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Abstract

We study the ability of decentralized, local dynamics in non-cooperative games to rapidly reach an
approximate Nash equilibrium. For symmetric congestion games in which the edge delays satisfy
a “bounded jump” condition, we show that convergence to an ε-Nash equilibrium occurs within a
number of steps that is polynomial in the number of players and ε−1. This appears to be the first
such result for a class of games that includes examples for which finding an exact Nash equilibrium is
PLS-complete, and in which shortest paths to an exact equilibrium are exponentially long. We show
moreover that rapid convergence holds even under only the apparently minimal assumption that
no player is excluded from moving for arbitrarily many steps. We also prove that, in a generalized
setting where players have different “tolerances” εi that specify their thresholds in the approximate
Nash equilibrium, the number of moves made by a player before equilibrium is reached depends
only on his associated εi, and not on those of the other players. Finally, we show that polynomial
time convergence still holds even when a bounded number of edges are allowed to have arbitrary
delay functions.

1 Introduction

The emerging field of algorithmic game theory has led to a fundamental re-examination, from a
computational perspective, of the classical concept of Nash equilibrium [20]. Much of this activity
has focused on understanding the structure of Nash equilibria (as expressed, notably, in the “price
of anarchy,” see e.g. [22, 25, 24]) and the computational complexity of finding them (see, e.g.,
[10, 7, 4]). Considerably less is understood about the question of whether selfish players, acting in
a decentralized fashion, actually arrive at a Nash equilibrium in a reasonable amount of time. This
would seem to be a central consideration in the computational study of Nash equilibria.

In this paper we address this question in the general arena of congestion games. A congestion
game is an n-player game in which each player’s strategy consists of a set of resources, and the cost
of the strategy depends only on the number of players using each resource, i.e., the cost takes the
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∑

e de(f(e)), where f(e) is the number of players using resource e, and de is a non-negative
increasing function. A standard example is a network congestion game on a directed graph, in
which each player must select a path from some source to some destination, and each edge has
an associated “delay” function that increases with the number of players using the edge. In what
follows, we shall use the terminology of edges and delays even though we will always be discussing
general (non-network) congestion games.

Congestion games have attracted a good deal of attention, partly because they capture a large
class of routing and resource allocation scenarios, and not least because they are known to possess
pure Nash equilibria [23]. Thus unlike general games, whose Nash equilibria may involve mixed
(i.e., randomized) strategies for the players, congestion games always have a Nash equilibrium in
which each player sticks to a single strategy. Further, in congestion games, the natural decentralized
mechanism known as the “Nash dynamics”, in which at each step some player switches her strategy
to a better alternative, is guaranteed to converge to a pure Nash equilibrium. The question then is
the following: Starting from an arbitrary initial state, does the Nash dynamics converge rapidly?

The work of [10] provides a devastating negative answer, even for symmetric† congestion games:
the problem of finding a Nash equilibrium is PLS-complete [14], and therefore as difficult as that
of finding a local optimum in any local search problem with efficiently computable neighborhoods.
Moreover, there are examples of games and initial strategies such that the shortest path to an
equilibrium in the Nash dynamics is exponentially long in the number of players n. Thus if we
want a notion of Nash equilibrium that is selfishly and efficiently realizable, the best we can hope
for is some kind of approximation. (Indeed, given the recent spate of hardness results for finding
exact equilibria in most classes of games by any algorithmic means [10, 7, 4], it seems inevitable
that attention will now shift to approximation.)

Accordingly, we say that a state s (i.e., a collection of strategies for the players) is an ε-Nash
equilibrium if no player can improve her cost by more than a factor of ε by unilaterally changing
her strategy. This definition has intuitive appeal, for example, if one imagines charging players a
percentage of their current cost for the privilege of changing strategy.‡ Given this definition, we
introduce a natural modification of the Nash dynamics called the ε-Nash dynamics, which permits
only ε-moves, i.e., moves that improve the cost of the player by a factor of more than ε. Clearly
ε-Nash equilibria correspond to fixed points of this dynamics. Our goal is to investigate under what
circumstances the ε-Nash dynamics does in fact converge rapidly to an ε-Nash equilibrium.

To make the ε-Nash dynamics concrete, we assume that among multiple players with ε-moves
available, at each step a move is made by the player with the largest incentive to move; i.e., the
player who can make the largest relative improvement in cost (with ties broken arbitrarily). This
is a minimal coordination mechanism that seems natural in our context; however, as we shall see
later, our results hold even with no coordination under only a basic liveness assumption.

In order to state our results we need one further notion. For any α ≥ 1, we say that an
edge in a congestion game satisfies the α-bounded jump condition if its delay function satisfies
de(t + 1) ≤ αde(t) for all t ≥ 1. We will think of α as being a constant, or at most polynomially
bounded in n. The bounded jump condition means that when a new player is added to an edge,

†A symmetric game is one in which the allowed strategies of all the players are the same.

‡An alternative notion of approximate equilibrium (see, e.g., [8, 10, 15, 16]) is based on an additive error of ε,
rather than the relative error we use here. We would argue that our definition is equally natural, and indeed more
in line with approximation guarantees in Computer Science and also with the notion of price of anarchy in game
theory [22].
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the cost to all players using that edge increases by at most a factor of α. This condition is rather
weak (see below); in particular, an edge with de(t) = αt satisfies the α-bounded jump condition.

We are now ready to state our first main result, which says that in any symmetric congestion
game with bounded jumps, the ε-Nash dynamics converges rapidly to an ε-Nash equilibrium. This
is apparently the first such result for such a broad class of (atomic) congestion games, and in
particular for a class that contains PLS-complete examples.

Theorem 1.1 In any symmetric congestion game with n players in which all edges satisfy the α-
bounded jump condition, the ε-Nash dynamics converges from any initial state in dnαε−1 log(nC)e
steps, where C is an upper bound on the cost of any player.

The proof of this theorem relies on two fundamental principles. First, the existence of an “exact”
potential function [23], whose decrease under any move reflects exactly the improvement in cost of
the moving player. And second, the fact that, under the bounded jump condition, any player can
emulate the move of any other with at most an α-factor overhead. This ensures that every move
of the dynamics decreases the potential function by an ε

αn
factor.

We now briefly discuss the bounded jump condition. Firstly, as we show later (Section 3.1),
the hardness results mentioned above for finding exact equilibria carry over to symmetric games in
which all edges have α-bounded jumps. Secondly, we claim that the bounded jump condition is a
reasonable assumption in practice, and is similar to conditions imposed in other quantitative studies
of transient behavior (e.g., the “bounded relative slope” of [11] or “bounded slope” of [3]); it is also
much weaker than the polynomial bounds typically used in studies of the price of anarchy [1, 6].
Thirdly, it is questionable how much sense it makes to talk about “symmetric” congestion games
without such a condition. This is because of the trick in [10] (see Section 3.1 below) for making
any congestion game symmetric by adjoining to the strategies of each player pi a special edge ei

whose delay is small for one player and huge for more than one player. This effectively divides the
strategies into sets, one player per set, and is equivalent to the original game up to a relabeling
of the players. Thus, if we could prove Theorem 1.1 without the bounded jump condition, we
would get rapid convergence for all congestion games. The bounded jump condition can be seen as
expressing an alternative, stronger notion of symmetry: no player can effectively “lock out” another
by using a resource whose cost would explode if an additional player were to use it.

Next, we investigate the role of the order of player moves in ensuring rapid convergence. Recall
that our ε-Nash dynamics assumed that moves are made by players with the largest available
relative cost improvement. We show that our rapid convergence result, Theorem 1.1, is robust
under any reasonable variation of the ε-Nash dynamics, including the “largest gain” dynamics (the
player who moves is one who can gain the largest absolute cost improvement by an ε-move) and
the “heaviest first” dynamics (the player who moves is one with largest current cost among those
with an ε-move available). Our most convincing illustration is the “unrestricted” dynamics, in
which an adversary may specify which player is allowed to move at each step, subject only to the
basic liveness condition that no player is prevented from moving for arbitrarily many steps. This
includes, for example, the “round-robin” scheme where in each round all players are selected to
move according to some fixed permutation.

Theorem 1.2 In any symmetric n-player congestion game whose edges satisfy the α-bounded jump
condition, any ε-Nash dynamics in which all players are given an opportunity to move within each
time interval of length T converges from any initial state in dn(α+1)

ε(1−ε) log(nC)eT steps.
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We then go on to consider a natural generalization of the ε-dynamics to “heterogeneous” players,
each of whom has an individual tolerance value ε = εi. Thus player pi has an incentive to move
only if she can improve her cost by a factor of more than εi. A straightforward generalization of
Theorem 1.1 bounds the number of steps of this dynamics in terms of the smallest tolerance value
εmin = mini εi. However, it is natural to ask if one can say more; in particular, if some player has
a relatively large value of εi (and thus is very “tolerant”), can this player be forced to move very
many times because of other, less tolerant players in the system? We prove an intriguing result
along these lines. We show that the number of time steps at which a player with tolerance εi will
be “unhappy” (i.e., will have an εi-move available) is essentially O(nαε−1

i log(nC)), irrespective of
the εj-values of the other players! Thus highly intolerant players are not able to force others to
move frequently.

Theorem 1.3 Let εmax < 1 be the maximum value of εi among all players pi. Then for any value
ε > 0, there are at most d nα

ε(1−εmax) log(nC)e times at which some player pj with εj ≥ ε will be able
to move before the ε-Nash dynamics converges.

Finally, we investigate the extent to which the bounded jump assumption can be relaxed.
Specifically we prove the following:

Theorem 1.4 In the setting of Theorem 1.1, the ε-Nash dynamics converges in poly(n, α, ε−1, log nC)
steps even if a fixed number of edges violate the α-bounded jump condition.

Thus rapid convergence of the dynamics is still assured even if a constant number of edges have
arbitrarily large jumps in their delay functions. In light of our earlier discussion of symmetry, we
can view this as a step towards extending our results to asymmetric games: Theorem 1.4 allows us
to have any constant number of “classes” of players, with each class selecting its strategies from a
specific set. (By contrast, a symmetric game has just one class, while a general asymmetric game
may have as many as n classes.) The proof of Theorem 1.4 is rather more technical, and involves
the introduction of what we call “reduced games” involving certain subsets of the players.

The remainder of the paper is organized as follows. In Section 1.1 we give a brief summary of
related work. In Section 2 we set notation and define our central concepts. Section 3 proves our
basic convergence result, Theorem 1.1, including versions based on different orders of player moves.
In Section 4 we prove Theorem 1.2, establishing rapid convergence for the unrestricted dynamics.
Section 5 considers heterogeneous players and proves Theorem 1.3. Finally, in Section 6 we extend
the analysis to the case of a constant number of edges with arbitrary delay functions and prove
Theorem 1.4. We conclude with some open problems in Section 7.

1.1 Related work

Fabrikant, Papadimitriou and Talwar [10] systematically studied the complexity of finding Nash
equilibria in congestion games; in particular they showed that finding a Nash equilibrium in sym-
metric congestion games is PLS-complete (and thus hard for local search). They also gave a
polynomial time (global) algorithm for the case of symmetric network congestion games, but this
algorithm says nothing about convergence of local dynamics.

Convergence questions similar to those in the present paper (i.e., the Nash dynamics, or some
simple local learning algorithm for the players) have been investigated by other authors in various
contexts. There are a number of results on “load-balancing” games, which are restricted congestion

4



games in which each strategy consists of just a single edge (or “machine”), but which may be
generalized to allow either player-specific cost functions [17] or weights on the players [8, 9, 13].
Milchtaich [17], Even-Dar et al. [8] and Goldberg [13] establish polynomial time convergence for
versions of the Nash dynamics to (exact or approximate) Nash equilibria in these games, while Even-
Dar and Mansour [9] consider a more complex dynamics in which all players move concurrently
according to a certain rerouting mechanism. Kearns and Mansour [15] give polynomial time global
and local algorithms that find additive ε-approximate equilibria for “large-population” games under
a “bounded influence” assumption; however, this assumption appears not to hold for the general
multiple-resource congestion games we consider here.

Recent papers by Fischer, Räcke and Vöcking [11] and Blum, Even-Dar and Ligett [3] consider
congestion games at a similar level of generality to ours, each with some version of a “bounded
(relative) slope” assumption that is analogous to bounded jumps. However, these papers analyze
the non-atomic setting where the number of players is taken to infinity (the so-called “Wardrop
traffic model”). Despite its apparent similarity, the non-atomic case is actually quite different
from our discrete setting; for example, in the non-atomic case Nash equilibria can be computed in
polynomial time [2, 10]. Fischer et al. [11] establish polynomial bounds on the rate of convergence to
approximate Nash equilibria (under a different notion of approximation) of a concurrent dynamics
with moves based on “adaptive sampling”, while Blum et al. [3] give polynomial bounds when
players use no-regret online learning algorithms.

We mention also two recent developments for more general games. Goemans, Mirrokni and
Vetta [12, 18] study convergence of Nash dynamics not to an (approximate) Nash equilibrium but
instead to a “sink equilibrium”, for wider classes of games for which pure equilibria need not exist.
They quantify the rate of convergence in various cases, and also the quality of the resulting solution
as measured by a global utility function, rather than player-specific costs. And a subexponential
time non-local algorithm for finding an approximate Nash equilibrium in general games with a fixed
number of players and explicitly presented strategies was given by Lipton, Markakis and Mehta [16].

Finally we note that Theorem 1.1 is reminiscent of, and partially inspired by, recent work of
Orlin, Punnen, and Schulz [21], who show how to find an ε-approximate local minimum for any
problem in PLS. However, our setting differs from theirs in two crucial respects. Firstly, their
algorithm finds an ε-local minimum of the potential function, which is not necessarily an ε-Nash
equilibrium. Secondly, their algorithm would require ostensibly selfish players to somehow be aware
of the value of the global potential function and to limit their actions based on this knowledge.

2 Background

Congestion games. A game consists of a finite set of players {p1, . . . , pn}, each of which is assigned
a finite set of strategies Si and a cost function ci : S1 × · · ·×Sn → N that he wishes to minimize. A
game is called symmetric if all of the Si are identical. A state s = (s1, . . . , sn) ∈ S1×· · ·×Sn is any
combination of strategies for the players. A state s is a pure Nash equilibrium if for all players pi,
ci(s1, . . . , si, . . . , sn) ≤ ci(s1, . . . , s

′
i, . . . , sn) for all s′i ∈ Si; thus at a Nash equilibrium, no player

can improve his cost by unilaterally changing his strategy. It is well known that, while every (finite)
game has a mixed Nash equilibrium§, not every game has a pure Nash equilibrium.

§In a mixed Nash equilbrium, a player’s strategy can be any probability distribution over available strategies, and
no individual player can improve his expected cost by choosing another probability distribution.
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We will focus on the class of games known as congestion games, where players’ costs are based
on the shared usage of a common set of resources, which we shall call edges E = {e1, . . . , em}.
A player’s strategy set Si ⊆ 2E is an arbitrary collection of subsets of E; his strategy si ∈ Si

will therefore be a subset of E. Each edge e ∈ E has an associated nondecreasing delay function
de : {1, . . . , n} → N; if t players are using the edge e, they will each incur a cost of de(t). As a
result, in a state s = (s1, . . . , sn), the cost of player pi is ci(s) =

∑

e∈si
de(fs(e)), where fs(e) is the

number of players using edge e under s (i.e., fs(e) = |{j : e ∈ sj}|).

Existence of potential functions and pure Nash equilibria. Congestion games possess sev-
eral appealing characteristics, including the existence of an exact potential function. This function
is defined as

φ(s) =
∑

e∈E

fs(e)
∑

t=1

de(t), (1)

and has the property that if player pi shifts strategy from si to s′i, the change in φ exactly mirrors
the change in the player’s cost: i.e., φ(s) − φ(s′) = ci(s) − ci(s

′) [23].
An important consequence of this is the observation that, if we follow an iterative process where

at each step one player changes strategy to lower his cost (a Nash dynamics), then the potential
function φ will decrease until it reaches a local minimum, which must be a pure Nash equilibrium.
However, this does not provide a bound on the number of such player moves required to reach a
pure Nash equilibrium in a congestion game. Indeed, as mentioned in the Introduction, it has been
shown [10] that there exist (symmetric) congestion games in which the number of player moves
required to go from one state to any pure Nash equilibrium is exponentially large.

Approximate Nash equilibria and ε-Nash dynamics. We define an ε-Nash equilibrium as a
state in which no player has more than an ε-incentive to move:

Definition 2.1 For ε ∈ [0, 1), a state s = (s1, . . . , sn) ∈ S1 × · · · × Sn is an ε-Nash equilibrium if
for all players pi, ci(s1, . . . , s

′
i, . . . , sn) ≥ (1 − ε)ci(s1, . . . , si, . . . , sn) for all s′i ∈ Si.

We complement this definition with that of the ε-Nash dynamics, where we require that a player
may make only ε-moves, or moves that improve his cost by a factor of more than ε; i.e., if player pi

moves from si to s′i then ci(s1, . . . , s
′
i, . . . , sn) < (1−ε)ci(s1, . . . , si, . . . , sn). Clearly when no further

ε-moves are possible, the players have reached an ε-Nash equilibrium. Further, for concreteness, we
stipulate that if more than one player has an ε-move available, a player whose relative gain is largest

will be the one that moves. Thus a move is made by a player pi who maximizes
ci(s)−ci(s1,...,s′

i
,...,sn)

ci(s)
.

This choice seems the most natural, and unless otherwise stated we shall assume it throughout
the paper. However, as we shall demonstrate later our results are not sensitive to this choice, and
hold for a wide variety of other natural variations of the dynamics; in particular, they hold for the
unrestricted ε-Nash dynamics, which allows an adversarial order of player moves so long as every
player is offered the chance to move every so often.

Bounded jumps. We say that an edge e satisfies the α-bounded jump condition if its delay function
satisfies de(t + 1) ≤ αde(t) for all t ≥ 1, for some value α ≥ 1. In our applications, we shall think
of α as being constant or at most polynomially bounded in n. This still allows delay functions as
large as αt, and is therefore a much weaker restriction than the Lipschitz condition (see, e.g., [10]),
which requires that the delay functions be linearly bounded. (Note that one consequence of our
definition is that de(1) > 0; otherwise de(t) = 0 for all t, and e is essentially irrelevant.) As we will
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see later (Section 3.1), even for symmetric congestion games with the bounded jump condition on
all edges, finding a Nash equilibrium can be PLS-complete; thus in this sense, bounded jumps are
not a major restriction on the power of congestion games.

3 The basic convergence theorem

The main purpose of this section is to show the following, which is a restatement of Theorem 1.1
from the Introduction:

Theorem 3.1 In any symmetric congestion game with n players in which all edges satisfy the α-
bounded jump condition, the ε-Nash dynamics converges from any initial state in dnαε−1 log(nC)e
steps, where C is an upper bound on the cost of any player.

(Note that here and elsewhere, our bound is undefined for the case of exact Nash equilibria, i.e.,
when ε = 0.)

Before giving the proof, we sketch the basic structure of the argument, which will be used
repeatedly in the paper. The key observation is that after polynomially many moves by players
with high costs, we must necessarily reach an ε-Nash equilibrium. For this purpose we use the
exact potential function φ defined in equation (1). Suppose player pi, with current cost ci(s) ≥

φ(s)
β

,

makes an ε-move; this move must reduce ci, and hence φ, by more than εφ(s)
β

. After at most about

βε−1 log φmax such steps, where φmax is the initial value of the potential function, we must have
reached an ε-Nash equilibrium. Since φ(s) ≤

∑

i ci(s), if the highest-cost player moves then we
may take β = n and we are done. The main challenge, then, is to show that high-cost players move
reasonably frequently, and are not blocked by low-cost players whose moves do not significantly
decrease φ.

In light of the above discussion, the following lemma will be the main tool in the proof.

Lemma 3.2 In a symmetric congestion game in which every edge has α-bounded jumps, if in the
ε-Nash dynamics with state s the next move is made by player pi, then cj(s) ≤ αci(s) for all j.

Proof: Suppose player pi moves from si to s′i, taking the game from state s = (s1, . . . , sn) to
s′ = (s1, . . . , s

′
i, . . . , sn). Consider an arbitrary player pj, and the resulting state if pj, rather

than pi, had adopted s′i; denote this state s′′ = (s1, . . . , si, . . . , s
′′
j = s′i, . . . , sn).

Since pi moved and not pj, we can conclude that pj ’s relative gain for this move is at most pi’s
relative gain, regardless of whether this is an ε-move for pj. (If it is an ε-move, then pi’s relative
gain must be at least as large by the definition of the dynamics; if it is not an ε-move, then pj’s
relative gain is at most ε while pi’s relative gain is more than ε.) Thus we have

cj(s) − cj(s
′′)

cj(s)
≤

ci(s) − ci(s
′)

ci(s)
. (2)

Now let us compare the cost pi pays for adopting s′i, namely ci(s
′), with how much pj would

have paid for the same strategy, namely cj(s
′′). For each edge e ∈ s′i, either pi is already occupying

it before the move (e ∈ si), or not. In the former case, pj may have to pay as much as de(fs(e)+1)
to use e, while pi only pays de(fs(e)); by the bounded jump assumption, these differ by at most a
factor of α. In the latter case, pi pays de(fs(e)+1) and pj pays at most the same amount. Summing
over all edges e ∈ s′i, we obtain cj(s

′′) ≤ αci(s
′).
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Combining this with inequality (2), we obtain
cj(s)−αci(s′)

cj(s)
≤ ci(s)−ci(s′)

ci(s)
, from which we can see

that cj(s) ≤ αci(s), as required.

Proof of Theorem 3.1: Lemma 3.2 guarantees that every time any player (say pi) moves, the
cost of that player is at least 1

α
times the largest cost of any player. Since for any state s we have

that φ(s) ≤
∑

j cj(s), then ci(s) ≥ 1
αn

φ(s). But under a move of pi taking the game from state s
to s′, the decrease in the potential function is φ(s)− φ(s′) = ci(s)− ci(s

′) > εci(s) ≥
ε

αn
φ(s). Thus

at each move φ must decrease by a factor of more than ε
αn

. But since φ is non-negative integer-
valued, there can be at most dnαε−1 log φmaxe such decreases, where φmax is the initial value of the
potential function. Since clearly φmax ≤ nC, we are done.

Remark: Note that we may replace log(nC) in Theorem 3.1 by log(φmax/φmin), where φmax, φmin are upper

and lower bounds respectively on the possible values of the potential function.

3.1 PLS-completeness of bounded jump games

We complement Theorem 3.1 by observing that the class of congestion games with bounded jumps
on all edges includes examples for which it is PLS-complete to find an exact Nash equilibrium;
indeed, for such games the shortest path to an exact equilibrium in the Nash dynamics can be
exponentially long, while Theorem 3.1 shows that an ε-equilibrium is reached in a polynomial
number of steps.

Proposition 3.3 The problem of finding a Nash equilibrium in symmetric congestion games sat-
isfying the α-bounded jump condition with α = 2 is PLS-complete.

Proof: We follow the chain of reductions in Theorem 3 of [10], but with some modifications to
the delay functions. The starting point is Posnae3flip: given an instance of not-all-equal-3sat
with weights on the clauses and only positive literals, find a truth assignment such that the total
weight of all satisfied clauses cannot be improved by flipping the value of a single variable. This
problem is known to be PLS-complete [26]. In [10, Theorem 3(i)] this is reduced to the problem
of finding a Nash equilibrium in a congestion game as follows. For each 3-clause c there are two
edges, ec and e′c, with delay functions d(1) = d(2) = 0 and d(t) = wc for t > 2. There is one player
for each variable x, and the player has two strategies: one contains all the ec for clauses c that
contain x, and the other contains all the e′c for the same clauses. Any Nash equilibrium of this
game corresponds to a local optimum of Posnae3flip. Now observe that, since both strategies of
any player contain the same number of edges, with the same delay functions, the Nash equilibria
will not be affected if we add a constant to the delay functions of all edges; i.e., the delay becomes
d(1) = d(2) = wc and d(t) = 2wc for t > 2.

Finally, following [10, Theorem 3(ii)] we can reduce this game to a symmetric game by adjoining
to both the strategies of each player x a new edge ex with delay function dex(1) = D and dex(t) = 2D
for t > 1, where D = 2mwmax + 1. (Here m is the number of clauses, and wmax the maximum
weight of a clause.) Clearly, in any Nash equilibrium of the symmetric game with the same number
of players and all strategies available to all, exactly one strategy from each pair in the original game
must in fact be selected. Thus we have arrived at a symmetric congestion game in which the delay
function of every edge satisfies the α-bounded jump condition for α = 2, and for which finding a
Nash equilibrium is PLS-complete. Moreover, as observed in [10], the reductions inherit from [26]
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the property that the length of a shortest path to an equilibrium may be exponentially long. This
completes the proof of the Proposition.

Remark: In the above construction, the value φmax/φmin can also be seen to be at most 3, so by the remark

following the proof of Theorem 3.1 the convergence time of the ε-Nash dynamics is O(nε−1).

We inject one caveat into the above discussion: altering the delay functions on the edges as we
did has no effect on the Nash equilibria, but may have a significant effect on the ε-equilibria. Thus
the approximate equilibria found in Theorem 3.1 for the modified game may bear little relationship
to those for the original game. Our only purpose here was to demonstrate that Theorem 3.1 can
apply to games whose exact Nash equilibria are hard to locate.

3.2 Variations on the dynamics

We now discuss some variations on the ε-Nash dynamics, and show that Theorem 3.1 still holds in
these cases. Thus the rapid convergence to an ε-equilibrium guaranteed by the theorem does not
depend crucially on allowing the player with largest relative gain to move. In the next section, we
will show how to dispense with coordination altogether.

Largest gain dynamics. Define the largest gain ε-Nash dynamics as that in which, at each
step, among all players with an ε-move available, the one that moves is one whose (absolute) cost
improvement is greatest. We show that Theorem 3.1 still holds under this dynamics:

Theorem 3.4 Theorem 3.1 continues to hold under the largest gain ε-Nash dynamics.

Proof: Consider any move in the dynamics that takes the game from state s to state s′. It
suffices to show that this causes the potential function φ to drop by a factor of at least ε

αn
; i.e.,

φ(s) − φ(s′) ≥ ε
αn

φ. To see this, let pi be the player that moves, and consider any other player pj .
We examine two cases: either pj has an ε-move available, or pj does not.

In the first case, pi’s absolute improvement must be at least εcj(s), since pj could have improved
by at least εcj(s), but pi was given priority by virtue of having a larger absolute gain. Thus
φ(s) − φ(s′) ≥ εcj(s) for pj with ε-moves available.

In the second case, let s′′ be the resulting state if pj were to move to s′i instead of pi. By the same
argument as in the proof of Lemma 3.2, we have that cj(s

′′) ≤ αci(s
′). Since ci(s

′) < (1 − ε)ci(s),
but (1−ε)cj(s) ≤ cj(s

′′), we can conclude that cj(s) < αci(s). Hence φ(s)−φ(s′) > εci(s) > ε
α
cj(s)

for all pj with no ε-moves available.
Combining the two cases, we have that φ(s) − φ(s′) ≥ ε

α
cj(s) for all players pj. Since at least

one player pj has cost cj(s) ≥
1
n
φ(s), we obtain φ(s) − φ(s′) ≥ ε

αn
φ(s), as required.

Heaviest first dynamics. If at each step, among all players with an ε-move available, we allow a
player with largest current cost to move, we arrive at the heaviest first ε-Nash dynamics. We can
show that this version of the dynamics also leads to rapid convergence:

Theorem 3.5 Theorem 3.1 continues to hold under the heaviest first ε-Nash dynamics.

Proof: It suffices to show that Lemma 3.2 still holds under this dynamics. At any given step, let
pi be the player that moves, s = (s1, . . . , sn) be the current state, and s′ = (s1, . . . , s

′
i, . . . , sn) be

the state after pi moves. We wish to show that cj(s) ≤ αci(s) for all players pj.
Fix j and define s′′ to be the state that results if pj were to move to s′i instead of pi. Since pj

did not do so, we conclude that either cj(s) ≤ ci(s), in which case pi had priority over pj in the

9



heaviest first dynamics and the lemma is satisfied (with equality when α = 1), or cj(s) > ci(s) but
also (1 − ε)cj(s) ≤ cj(s

′′).
To handle this latter case, note first that, as in the proof of Lemma 3.2, we have cj(s

′′) ≤ αci(s
′).

Moreover, as above, since pi makes a move from si to s′i, we must have ci(s
′) < (1−ε)ci(s). Putting

all of this together, we get

(1 − ε)cj(s) ≤ cj(s
′′) ≤ αci(s

′) < (1 − ε)αci(s),

so we can conclude that cj(s) < αci(s) as required.

4 The unrestricted dynamics

So far our Nash dynamics, while essentially decentralized, has assumed some minimal coordination
mechanism whereby players with the largest incentive move first. In this section, we show that our
results still hold (with a modest penalty in convergence time) when this coordination is removed.
We consider what is in a sense the most liberal possible dynamics, which we call the unrestricted
ε-Nash dynamics. In this dynamics, players may move in an arbitrary order (which may even be
under the control of an adversary), subject only to a minimal “liveness” condition. This condition
just says that every player must be given an opportunity to move¶ within a bounded amount of
time; without such a condition, one or more players could be “locked out” for arbitrarily long and
we could not expect to bound the rate of convergence. More formally, the unrestricted dynamics
is specified by a sequence q1, q2, . . ., where each qt denotes a player; at step t, player qt is given the
opportunity to move, and actually makes a move if he has an ε-move available. (Otherwise nothing
happens at step t.) The sequence (qt) may be adaptive (i.e., qt may depend in an arbitrary way
on the past, the current state etc.) We require only that, for some constant T , in each interval
of the sequence of length T every player pi appears at least once. A natural dynamics satisfying
this condition is the “round-robin” dynamics, where in each round all players are selected to move
according to some fixed permutation.

We now show that Theorem 3.1 holds for the unrestricted dynamics, with a slightly looser
bound on the time until convergence. Note that this seemingly stronger result does not in fact
imply polynomial convergence in the setting of Theorem 3.1 (or any of its variants above) because
the original ε-Nash dynamics may not satisfy the liveness condition. (Some player may never be in
a position of having a move with the largest relative gain.)

Theorem 4.1 In any symmetric n-player congestion game whose edges satisfy the α-bounded jump
condition, any ε-Nash dynamics in which every player is given an opportunity to move within each
time interval of length T converges from any initial state in dn(α+1)

ε(1−ε) log(nC)eT steps, where C is
an upper bound on the cost of any player.

Before proving the theorem, we state and prove an important lemma that allows us to relate
improvements in the potential function to a change in the cost of a player, even when the player
does not move for many steps. As can be seen from the proof, the lemma is not specific to the
unrestricted dynamics but holds for any variant of the ε-Nash dynamics. Moreover, the proof makes

¶Note that this player need not have an ε-move available! Thus the adversary may attempt to always select players
who cannot move.
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no use of the bounded jump property; in fact, we shall apply the lemma to games with unbounded
jumps in Section 6.

Lemma 4.2 Let ci(s) be the cost of player pi in state s, and let ci(s
′) be pi’s cost in a future state

s′ in which pi has not moved. Then φ(s) − φ(s′) ≥ ε(ci(s) − ci(s
′)).

Proof: Note that ci(s)− ci(s
′) =

∑

e∈si
de(fs(e))− de(fs′(e)), and that the only positive contribu-

tions to this sum are from those edges e in which fs(e) > fs′(e), i.e., edges that other players have
vacated. For each such edge e, the first player pj to give up e must have had cost at least de(fs(e))
at the time, and hence improved the potential function by at least εde(fs(e)). Therefore the total
improvement to the potential function can be bounded as follows:

φ(s) − φ(s′) ≥
∑

e:fs(e))>fs′ (e)

εde(fs(e)) ≥ ε(ci(s) − ci(s
′)).

Proof of Theorem 4.1: It is sufficient to show that during any interval in which every player is
given an opportunity to move, the potential function φ must decrease by at least ε(1−ε)

(α+1)nφ0, where

φ0 is the value of the potential function at the beginning of the interval. Denote the states during
this interval as s0, s1, . . . , sT ; note that successive states in this sequence need not be distinct, as
the player licensed to move may not in fact be able to move.

Let ph be the player with largest cost in s0; let t ≥ 0 be the first time during this interval in
which ph is given the chance to move. We analyze two cases:

Case (i): At time t, ph has an ε-move available. From Lemma 4.2, we are guaranteed that
φ(s0) − φ(st) ≥ ε(ch(s0) − ch(st)), and thus after ph moves φ will have improved by at least
εch(s0) ≥ ε

n
φ(s0). So in this case the claim above holds.

Case (ii): At time t, ph does not have an ε-move available. In this case, we observe that at time
t, we must have

ch(st) ≤
α

1 − ε
ci(s

t) for all other players pi. (3)

If not, for any player pi violating this condition, ph can make an ε-move by simply adopting pi’s
strategy at an overall cost of at most αci(s

t). Now note that at least one player must actually move
in the interval [0, . . . , T ]; otherwise, we are already at an ε-Nash equilibrium. Suppose on the one
hand that the first player to move, say pi, does so at time t′ > t, i.e., after ph has been given a
chance to move. Then we have ch(st) = ch(s0) and ci(s

t′) = ci(s
t) = ci(s

0), and combining this
with (3) we obtain ci(s

t′) ≥ 1−ε
α

ch(s0). The improvement to the potential function caused by this

move is then at least ε1−ε
α

ch(s0) ≥ ε(1−ε)
α

φ(s0)
n

.
Now suppose on the other hand that some player moves before time t, and let pi be the last

such player to move, this move taking place at time t′ < t. We claim that

ch(st) ≤
α

1 − ε
ci(s

t′). (4)

To see this, note from (3) that pi must satisfy this condition at time t, and hence also immediately
after the move (which is the last before time t); and since the move can only decrease his cost he
must satisfy the condition at time t′ also. Now the change in φ up to time t is bounded as follows:

φ(s0) − φ(st) ≥ max
{

εci(s
t′), ε

(

ch(s0) − ch(st)
)}

≥ εmax

{

1 − ε

α
ch(st), ch(s0) − ch(st)

}

.
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In the first line, the first item in the maximum is the improvement gained by pi for his move, while
the second item follows from Lemma 4.2. The second line comes from inequality (4) above.

Finally, this last expression is minimized when ch(st) = α
α+1−ε

ch(s0), and thus the potential

function must decrease by at least ε(1−ε)
α+1−ε

ch(s0) ≥ ε(1−ε)
α+1

φ(s0)
n

. This concludes the analysis of case (ii)
and hence the proof.

5 Heterogeneous players

We now generalize our previous setting by allowing each player pi to have her own value ε = εi

that specifies her “tolerance” for unhappiness. Thus whereas one relaxed player may be content
with ε = 0.1, another may be more particular and demand ε = 0.001. Accordingly, given individual
player tolerances εi ∈ [0, 1), we extend our definition of approximate Nash equilibrium as follows:

Definition 5.1 For ε = (εi) ∈ [0, 1)n, a state s = (s1, . . . , sn) ∈ S1 × · · · × Sn is an ε-Nash
equilibrium if for all players pi, ci(s1, . . . , s

′
i, . . . , sn) ≥ (1 − εi)ci(s1, . . . , si, . . . , sn) for all s′i ∈ Si.

The ε-Nash dynamics is also extended in the obvious way. For definiteness, we will go back to our
original ε-Nash dynamics of Section 3 in which the player with largest relative gain moves.

By modifying the proof of Theorem 3.1, it can be shown that this dynamics converges in
O(nαε−1

min (1 − εmax )−1 log(nC)) steps, where εmin = mini εi and εmax = maxi εi. However, it is
natural to ask if one can say more; in particular, if some player has a relatively large value of εi

(and thus is very “tolerant”), can this player be forced to move very many times because of other,
less tolerant players in the system?

We now prove an intriguing result along these lines. We show that the number of time steps at
which a player with tolerance εi will be “unhappy” (i.e., will have an εi-move available) is essentially
O(nαε−1

min log(nC)), irrespective of the εj-values of the other players. Thus highly intolerant players
are not able to force others to move frequently.

Theorem 5.2 Let εmax < 1 be the maximum value of εi among all players pi. Then for any value
ε > 0, there are at most d nα

ε(1−εmax ) log(nC)e times at which some player pj with εj ≥ ε will be able
to move before the ε-Nash dynamics converges.

Proof: Consider a state s = (s1, . . . , sn) in which a player pj with εj ≥ ε has an εj-move available.

It suffices to show that the decrease in potential function φ is at least
εj(1−εmax )

αn
φ(s).

Let pi be the player who actually moves from state s, and let s′ = (s1, . . . , s
′
i, . . . , sn) be the

resulting new state. The largest relative gain dynamics implies that φ(s′) − φ(s) > εjci(s).
Now let ph be the player with largest cost in s. If ph = pi then we are done immediately, since

ch(s) ≥ φ(s)
n

. Otherwise, let s′′ be the state that results from s if ph moves instead of pi and takes
pi’s new strategy s′i. As in the proof of Theorem 3.1, we have ch(s′′) ≤ αci(s

′) < α(1 − εj)ci(s).
Since ph does not actually move from s, either (1) ph moving to s′′ is not an εh-move for ph; or
(2) the relative gain that ph gets from such a move is no more than the relative gain pi gets from
its move. We analyze these two cases separately.

In the first case, we have that ch(s) − ch(s′′) ≤ εhch(s). Since ch(s′′) < α(1 − εj)ci(s), we can
conclude that ch(s) − αci(s) < εhch(s), and therefore ci(s) ≥ 1−εh

α
ch(s). The change in potential

function is then at least φ(s) − φ(s′) >
εj(1−εh)

αn
φ(s).
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In the second case, we have ch(s)−ch(s′′)
ch(s) ≤ ci(s)−ci(s′)

ci(s)
, or ch(s′′)

ch(s) ≥ ci(s′)
ci(s)

. Again, since ch(s′′) <

αci(s
′), we conclude that ch(s) ≤ αci(s). Thus φ(s) − φ(s′) ≥

εj

αn
φ(s).

Remarks:

1. The above theorem includes an additional factor (1− εmax )−1, and thus says little when some εi is very
close to 1. We believe that this is a technical artifact of the proof. Moreover, if εi is very close to 1 then the
corresponding player, pi, will move only when he is able to reduce his cost to essentially zero in one move;
clearly this is not a scenario of great practical interest.

2. Unlike our other results, Theorem 5.2 is somewhat sensitive to the choice of ε-Nash dynamics. For

example, while it also holds for the largest gain dynamics, it can fail for the heaviest first dynamics.

5.1 Wait times with heterogeneous players

Theorem 5.2 leads to the following natural question: Given that all players with ε-values larger
than any specific ε will collectively be able to make an ε-move a limited number of times, can we
place a polynomial upper bound on the last time at which any such player will be able to move?

We show that the answer is no. In particular, we construct a symmetric bounded-jump conges-
tion game with n + 1 players, as well as a starting state, in which n of the players, p1, . . . , pn, each
have εi = 0 and have to solve a PLS-complete problem before the final player, p∗, who has some
positive ε∗ > 0, is able to move.

We do this by embedding the PLS-complete problem Posnae3flip into our game in a manner
similar to that outlined in the proof of Proposition 3.3. Given an instance of Posnae3flip on n
variables, the embedded game has a player pi for each variable xi, with tolerance εi = 0. Again,
there are two edges ec and e′c for each clause c; both these edges have delay function d(1) =
d(2) = wc, and d(3) = 2wc. Each player pi has the same two strategies as before, one containing
all edges ec for each clause c containing xi, and one containing all edges e′c for the same clauses.
Assume that this instance of Posnae3flip is such that there exist states from which any path to
a Nash equilibrium is exponentially long; we start the game with the pi in one of these states. We
will denote this initial state by s0, and subsequent states s1, s2, . . . until the game reaches a Nash
equilibrium sN . Note that each edge in the embedded game has at most three players on it at each
step; let σr denote the set of clauses c for which either ec or e′c has exactly three players in state sr.

We now introduce our new player p∗ with ε∗ > 0, who has two strategies available. One strategy
s∗ is p∗’s initial strategy, and contains only a single new edge e∗, while the other strategy s′∗ contains
all previous edges ec and e′c for all clauses c.

We now set the delay function for e∗ and extend the delay functions for the ec and e′c. For each
clause c ∈ σN , we set both dec(4) and de′c

(4) equal to dec(3) = 2wc, while for all c 6∈ σN , we set
both dec(4) and de′c

(4) equal to dec(3) + γ, where γ is a small constant (say, 2). Finally, we set

de∗(1) = β, where with some foresight we set β to be

⌈
∑

c
3wc

1−ε∗
+ 1

⌉

.

Since the original n players pi, if left to themselves, will take an exponential number of steps to
reach their own Nash equilibrium, we will be done if we can show that the new player p∗ cannot
make an ε∗-move until this Nash equilibrium is reached, but will make such a move as soon as this
happens. In other words, if we denote by c∗(s

r ∪ s′∗) the cost that p∗ would pay for using strategy
s′∗ when the other players are in state sr, then we need to verify that c∗(s

r ∪ s′∗) ≥ (1− ε∗)β for all
r < N , while c∗(s

N ∪ s′∗) < (1 − ε∗)β.
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To see this, observe that at any time step 0 ≤ r ≤ N , the cost that p∗ would pay for his other
strategy s′∗ is c∗(s

r ∪ s′∗) =
∑

c∈σr(dec(4)+dec(1))+
∑

c 6∈σr(dec(3)+dec(2)) =
∑

c 3wc +
∑

c∈σr\σN γ.

Since σr 6⊆ σN for all r < N (if σr ⊆ σN , then φ(sr) ≤ φ(sN ) where φ is the potential function for
the original game, before the addition of player p∗), we have that c∗(s

r∪s′∗) ≥
∑

c 3wc+γ ≥ (1−ε∗)β
for all r < N , and c∗(s

N ∪ s′∗) =
∑

c 3wc < (1 − ε∗)β.
Finally, we apply the same trick as in the proof of Proposition 3.3 to make the game symmetric.

We observe that, as in that proof, the resulting game satisfies the α-bounded jump condition with
α = 2.

6 Congestion games with unbounded jumps

We now investigate what happens when we relax the requirement that every edge in the conges-
tion game satisfies the bounded jump condition. Our goal is to prove polynomial convergence of
the ε-Nash dynamics even when we allow any constant number of edges to have arbitrary delay
functions. Specifically, we will prove the following theorem, which is a more precise reformulation
of Theorem 1.4 in the Introduction.

Theorem 6.1 In any symmetric congestion game with n players in which all but k edges satisfy
the α-bounded jump condition, the ε-Nash dynamics converges from any initial state in at most
dnαε−1 log(nC)e2

k

steps, where C is an upper bound on the cost of any player.

Before presenting the proof we sketch some of the main ideas. First, consider the simple case in
which there is only one edge, e∗, that is not α-bounded. Our previous analysis fails since Lemma 3.2
no longer holds: now, when player pi makes a move, it is no longer true that another player pj can
match that move with an α-factor penalty. To overcome this obstacle, we introduce the concept of
a reduced game; the reduced game in state s consists of exactly those players pi whose strategies si

contain e∗. When a player in the reduced game gives up e∗, or a player outside the reduced game
makes a move, then we know that φ must drop by the usual ε

αn
, since any player could emulate

this move; call these moves good moves. To observe that this must happen frequently, note that the
reduced game is itself a game with α-bounded jumps! Hence by our previous results the reduced
game can only continue for a small number of steps before reaching an ε-equilibrium.

To extend the analysis to an arbitrary number k of exceptional edges, we apply the above idea
recursively. Starting from the global game on all n players, we build a nested sequence of reduced
games by repeatedly excluding from the next game the heaviest remaining player ph, along with
all players whose exceptional edges are a subset of those held by ph. Thus each successive reduced
game contains fewer players than its predecessor, and is indexed by a subset of exceptional edges
that is not a subset of any previous reduced game; clearly this sequence of games has length at
most 2k. With this structure in place, we can show that each move in the global game causes
a good move in one of the reduced games, and hence only a limited number of these moves can
happen before the reduced games reach equilibrium; at this point a good global move must occur.
There are several technical details to handle; in particular, when a good move is made in one of the
reduced games, all subgames after it in the sequence have to be redefined; and the analysis requires
an extension of Lemma 4.2 that applies in this context.
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6.1 Proof of Theorem 6.1

We now give the details of the proof. Recall that our context is a congestion game in which there
are k “exceptional” edges that do not satisfy the α-bounded condition, each of which may have a
different, arbitrary nondecreasing delay function. We will denote the set of exceptional edges by
E∗ = {e∗1, . . . , e

∗
k} ⊆ E.

We begin with the following extension of Lemma 4.2.

Lemma 6.2 Fix an arbitrary state s and player pi, and let Q ⊆ E∗ be the subset of exceptional
edges held by pi in s. Let s′ be the state immediately after one of the following first occurs: (1) a
player whose exceptional edges are a subset of Q makes a move; or (2) a player makes a move that

results in his exceptional edges being a subset of Q. Then φ(s) − φ(s′) > εci(s)
α

.

This lemma says the following. Consider the first time a player (say, pj) makes a move that pi could
also make without adopting any additional exceptional edges that pj currently holds. Then over
the intervening time interval, the decrease in the potential function has at least the same guarantee
as if pi himself had moved, up to a factor of α.

Proof: Let pj denote the player that makes the move resulting in the game reaching s′, and let
s′′ be the state just before pj makes this move; note that pi has not moved by this point. Then by
Lemma 4.2 (which as observed earlier holds even for games with unbounded jumps) we have

φ(s) − φ(s′′) ≥ ε(ci(s) − ci(s
′′)). (5)

Now consider the move of player pj that takes the state from s′′ to s′ (i.e., pj’s strategy changes
from s′′j to s′j); this decreases pj’s cost by more than a factor of ε, so φ(s′′) − φ(s′) > εcj(s

′′). To
get a lower bound on this decrease, we consider the cost that pi would pay had he, rather than pj ,
made the move to s′j; to compute this, we need to consider how much it would cost pi to obtain
the edges in s′j \ si. From the statement of the lemma, we have two cases to consider.

In the first case, the set of exceptional edges held by pj in s′′j (before the move) is a subset of
those held by pi. Thus for each exceptional edge e ∈ s′j, pi would only have to pay at most the
same cost as pj. Meanwhile, for each bounded jump edge e ∈ s′j, pi may have to pay as much as
a factor of α more than pj. Summing over both classes of edges yields that pi would pay at most
αcj(s

′) to adopt s′j from the state s′′. However, since pi did not do so, we know that his relative
gain can be at most that of pj, so that

ci(s
′′) − αcj(s

′)

ci(s′′)
≤

cj(s
′′) − cj(s

′)

cj(s′′)
.

This implies ci(s
′′) ≤ αcj(s

′′), and hence φ(s′′) − φ(s′) > εci(s
′′)

α
. Combining this with (5), we

conclude that φ(s) − φ(s′) > εci(s)
α

.
In the second case, the set of exceptional edges held by pj in s′j (after the move) is a subset of

those held by pi. Again, pi pays at most the same cost as pj for these edges, and the rest of the
argument proceeds as in the first case.

We now formally define the concept of a nested sequence of reduced games, as indicated in the
proof sketch. Given a congestion game with k exceptional edges E∗ in a particular state s, we can
describe it as a nested sequence of smaller congestion games as follows:
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• Choose a player pi; let Q denote the set of exceptional edges held by pi. Identify all players
pj (including pi) whose sets of exceptional edges are a subset of Q; place these players in the
top level of the sequence.

• Recursively perform this same operation on the remaining players until no players are left.

It is easy to see that when this procedure is completed, the players will have been partitioned into
` ≤ 2k levels, with each level being associated with a particular subset of E∗. If we number the
levels from 0 to ` − 1, with the top level being 0, we see that the subsets Qi associated with each
level i form a partial order; namely if Qi ⊆ Qj, then i ≤ j. A player will belong to the first level i
at which his set of exceptional edges Q is a subset of Qi. W.l.o.g. we assume that Q`−1 = E∗.

Further, for any level i, we can define the reduced game at level i, denoted Gi, as the game
consisting of all players at levels i, . . . , `−1, equipped with delay functions and a potential function
φi that includes only these players. More formally, if Pi is the set of players in Gi, then the delay

function on each edge is d
(i)
e (t) = de(f̂

(i)
s (e) + t), where f̂

(i)
s (e) is the number of players not in Gi

that utilize e. The set of strategies for each player is as in the original game, excluding strategies
whose exceptional edges are a subset of Qj for some j < i. The potential function φi is defined

analogously, with φi(s) =
∑

e∈E

∑fs(e)−f̂
(i)
s (e)

t=1 d
(i)
e (t).

We make use of this nested sequence as follows. Given a congestion game and an initial state s,
we create a sequence of games by choosing, at each level, the heaviest player among all remaining
players (with ties broken arbitrarily). This defines a particular initial sequence of games. After
each move in the global game, we reorganize this sequence as follows:

• Consider the set of exceptional edges that the moving player held before his move and after
his move, and determine which of these sets falls into a higher level (lower value of i) in the
sequence. Let Gi be the reduced game corresponding to this level.

• Consider all players in the reduced game Gi, and recreate the sequence from this point down,
again choosing the heaviest player to determine each level. We will say that the games Gj ,
j ≥ i have been (re)initialized at this point.

An important point to realize here is that, while the set of players at level i changes after reinitial-
ization, the set of players in the game Gi remains the same, and so the potential function φi for Gi

retains its meaning. All games (and potential functions) for j > i are created again from scratch.

Lemma 6.3 When a game Gi is the highest game to be reinitialized after a move, its corresponding
potential function φi will have decreased by more than εγi

α
since its last initialization, where γi was

the largest cost of any player in game Gi at the time of the last initialization of Gi.

Proof: From the description above, it is clear that all moves that have occurred since the last
initialization of Gi have been made by players in Gi; a move by a player in Gj with j < i would
have caused Gj , and hence Gi, to be reinitialized. For Gi to be the highest game reinitialized after
a move, this means either that a player at level i moved within level i or to a lower level, or that a
player moved to level i from a lower level. In both cases we can apply Lemma 6.2 to Gi (the first
case is case (1) of the lemma, the second is case (2), and in both cases we take pi to be the heaviest
player who was used to define level i), which guarantees that we will have gained an improvement
of more than εγi

α
in φi since the last initialization.

With the above machinery in place, Theorem 6.1 follows from a straightforward induction:
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Proof of Theorem 6.1: The proof proceeds by showing inductively that a game at level i can have
at most dniαε−1 log(niC)e2

k−i moves before reaching an ε-Nash equilibrium (or being prematurely
ended by a higher game being reinitialized), where ni is the number of players in Gi. The base
case, i = 2k − 1, is a game that is necessarily always at the bottom of the sequence. Any move that
does not prematurely terminate this game must involve a player moving within this level, and is
therefore by Lemma 6.3 a good move for Gi. Thus there can be at most dniαε−1 log(niC)e such
moves before Gi reaches an ε-Nash equilibrium.

Now consider a game Gi for i < 2k − 1; at any point it may either be the lowest level game
in the sequence, or have a game Gi+1 below it. In the first case, as above any move is either
a good move for Gi or else ends Gi; in the second case, by induction Gi+1 can run for at most
dni+1αε−1 log(ni+1C)e2

k−i−1 steps before reaching an ε-Nash equilibrium. After this, the next move
must necessarily be by a player outside Gi+1, i.e., by a player in Gi or a higher game, resulting
in either a good move for Gi or termination of Gi. As Gi can only have dniαε−1 log(niC)e good
moves before reaching its own ε-Nash equilibrium, and ni+1 < ni, we obtain our result.

Remarks:

1. In the special case where each strategy contains at most one exceptional edge, the exponent in Theorem 6.1
can be improved from 2k to k. This is a natural case that arises when the edges are used to create “classes”
of players, as discussed in the Introduction.

2. Theorem 6.1 holds for all variants of the dynamics considered here, including the unrestricted dynamics.

7 Open problems

We conclude by mentioning a few open problems arising from this work.

1. Can one extend the analysis of the ε-Nash dynamics to an arbitrary number of exceptional
edges, and achieve at least subexponential convergence time? As mentioned earlier, this would
actually cover all (not necessarily symmetric) congestion games. Also, can we say anything about
the case of weighted players, where pure Nash equilibria may not necessarily exist?

2. Motivated by the polynomial time algorithm of [10] for finding an (exact) Nash equilibrium
for symmetric network congestion games, can one show that the ε-Nash dynamics in such games
converges rapidly (in an appropriate sense) to an exact equilibrium? Note that PLS-completeness
is no longer an obstacle here.

3. What can one say about the properties of ε-Nash equilibria and their relationship to true
equilibria? For example, it is not hard to see that the bounds on price of anarchy in [1,6] for
exact equilibria with linear or polynomial delay functions carry over (with additional ε-dependent
factors) to ε-equilibria, even for asymmetric games.

4. In our dynamics, only one player moves at each step. It would be interesting also to investigate
dynamics in which all players move concurrently, as in [11] and [3] for the non-atomic case.
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