoiR’ and
the distributionsD, over solutions whose expectations
agree withPT'z (for eachz € S). Itis clearly tractable.

To argue that it is approximation preserving, we observe

- d . i
ability (3, 5”1'.)/‘1 (_for each; _.1’.' - d); a”?'. from equation (4) that for every possible perturbation
the all-zero solution with the remaining probability. matrix P and feasible solution: € S, (Pv)Tax >

The motivation of the random choices in the first (1 — e)vTz. It follows that, with probability 1 over the
step is to ensure that the distribution defined by thepgice of P, max,cs(Pv)Tz > (1 — ¢) maxyesvlz.
perturbation is diffuse enough to permit algorithms with -
polynomial smoothed complexity (cf., the parameter

in Section I). The motivation of the random choices B. Putting It All Together

in the second step is to reward a solutiene S We are now prepared to prove our main result.

with a “bonus” of a random singleton with probability

o; for each coordinate with z; = 1. Since there Theorem IV.2 (Main Result) Every binary packing
exists a singletore; with value v; that is at least a problem of polynomial dimension that admits an FPTAS

1/d fraction of the optimal valuenax,es vz, these  aiso admits a truthful-in-expectation mechanism that is
bonuses effectively ensure that the perturbations occugn FpTAS.

at the correct “scale.”

We now make this vague intuition precise. After Proof: Let II be a binary packing problem of
conditioning on the random choices in step (1), thepolynomial dimension and= and arbitrary FPTAS for
expectationz of the distributionD, over solutionsS it. By Proposition 11.3, there is an exact algorithd?
defined by step (2) can be expressed via the adjoinfor II that runs in smoothed polynomial time in the

perturbationP” given by sense of Section Il. Le¥ denote the RS perturbation
4 4 scheme forll, and instantiate the PB allocation rule
~ _ pT.. (1 . €j with the schemel and algorithmA” . SinceV is FLAT
T=Pr=1-cqrt <2; 5“%) 2; d (Lemma IV.1), Theorem llI.1 implies that this allocation
1= 1=

rule is MIDR, has an approximation guaranteelof ¢

Let § denote thed-vector of §;’s. Since PT can be in expectation (for an arbitrary supplied paramedgr
written as(l—e)I+§f6T, dualizing gives the following and has expected running time bounded by a polynomial
formal definition of the RS perturbation scheme for  plus that of. 4”7 on the perturbed instande, Pv).



To analyze the expected running time o4’
on (S, Pv) and complete the proof, recall the per-
turbation formula (4). Letvy,.. denote max? ; v;.
Every coordinate ofPv is bounded above by,

a (non-truthful) FPTAS for this problem was given
in [18]. Observe, however, that this is no longer
a binary packing problem. Fortunately, our proof
of Theorem V.2 relied very little on the packing

with probability 1, and these coordinates are indepenassumption: we argue in Section V-B that we only
dent random variables (since thgs are independent). require0 € S, which is certainly the case here.
Since ijl Vj > Umax andd; is drawn uniformly MAXIMUM JOB SEQUENCING WITH DEADLINES: In
from [0, ¢/d], the density of the random variablé’v);  this problem,m jobs are to be scheduled on a single
is bounded above everywhere lgf— Thus the con- machine. Jobj € [m] has processing timg; and
centration parametep from Section Il is bounded by deadlined;. There aren players, and playet has
d?/e. Sincell has polynomial dimension and” has private utility u;; for each jobj that completes before its
polynomial smoothed complexity, the expected runningdeadlined;. The goal is to find the welfare-maximizing
time of A” on (S, Pv) is polynomial in the input size subset of the jobs that can be scheduled so that each
and1/e. B finishes before its deadline. Converting such a set of
jobs to a schedule can be done via the obvious greedy
C. Examples algorithm. This yields a binary packing problem with
We feel that the primary point of Theorem IV.2 a welfare objective. A (non-truthful) FPTAS for this
is conceptual: it shows that requiring (randomized)problem was given in [19].
incentive-compatibility requires no sacrifice in perfor-
mance for a non-trivial class of multi-parameter prob-
lems, and suggests that even more general “black-box
randomized reductions” might be possible. Of course, 8- Binary Covering Problems
general result like Theorem IV.2 can be instantiated for \ye next use the results of Sections Ill and IV to
various concrete problems, and we conclude the sectiofgrje trythful-in-expectation approximation schemes
by listing a fewl example_s. Numerous single-parameteg, binary covering problemsf polynomial dimen-
examples are given in Briest et al. [6]. Below we presenigjo, gy ch problems are defined analogously to binary
some mqu-paramet(_ar examples, which are beyond thﬁacking problems, except that the feasiblés upward
reach of the results in [6]. closed and the goal is to minimiz€ = overz € S.
MuULTI-PARAMETER KNAPSACK: From a purely al- We assume that; = 57 c; for each ]

gorithmic perspective, the problem in Example IL.1is o " ;" \vhere¢; denotes the private cost function
equivalent to the Knapsack problem and hence admitg; p’laye7ri

a (non-truthiul) FPTAS. — We show how to use Theorem [V.2 to design an
ARBORESCENTM.ULT"PARAMETE.RKNAPSACK' This “additive FPTAS” for binary covering problems. We
is a generalization of the multi-parameter Knapsaclwn show that this is the best we can hope for by an
prob_lem, Whe_re additional C(q)nnstraints are placeql on thWIDR mechanism — and MIDR mechanisms are essen-
feasible solutionsS < {0,1}". Nf}mely, the projects tially the only general technique we know for designing
[7}7]1] are the grognd set of a lamirtaset systeml € truthful mechanisms for multi-parameter problems — as
2 " and the.re IS a bgdgeit‘T for eachT € L. The no polynomial-time MIDR mechanism obtains a finite
feasible seS is constrained so that ;1 s; S Cr for approximation of anV P-hard binary covering problem
eachT € L. A (non-truthful) FPTAS for this problem (assumingP N P).

was given in [17]. Given a binary covering problenil, we can de-

TREE-ORDERED MULTI-PARAMETER KNAPSACK: . . . .
. o : fine the following complementary binary packing prob-
This is another generalization of the multi-parameter, = d _ -
lem II. For x € {0,1}", let z = 1 — x. More-

Knapsack problem, where precedence constraints i 5 = —
are placed on the projectsn]. Namely, a directed °V=" fors € {01} let § = {z:z €8} II -
; . . {(S,v): (S,v) €11} is the problem of maximizing
acyclic graphG' with vertices[m| encodes precedence '’ ~ ' "7~ - o .
constraints, and the feasible s& C {0,1}™ is vizforze S Itis easy to see that if is an optimal

consvaned so et > o, whenever ) € £(G) WSRO en: © L e an optial solten
for ever € 8. When G is a directed-out tree, . . )

yz directions: First, observe that a (non-truthful) FPTAS
B for II can be converted, in a black box fashion,

to a (non-truthful) FPTASB for II using the obvious

V. EXTENSIONS

4A set systemC C 2[™l is laminar if for each T, T’ € L either
TONT =0, orTCT/,orT' CT.



reductionz — 1 — z.5 Applying Theorem V.2, we
derive an MIDR FPTASA for II. To establish the
following theorem, it remains to show that can be
converted to an MIDR additive FPTAQ for 1T — we

defer the simple proof of this fact to the full version of

the paper.

Theorem V.1 Let IT be a binary covering problem of

S providing a finite approximation ratio for is the
point distribution corresponding te. Thus,R contains
all point distributions of minimal feasible solutions, as
needed. ]

Our negative result for binary covering problems
follows immediately from Lemma V.2.

Theorem V.3 Let IT be an NP-hard binary minimiza-

polynomial dimension that admits an FPTAS. Theretion problem. No polynomial-time MIDR allocation

exists an MIDR algorithm4 for IT with approximation

rule provides a finite approximation ratio fdi unless

parametere such that the following holds. On input P = NP.

(S,v), A runs in expected time polynomial iye and

the length of the description of the input, and outputs a 1heorem V.3 and its proof also extend to the slightly

solutionz € S such that

E[v’z] < melg vy + €Umas
y

In the above expression,, ., denotesnax; v;, and the

more general class dfistributional affine maximizers
(see [2]), and hence to all known types of VCG-based
mechanisms.

Examples: We conclude the section with a few
multi-parameter problems to which Theorem V.1, and

expectation is taken over the internal random coins ofipo complementary negative result in Theorem V.3

the algorithm.

apply. Again, for numerous single-parameter examples

The bound in Theorem V.1 becomes an FPTAS in the>® Briest et al. [6].

multiplicative sense for instances where the value of th
optimal solution can be bounded below by an inverse

polynomial fraction ofv,.x. In general, however, this

additive loss is inevitable if we restrict ourselves to

MIDR algorithms.

Lemma V.2 Let IT be a binary minimization problem.
If an MIDR algorithm.A provides a finite approximation
ratio for II, then A is optimal.

Proof: AssumeA is MIDR, and provides a finite
approximation ratio foil. Fix a feasible se§ of II, and
let R be the corresponding distributional rangecfWe
say a feasible solutiom € S is minimal if there does
not existy # = in S with y; < x; for all 4. It is clear
that for every objective € Ri, there exists an optimal
solution that is minimal. Sinced is MIDR, it then
suffices to show thaRk contains all point distributions
corresponding to minimal feasible solutions.

Consider a minimalz € S, and let the objective
function v be such thaty; = 0 whenz; = 1, and
v; = 1 whenz; = 0. By definition we havev”z = 0.
Moreover, sincez is minimal, vy > 0 for every
y € S with y # z. Therefore, the only distribution over

5In more detail, letOPT denote the optimal objective function
value of the covering problem. Invoking the FPTAS with ap@ro
mation parametee/d yields a solution with additive error at most
(e/d)OPT < (E/d) - dVmax = €Umax, Wherevmax = maX,?:l (7
Since the optimal objective function value of the completagn
packing problem is at leastyax, the complement of the computed
approximate solution is g1 — e)-approximation for the packing
problem.

INIMUM JOB SEQUENCING WITHDEADLINES: This
s the minimization variant of Maximum Job Sequenc-
ing with Deadlines. Here, playérincurs a cost;; for
every jobj that completes past its deadlide The goal
is to minimize social cost. This is a binary covering
problem. A (non-truthful) FPTAS for this problem was
given in [20].
CONSTRAINED SHORTESTPATH: We are given a graph
G = (V,E), and two terminals, ¢t € V. Additionally,
there is latency; for eachj € E. The mechanism is
interested in selecting a path frosrto ¢ of total latency
at most L. There aren players, and playef incurs
private costc;; if j € E is selected. We consider a
covering variant of this problem, where the mechanism
may select any subgraph 6f connectings to ¢ via a
path of latency at mosk, and the goal is to minimize
social cost. A (non-truthful) FPTAS for this problem
was given in [21].
CONSTRAINED MINIMUM  SPANNING TREE ON
TREEWIDTH BOUNDED GRAPHS. We are given
a graph G = (V,E) with bounded treewidth.
Additionally, there is a weightw; for eachj € E.
The mechanism is interested in selecting a spanning
tree of G with total weight at mostiV. There are
n players, and player incurs private costc;; if
j € E is selected. We consider the covering variant
of this problem, where the mechanism may select any
spanning subgraph daf containing a spanning tree of
total weight at mosfi’, and the goal is to minimize
social cost. A (non-truthful) FPTAS for this problem
was given in [22].



B. Non-Packing Binary Maximization Problems

We observe that the packing assumption of Theo-
rem IV.2 can be relaxed. In particular, Iif is a binary
maximization problem, it suffices thétc S for every
feasible setS of II. To see this, observe that the only

other property of packing problems that was used in
the proof of Theorem IV.2 was that; € S for each

j=1,...,d. It is straightforward to modify the proof
to use the following, relaxed, assumption: For each

(8]

[9]

(10]

j =1,....d, there existsy/ € S such thaty] = 1 [11]
(andy? can be identified in polynomial time). Letting
y = Zj 17, we then modify® as follows:d is drawn [12]

as before, and we leP = (1 —e)I + %. The proof
proceeds in a similar fashion. Similarly, Theorem V.1
extends to binary minimization problems whdrec S

for every feasible sef.

C. Beyond Polynomial Dimension

In the full version of the paper, we show that we can
sometimes exploit the structure of a problem in order

to remove the requirements of polynomial dimension

and unconstrained valuations. We adapt our framework

to the important problem of welfare maximization in

multi-unit auctions, thereby recovering the main result!1®

in [2].
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