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ABSTRACT
We consider the price of anarchy of pure Nash equilibria in
congestion games with linear latency functions. For asym-
metric games, the price of anarchy of maximum social cost
is Θ(

√
N), where N is the number of players. For all other

cases of symmetric or asymmetric games and for both max-
imum and average social cost, the price of anarchy is 5/2.
We extend the results to latency functions that are polyno-
mials of bounded degree. We also extend some of the results
to mixed Nash equilibria.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Routing protocols

General Terms
Theory, Performance

Keywords
Price of anarchy, Congestion games

1. INTRODUCTION
The price of anarchy [13, 19] measures the deterioration

in performance of systems on which resources are allocated
by selfish agents. It captures the lack of coordination be-
tween independent selfish agents as opposed to the lack of
information (competitive ratio) or the lack of computational
resources (approximation ratio).
The price of anarchy was originally defined [13] to capture

the worst case selfish performance of a simple game of N
players that compete for M parallel links. The question
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is what happens in more general networks or even in more
general congestion games that have no underlying network.
Roughgarden and Tardos [23, 24] gave the answer for the
case where the players control a negligible amount of traffic.
But what happens in the discrete case? This is the question
that we address in this paper.
Congestion games, introduced by Rosenthal [20] and stud-

ied in [17], is a natural general class of games that pro-
vide a unifying thread between the two models studied in
[13] and[23]. The parallel link model of [13] is a special
case of congestion games (with singleton strategies but with
weights) while the selfish routing model of [23] is the special
case of congestion games of infinitely many players each one
controlling a negligible amount of traffic. Congestion games
have the fundamental property that a pure Nash equilibrium
always exists. It is natural therefore to askWhat is the pure
price of anarchy of congestion games?
The price of anarchy depends not only on the game itself

but also on the definition of the social (or system) cost. From
the system’s designer point of view, who cares about the
welfare of the players, two natural social costs seem impor-
tant: the maximum or the average cost among the players.
For the original model of parallel links in [13], the social cost
was the maximum cost among the players. For the Wardrop
model studied by Roughgarden and Tardos [23], the social
cost is the average player cost. Here we deal with both the
maximum and the average social cost.
We also consider the price of anarchy of the natural sub-

class of symmetric congestion games. (Sometimes in the lit-
erature, the symmetric case is called single-commodity while
the asymmetric or general case is called multi-commodity.)

1.1 Our results
We study the price of anarchy of pure equilibria in general

congestion games with linear latency functions. The latency
functions that we consider are of the form f(x) = ax+ b for
nonnegative a and b, but for simplicity our proofs consider
only the case f(x) = x; they directly extend to the general
case.
We consider both the maximum and the average (sum)

player cost as social cost. We also study both symmetric
and asymmetric games. Our results (both lower and upper
bounds) are summarized in Table 1. For the case of asym-
metric games, the values hold also for network congestion
games. We don’t know if this is true for the symmetric case
as well.
We extend these results to the case of latency functions

that are polynomials of degree p with nonnegative coeffi-
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cients. The results (both lower and upper bounds) appear
Table 2.

SUM MAX

Symmetric 5N−2
2N+1

5N+1
2N+2

· · · 5
2

Asymmetric 5
2

Θ(
√

N)

Table 1: Price of anarchy of pure equilibria for linear
latencies. N is the number of the players.

SUM MAX

Symmetric pΘ(p) pΘ(p)

Asymmetric pΘ(p) Ω(Np/(p+1)) . . . O(N)

Table 2: Price of anarchy of pure equilibria for poly-
nomial latencies of degree p. N is the number of the
players.

We also extend our results on the average social cost to
the case of mixed Nash equilibria (with price of anarchy at
most 1 + φ ≈ 2.619).

1.2 Related work
The study of the price of anarchy was initiated in [13],

where (weighted) congestion games of m parallel links are
considered. The price of anarchy for the maximum social
cost, expressed as a function of m, is Θ(logm/ log logm)—
the lower bound was shown in [13] and the upper bound in
[12, 6]. Furthermore, [6] extended the result to m parallel
paths (which is equivalent to links with speeds) and showed
that the price of anarchy is Θ(logm/ log log logm). In [5],
more general latency functions are studied, especially in re-
lation to queuing theory. For the same model of parallel
links, [9] and [14] consider the price of anarchy for other
social costs.
In [25], the special case of congestion games in which each

strategy is a singleton set is considered. They give bounds
for the case of the average social cost. For the same class of
congestion games and the maximum social cost, [10] showed
that the price of anarchy is Θ(logN/ log logN) (a similar,
perhaps unpublished, result was obtained by the group of
[25]). On the other end where strategies have arbitrary

size, we show here a Θ(
√

N) upper bound. An interest-
ing open question is how the price of anarchy goes from
Θ(logN/ log logN) to Θ(

√
N) as a function of the number

of facilities in each strategy. The case of singleton strategies
is also considered in [11] and [14].
In [8], they consider the mixed price of anarchy of symmet-

ric network weighted congestion games, when the network
is layered.
The non-atomic case of congestion games was considered

in [23, 24] where they showed that for linear latencies the
average price of anarchy is 4/3. They also extended this re-
sult to polynomial latencies. Furthermore, [22, 4] considered
the social cost of maximum latency.
Paper [1], which appears in these proceedings, studies a

similar problem with this work. They consider the price
of anarchy of general congestion games, but they study the
social cost of the total latency, which is the sum of the square
of facilities loads. For pure equilibria of unweighted games
the total latency and the average cost are the same and

therefore some of the results are common in both papers.
They also deal with both linear and polynomial latencies
but they also consider weighted games. For linear latencies
and for the weighted case they show price of anarchy 2.618,
while for the unweighted case and for pure equilibria they
show a price of anarchy of 2.5.
Recently, using similar techniques, we extended some of

the results to the case of correlated equilibria [3]. Surpris-
ingly, the price of anarchy is the same with the case of Nash
equilibria: 2.5 for unweighted games and 2.618 for weighted
ones. The techniques were also helpful to bound the price
of stability (the optimistic price of anarchy of the best Nash
equilibrium as opposed to the worst Nash equilibrium [2]).

2. THE MODEL
A congestion game is a tuple (N,E, (Σi)i∈N , (fe)e∈M ) where

N = {1, . . . , n} is the set of players, E is a set of facilities,
Σi ⊆ 2E is a collection of pure strategies for player i: a pure
strategy Ai ∈ Σi is a set of facilities, and finally fe is a cost
(or latency) function associated with facility j.
Most of this work is concerned with linear cost functions:

fe(k) = ae · k + be for nonnegative constants ae and be. For
simplicity, we will only consider the identity latency func-
tions fe(k) = k. We can ignore the factor ae because we
can obtain a similar game when we appropriately replace
the facility e with a set of ae facilities. When ae is not an
integer, we can use a similar trick. Also, in some cases, such
as the asymmetric-max case, we can ignore the term be by
adding additional players who play only on the facility e.
For the rest of the results, it can be verified that our proofs
work for nonzero be’s as well. We leave the details for the
full version.
A pure strategy profile A = (A1, . . . , An) is a vector of

strategies, one for each player. The cost of player i for the
pure strategy profile A is given by ci(A) =

P
e∈Ai

fe(ne(A)),

where ne(A) is the number of the players using e in A. A
pure strategy profile A is a Nash equilibrium if no player has
any reason to unilaterally deviate to another pure strategy:
∀i ∈ N, ∀S ∈ (Σi) ci(A) ≤ ci(A−i, S), where (A−i, S) is
the strategy profile produced if just player i deviates from
Ai to S.
The social cost of A is either the maximum cost of a player

Max(A) = maxi∈N ci(A) or the average of the players’ costs.
For simplicity, we consider the sum of all costs (which is N
times the average cost) Sum(A) =

P
i∈N ci(A).

A congestion game is symmetric (or single-commodity) if
all the players have the same strategy set: Σi = Σ. We use
the term “asymmetric” (or multi-commodity) to refer to all
games (including the symmetric ones).
A mixed strategy pi for a player i, is a probability dis-

tribution over his pure strategy set Σi. The above defini-
tions extend naturally to this case (with expected costs, of
course).
For a class of congestion games, the pure price of anarchy

of the average social cost is the worst-case ratio, among all
pure Nash equilibria, of the social cost over the optimum
social cost, opt = minP∈Σ Sum(P ).

PA = sup
A is a Nash eq.

Sum(A))

opt

Similarly, we define the price of anarchy for the maximum
social cost or for mixed Nash equilibria.
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3. LINEAR LATENCY FUNCTIONS
In this section we prove theorems that fill Table 1. It

should be clear that the values of each symmetric case are no
greater than the corresponding asymmetric case. Similarly,
the price of anarchy for average social cost is no greater than
the corresponding price of anarchy for the maximum social
cost. This is useful because we don’t have to give upper and
lower bounds for each entry. For example, a lower bound
for the symmetric average case holds for every other case.

3.1 Asymmetric games - Average social cost
The following is a simple fact which will be useful in the

proof of the next theorem.

Lemma 1. For every pair of nonnegative integers α, β, it
holds

β(α+ 1) ≤ 1

3
α2 +

5

3
β2.

Theorem 1. For linear congestion games, the pure price
of anarchy of the average social cost is at most 5

2
.

Proof. Let A be a Nash equilibrium and P be an optimal
(or any other) allocation. The cost of player i at the Nash
equilibrium is ci(A) =

P
e∈Ai

ne(A), where ne(A) denotes
the number of players that use facility e in A. We want to
bound the social cost, the sum of the cost of the players:
Sum(A) =

P
i ci(A) =

P
e∈E n2

e(A), with respect to the

optimal cost Sum(P ) =
P

i ci(P ) =
P

e∈E n2
e(P ).

At the Nash equilibrium, the cost of player i should not
decrease when the player switches to strategy Pi:

ci(A) =
X
e∈Ai

ne(A) ≤
X
e∈Pi

ne(A−i, Pi) ≤
X
e∈Pi

(ne(A) + 1)

where (A−i, Pi) is the usual notation in Game Theory to
denote the allocation that results when we replace Ai by Pi.
If we sum over all players i, we can bound the social cost

as

Sum(A) =
X
i∈N

ci(A)

≤
X
i∈N

X
e∈Pi

(ne(A) + 1)

=
X
e∈E

ne(P )(ne(A) + 1)

With the help of Lemma 1, the last expression is at most
1
3

P
e∈E n2

e(A)+
5
3

P
e∈E n2

e(P ) = 1
3
Sum(A)+ 5

3
Sum(P ) and

the theorem follows.

Theorem 2. There are linear congestion games with 3
or more players with pure price of anarchy for the average
social cost equal to 5

2
.

Proof. We will construct a congestion game for N ≥ 3
players and |E| = 2N facilities with price of anarchy 5/2.
(It is not hard to show that for N = 2 players, the price of
anarchy is exactly 2.)
We divide the set E into two subsets E1 = {h1, . . . , hN}

and E2 = {g1, . . . , gN}, each of N facilities. Player i has two
pure strategies: {hi, gi} and {gi+1, hi−1, hi+1}. The optimal
allocation is for each player to select the first strategy while
the worst-case Nash equilibrium is for each player to select
the second strategy. It is not hard to verify that this is a
Nash equilibrium in which each player has cost 5. Since at

3

2D

D3S

2S

1D1S

Figure 1: There are three players who want to go
from Si to Di. The optimal strategies are for each
player to move in a straight line. At the Nash equi-
librium, the players use the dashed lines. The strat-
egy of player 1 at the Nash equilibrium is shown.
The bold (non-dashed) lines are long (heavy) paths.

the optimal allocation the cost of each player is 2, the price
of anarchy is 5/2.
This example is not a network congestion game, but we

can turn it into a network congestion game as shown in
Figure 1.

3.2 Symmetric games - Average social cost
For symmetric congestion games and average social cost

the price of anarchy is also 5/2. The upper bound follows di-
rectly from Theorem 1 because symmetric games is a special
case of asymmetric games. The following theorem gives the
lower bound. This would have subsumed Theorem 2 had it
not had an additional term which tends to 0 as N tends to
infinity. In other words, for asymmetric games the price of
anarchy is exactly 5/2 for every N ≥ 3, but for symmetric
games it is somewhat less: (5N − 2)/(2N + 1).
Another reason to include the lower bounds for both the

symmetric and the asymmetric case is that in the later case
the congestion game is a network congestion game, while in
the former it is not. We don’t know whether the bound 5/2
holds also for symmetric network games.

Theorem 3. For linear symmetric congestion games, the
pure price of anarchy of the average social cost is at most
5N−2
2N+1

.

Proof. Let A be a Nash equilibrium and P be an optimal
allocation. The cost of player i at the Nash equilibrium is
greater or equal than the cost he would have if he had chosen
any other strategy. Notice that since the game is symmetric,
all the possible strategies are available to every player. So
for every player i

ci(A) ≤
X
e∈Pj

ne(A)+ |Pj −Ai| =
X
e∈Pj

ne(A)+ |Pj |−|Pj ∩Ai|

for all players j.
If we sum over all j ∈ N we get a bound on player i’s cost.

N · ci(A) ≤
X
j∈N

X
e∈Pj

ne(A) + |Pj | − |Pj ∩Ai|

=
X
e∈E

ne(P )ne(A) +
X
e∈E

ne(P )−
X
j∈N

|Pj ∩Ai|

=
X
e∈E

ne(P )ne(A) +
X
e∈E

ne(P )−
X
e∈Ai

ne(P )
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Summing over all i ∈ N gives us a bound on the social
cost of the Nash equilibrium.

Sum(A) =
X
e∈E

n2
e(A)

≤ 1

N

X
i∈N

X
e∈E

ne(P )ne(A)

+
1

N

X
i∈N

X
e∈E

ne(P )− 1

N

X
i∈N

X
e∈Ai

ne(P )

=
X
e∈E

ne(P )ne(A) +
X
e∈E

ne(P )

− 1

N

X
e∈E

ne(P )ne(A)

=
N − 1

N

X
e∈E

ne(P )ne(A) +
X
e∈E

ne(P )

=
N − 1

N

X
e∈E

(ne(P )ne(A) + ne(P ))

+
1

N

X
e∈E

ne(P )

With the help of lemma 1 we finally get

Sum(A) ≤ N − 1

3N

X
e∈E

n2
e(A) +

5N − 2

3N

X
e∈E

n2
e(P )

=
N − 1

3N
Sum(A) +

5N − 2

3N
Sum(P )

and the theorem follows.

Theorem 4. There are instances of symmetric linear con-
gestion games for which the price of anarchy of the average
social cost is (5N − 2)/(2N + 1).

Proof. We construct a game as follows: We partition
the facilities into sets P1, P2, . . . , PN of the same cardinality
and make each Pi a pure strategy. At the optimal allocation
player i plays Pi.
We now define a Nash equilibrium as follows: Each Pi

contains Nα1+
�

N
2

�
α2 facilities where α1, α2 are appropriate

constants to be determined later. At the Nash equilibrium,
each player i plays alone α1 of the facilities of each Pj . Also,
each pair of players i, k play together α2 of the facilities of
each Pj . At the Nash equilibrium, the cost for player i is
ci(A) = N(α1 + 2(N − 1)α2).
We select α1, α2 so that player i will not switch to Pj . (It

is trivial that player i will not switch to the Nash strategy
of some other player k.) The cost after switching is

ci(A−i, Pj) = α1 + 2(N − 1)α2

+ 2(N − 1)α1 + 3

 
N − 1

2

!
α2

= (2N − 1)α1 + (N − 1)
(3N − 2)

2
α2

We want ci(A) = ci(A−i, Pj), or equivalently α1 = N+2
2

α2,
which is satisfied when we select α1 = N + 2 and α2 = 2.
With this, the cost of each player i at the Nash equilibrium

is ci(A) = N(α1 + 2(N − 1)α2) = N(5N − 2) and the cost

of each player at the optimal allocation is |Pi| = Nα1 +�
N
2

�
α2 = N(2N + 1). The theorem follows.

3.3 Asymmetric games - Maximum social cost

Theorem 5. The pure price of anarchy is O(
√

N) where
N is the number of players.

Proof. We will make use of Theorem 1 which bounds
the average cost. Let A be a Nash equilibrium strategy
profile and let P be an optimal strategy profile. Without
loss of generality, the first player has maximum cost, i.e.,
Max(A) = c1(A). It suffices to bound c1(A) with respect to
Max(P ) = maxj∈N cj(P ).
Since A is a Nash equilibrium, we have

c1(A) ≤
X
e∈P1

(ne(A) + 1) ≤
X
e∈P1

ne(A) + c1(P ). (1)

Let I ⊂ N the subset of players in A that use facilities
f ∈ P1. The sum of their costs is

X
i∈I

ci(A) ≥
X
e∈P1

n2
e(A) ≥

(
P

e∈P1
ne(A))

2

|P1| .

On the other hand, by Theorem 1X
i∈N

ci(A) ≤ 5

2

X
i∈N

ci(P )

Combining the last two inequalities, we get

(
X
e∈P1

ne(A))
2 ≤ |P1|

X
i∈I

ci(A)

≤ |P1|
X
i∈N

ci(A)

≤ 5

2
|P1|

X
i∈N

ci(P )

Together with (1), we get

c1(A) ≤ c1(P ) +

s
5

2
|P1|

X
i∈N

ci(P ).

Since |P1| ≤ c1(P ) and cj(P ) ≤ Max(P ), we get that

c1(A) ≤ (1 +
p
5/2N)Max(P ).

The proof above may seem to employ some crude approxi-
mations, but it gives the best possible bound (up to a con-
stant factor), as the following lower-bound lemma shows.

Theorem 6. There are instances of linear congestion games
(even network ones) for which the pure price of anarchy of

the maximum social cost is Ω(
√

N), where N is the number
of players.

Proof. For convenience, let the number of players be
N = k2−k+1 for some integer k. We will construct a game
in which player 1 has the maximum cost among the players
at the worst-case Nash equilibrium.
There are kN facilities in total which are partitioned into

N sets Pi = {fi,� :  = 1, . . . , k}. Each Pi is a strategy for
player i; the optimal allocation will be for player i to play
Pi. To construct a Nash equilibrium we add for each player
i > 1 an alternative strategy Ai = {f

1,� i−1
k

�}. Notice that

player 1 has no alternative strategy.
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Figure 2: There is one player who goes from V1 to
Vk+1. For each i, there are k− 1 players who go from
Vi to Vi+1. In each layer [Vi, Vi+1], there are k disjoint
paths, one has length 1 and the rest have length k.
The optimum allocation is for every player who goes
from Vi to Vi+1 to use separate length k paths and the
player who moves from V1 to Vk+1, to use the length
1 path. At the Nash equilibrium every player uses
the length 1 path in every layer.

The strategy profile A = (P1, A2, . . . , An) is a Nash equi-
librium in which player 1 has cost c1(A) = k2. On the other
hand, the optimal strategy profile P = (P1, P2, . . . , Pn) has
cost ci(P ) = k for every player i. So the price of anarchy is

k =
√

N +O(1).
This is not exactly a network congestion game, but it can

be turned into one as shown in Figure 2.

3.4 Symmetric games - Maximum social cost
When we restrict the class to symmetric linear conges-

tion games, the price of anarchy of the maximum social cost
drops to 5/2, as the following Theorem shows.

Theorem 7. The pure price of anarchy of symmetric lin-
ear congestion games for the maximum social cost is at most
5
2
.

Proof. Let A be a Nash equilibrium and P an optimal
allocation of a symmetric game. Without loss of generality,
we can assume that player 1 has the maximum cost, i.e.,
Max(A) = c1(A). As this game is symmetric, A is a Nash
equilibrium only if player 1 has no reason to switch to Pj ,
for every j ∈ N :

c1(A) ≤ c1(A−1, Pj) ≤
X
e∈Pj

(ne(A) + 1).

If we sum these inequalities for every j, we get:

N · c1(A) ≤
X
e∈E

ne(P )(ne(A) + 1).

Using Lemma 1, the last expression is at most 1
3

P
e∈E n2

e(A)+
5
3

P
e∈E n2

e(P ). We can now use Theorem 1 to further boundP
e∈E n2

e(A) ≤ 5
2

P
e∈E n2

e(P ) and get

N · c1(A) ≤ 5

2

X
e∈E

n2
e(P ) ≤ 5

2
N · Max(P ),

and the proof is complete.

This is tight in the limit as the lower bound of the follow-
ing theorem shows.

Theorem 8. There are instances of symmetric conges-
tion games for which the price of anarchy is 5N+1

2N+2
, for max-

imum social cost.

Proof. We construct a game possessing a Nash equilib-
rium A and an optimal allocation P . Player 1 has the max-
imum cost: Max(A) = c1(A) and the rest of the players

i, j �= 1 have equal cost ci(A) = cj(A). The optimal players
have identical cost: Max(P ) = ci(P ) for all i.
Let P1, P2, . . . , PN be the disjoint strategies, of the same

cardinality, of the optimal allocation. We define the Nash
equilibrium as follows. Each Pi contains α1 facilities that
Nash player j plays alone for all j �= 1. Also each Pi has
α2 facilities that Nash players j, k share for all j, k �= 1. We
define later parameters α1, α2.
So the cost for player i �= 1 at the Nash equilibrium is

ci(A) =
X
j∈N

(α1 + 2(N − 2)α2) = Nα1 + 2N(N − 2)α2

We need to choose α1, α2 such that player i won’t deviate
to each of Pj . The cost of this deviation is

ci(Pj , A−i) = α1 +2(N − 2)α2 +2(N − 2)α1 +3

 
N − 2

2

!
α2

We want ci(A) = ci(Pj , A−i) so

(N − 2)(N + 5)

2
α2 = (N − 3)α1 (2)

The cost of an optimal player i is

ci(P ) =
X
e∈Pi

= (N − 1)α1 +

 
N − 1

2

!
α2

The cost of Nash player 1 is less or equal than the cost he
would have if he deviated to any other strategy

c1(A) = c1(Pi, A−1) = 2(N − 1)α1 + 3

 
N − 1

2

!
α2

Notice that we can construct such a strategy for player 1,
disjoint to any other strategy and of suitable cardinality.
The price of anarchy using equation (2) is

PA =
c1(A)

cj(P )
=

5N + 1

2N + 2
.

4. POLYNOMIAL LATENCY FUNCTIONS
In this section we turn our attention to latency functions

that are polynomials of bounded degree p, and in particular
of the form

fe(N) =

pX
i=0

αi(e)N
i, ai(e) ≥ 0

The cost of a player i in a strategy profile A is

ci(A) =
X
e∈Ai

fe(ne(A))

and the sum of all costs is

Sum(A) =
X
i∈N

ci(A) =
X
e∈E

ne(A)fe(ne(A))

The theorems and proofs about linear functions of the pre-
vious section can be extended to polynomials, in most cases
with little effort. (Actually, we wrote part of the previous
section with this in mind.)
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4.1 Average social cost
The following lemma corresponds to Lemma 1.

Lemma 2. Let f(x) a polynomial in x, with nonnegative
coefficients, of degree p. Then for every nonnegative x and
y:

y · f(x+ 1) ≤ x · f(x)
2

+
C0(p) · y · f(y)

2

where C0(p) = pp(1−o(1)). The term o(1) hides logarithmic
terms in p.

Theorem 9. For polynomial latency functions of degree
p, the pure price of anarchy for the average social cost is at
most pp(1−o(1)).

Proof. Let A be a Nash strategy profile and P an opti-
mal strategy profile. Player i has no incentive to switch to
strategy Pi when

ci(A) =
X
e∈Ai

fe(ne(A)) ≤
X
e∈Pi

fe(ne(A) + 1)

If we sum over all i ∈ N , and use Lemma 2, we get

Sum(A) ≤
X
e∈E

ne(P )fe(ne(A) + 1)

≤
X
e∈E

ne(A)f(ne(A))

2
+

+
X
e∈E

C0(p)ne(P )f(ne(P ))

2

which is equal to Sum(A)
2

+ C0(p)Sum(P )
2

and the proof is com-
plete.

We give below a matching lower bound. Both the upper
and the lower bounds are of the form pp(1−o(1)) but they are
not exactly equal.

Theorem 10. There are instances of symmetric conges-
tion games for which the price of anarchy is at least pp(1−o(1)),
for both max and sum social cost.

Proof. Let P1, P2, . . . , PN be the disjoint strategies of
the optimal allocation. We will construct a bad Nash equi-
librium as follows: Each Pj has N facilities fj,k for k =
1, . . . , n. At the Nash equilibrium Ai = {fj,k : k �= i}.
So the cost for player i at the Nash equilibrium is

ci(A) = N(N − 1)(N − 1)p

Player i has no incentive to switch to Pj when

ci(A) ≤ ci(A−i, Pj) = (N − 1)p+1 +Np

So, we select N to satisfy (N − 1)p+2 = Np. Since the
optimum has social cost ci(P ) = N , the price of anarchy is
(N−1)p+2

N
= pp(1−o(1)).

The bound holds not only for this particular number of
players N but for any integral multiple of it, by appropri-
ately replicating the above construction.

4.2 Maximum social cost

Theorem 11. There are instances of congestion games
with polynomial latency functions for which the pure price
of anarchy is Ω(Np/(p+1)).

Proof Sketch. The proof is very similar to that of The-
orem 6. In this case, the number of players is N = kp+1 −
kp +1, and the number of facilities Nkp. The cost of player
1 is c1(A) = (kp)2 while every optimal player has cost kp.

The price of anarchy is kp = Ω(Np/(p+1)).
Again, this can be turned into a network congestion game,

similar to that of Figure 2 with kp layers where each path
inside a layer has also length kp.

The following upper bound is trivial:

Theorem 12. The pure price of anarchy for polynomial
latencies is O(N).

Also, Theorem 7 can be directly extended to the case of
polynomial latencies:

Theorem 13. The pure price of anarchy of symmetric
congestion games with polynomial latencies of degree p is
O(pp(1−o(1))).

5. THE MIXED PRICE OF ANARCHY
From Yossi Azar we learned that he and his collaborators

had similar results for the case of total latency social cost
and mixed Nash equilibria [1]. We then realized that some
of our proofs apply directly to the mixed case as well. In
particular, Lemma 1 should be relaxed to deal with reals
instead of integers as follows:

Lemma 3. For every non negative reals x, y, it holds

y(x+ 1) ≤
√
5− 1

4
x2 +

√
5 + 5

4
y2

With this, the proof of Theorem 1 gives that the mixed price

of anarchy for linear latencies is at most 3+
√

5
2

.
One should be careful how to define the social cost in this

case. There are two ways to do it: The social cost is the
average (or sum) of the expected cost of all players Sum =P

i∈N ci(N). Or, the social cost is the sum of the squares

of the latencies in all facilities: Sum =
P

e∈E(ne(A))
2. The

two are equal for pure Nash equilibria as well as for non-
atomic games, but they may be different for mixed equilibria
or for weighted games. From the system’s designer point of
view who cares about the welfare of the players, the first
social cost seems to be the right choice. In any case, our
proof applies to both social costs with the same price of
anarchy.

Theorem 14. The mixed price of anarchy of linear con-
gestion games and for the average social cost is at most
3+

√
5

2
≈ 2.618.

Similarly, Theorem 9 holds also for mixed Nash equilibria.
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