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Abstract. We introduce a natural variant of the (metric uncapacitated) k-median problem
that we call the online median problem. Whereas the k-median problem involves optimizing the
simultaneous placement of k facilities, the online median problem imposes the following additional
constraints: the facilities are placed one at a time, a facility cannot be moved once it is placed, and
the total number of facilities to be placed, k, is not known in advance. The objective of an online
median algorithm is to minimize the competitive ratio, that is, the worst-case ratio of the cost of an
online placement to that of an optimal offline placement. Our main result is a constant-competitive
algorithm for the online median problem running in time that is linear in the input size. In addition,
we present a related, though substantially simpler, constant-factor approximation algorithm for the
(metric uncapacitated) facility location problem that runs in time linear in the input size. The latter
algorithm is similar in spirit to the recent primal-dual-based facility location algorithm of Jain and
Vazirani, but our approach is more elementary and yields an improved running time. While our
primary focus is on problems which ask us to minimize the weighted average service distance to
facilities, we also show that our results can be generalized to hold, to within constant factors, for
more general objective functions. For example, we show that all of our approximation results hold,
to within constant factors, for the k-means objective function.
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AMS subject classifications. 68W25, 68W40, 68Q25, 68Q17

PII. S0097539701383443

1. Introduction. Suppose we wish to open a new chain of stores in a city with
n neighborhoods and that we have a good estimate of the demand for our product in
each neighborhood. In determining where to locate the stores, our high-level strategy
is to minimize the service cost associated with our configuration of stores, which we
define as the demand-weighted average distance from a customer to the nearest store.
Our business plan is to start with one store and then to gradually add new stores as
allowed by our profits. (Remark: We will never move a previously established store.)
Thus our configuration of stores may change over time, and hence the ratio between
the service cost of our configuration and that of an optimal same-size configuration
may also change. The goal of the online median problem is to choose a site for each
new store so that the maximum value of this ratio is minimized. An online median
algorithm that guarantees a ratio of at most r is said to achieve a competitive ratio
of r, or to be r-competitive.

The variant of this problem, in which the total number of stores to be built, k, is
known in advance, corresponds to the classic k-median problem. The k-median prob-
lem is known to be NP-hard and has been studied extensively over several decades
(see, e.g., [25] for many pointers to the literature). Charikar et al. presented the
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THE ONLINE MEDIAN PROBLEM 817

first polynomial-time constant-factor approximation algorithm for the k-median prob-
lem [5]; subsequently, improved time bounds and approximation factors have been
obtained by Charikar and Guha [4], Jain and Vazirani [17], and Arya et al. [2].

Note that the online median problem can be viewed as the offline problem of
determining a permutation of the n neighborhoods (specifying the order in which to
build our stores) that minimizes the maximum ratio between the service cost of any
prefix of the permutation and that of an optimal same-size configuration. We adopt
this view throughout the remainder of the paper. Given the existence of constant-
factor approximation algorithms for the k-median problem, it is natural to ask whether
there is a constant-competitive algorithm for the online median problem. In other
words, can we (efficiently) find a permutation of the n neighborhoods such that the
service cost of any prefix of the permutation is at most a constant times that of an
optimal same-size configuration? Note that, given an arbitrary problem instance, it
is not clear a priori that such a permutation even exists.

In this paper, we affirm the existence of such a permutation and give a determin-
istic constant-competitive algorithm for the online median problem. Furthermore, the
running time of our algorithm is O(n2+�n) (where � is the number of bits required to
represent each distance), which is linear in the size of the input. While the main contri-
bution of this paper is to identify and solve the online median problem, it worth noting
that the k-median problem is a special case of the online median problem. Hence our
linear-time online median algorithm is also the first deterministic constant-factor ap-
proximation algorithm for the k-median problem running in time that is linear in the
size of the input. (The best previous running time of O((n2 log n)(�+ log n)) is given
in [17].)

An obvious approach to the online median problem is to iteratively choose the
point that minimizes the objective function. Greedy strategies of this kind are com-
monly applied in the design of online algorithms [3, 15]. It turns out, however, that
for the online median problem, the simple strategy suggested above has an unbounded
competitive ratio. We show that a modification of this strategy that we call hierar-
chically greedy can be used to obtain a constant-competitive algorithm for the online
median problem that has a running time that is linear in the size of the input. We
develop this strategy by first considering a simple greedy algorithm for facility loca-
tion.

1.1. Problem definitions. Fix a set of points U , a distance function d : U ×
U → R, and nonnegative functions f, w : U → R. We assume throughout that d is a
metric, that is, d is nonnegative and symmetric and satisfies the triangle inequality,
and d(x, y) = 0 iff x = y. For the online median problem, it will prove useful
to consider a slightly more general class of distance functions in which the triangle
inequality is relaxed to the following “λ-approximate” triangle inequality, where λ ≥ 1:
For any sequence of points 〈x0, . . . , xm〉, d(x0, xm) ≤ λ ·∑0≤i<m d(xi, xi+1). We refer
to such a distance function as a λ-approximate metric. (Remark: The inequality
associated with a λ-approximate metric is referred to as the “λ-polygonal inequality”
in [9].) We let n = |U |, and we define a subset of U to be a configuration iff it is
nonempty. For any point x and configuration X, we define d(x,X) as miny∈X d(x, y).

We consider three computational problems: k-median, online median, and facility
location. For the k-median and online median problems, the cost of a configuration,
which we denote as cost(X), is defined to be

∑
x∈U d(x,X) · w(x). The input to

the k-median problem is (U, d), w, and an integer k, 0 < k ≤ n. The output is a
minimum-cost configuration of size k. The input to the online median problem is
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818 RAMGOPAL R. METTU AND C. GREG PLAXTON

(U, d) and w. The output is a total order on U . We define the competitive ratio of
such an ordering as the maximum over all k, 0 < k ≤ n, of the ratio of the cost of
the configuration given by the first k points in the ordering to that of an optimal k-
median configuration. We define the competitive ratio of an online median algorithm
as the supremum, over all possible choices of the input instance (U, d) and w, of the
competitive ratio of the ordering produced by the algorithm.

For the facility location problem, the cost of a configuration, denoted cost(X), is
defined as the sum of

∑
x∈X f(x) and

∑
x∈U d(x,X) ·w(x). The input to the facility

location problem is (U, d), f , and w. The output is a minimum-cost configuration.

1.2. Previous work. There has been much prior work on the facility location
and k-median problems. In this paper, we focus on the metric versions of these prob-
lems; for recent work and pointers to the literature on the general (nonmetric) facility
location and k-median problems, see [28]. The first constant-factor approximation
algorithm for facility location is due to Shmoys, Tardos, and Aardal [26] and is based
on rounding the (fractional) solution to a linear program (LP). Chudak [6] gives an
LP-based (1 + 2/e)-approximation algorithm for facility location. This was the best
constant factor known until the work of Charikar and Guha [4], which establishes a
slightly lower approximation ratio of 1.728. Jain, Mahdian, and Saberi [16] give a sim-
ple greedy algorithm for the facility location that has an approximation ratio of 1.61.
To our knowledge, the best approximation ratio for facility location is currently 1.52,
due to Mahdian, Ye, and Zhang [23]. Guha and Khuller [12] provide the best lower
bound known of 1.463 on the approximation ratio for the facility location problem.

The first constant-factor approximation for the k-median problem was recently
given by Charikar et al. [5] and is also LP-based. That work follows a sequence
of bicriteria results utilizing LP-based techniques [21, 22]. (These bicriteria results
produce a configuration of size O(k) with cost at most a constant factor times that
of an optimal configuration of size k.) Jain and Vazirani [17] give the first nearly
linear-time (in the input size) combinatorial algorithms for the facility location and
k-median problems, achieving approximation ratios of 3 and 6, respectively. While the
latter algorithms are combinatorial, the primal-dual approach used in their analysis
is based on LP theory. (See [11] for an excellent introduction to the primal-dual
method.) To our knowledge, the best approximation ratio for the k-median problem
is 3 + ε, due to Arya et al. [2]. Jain, Mahdian, and Saberi [16] provide the best lower
bound known of 1 + 2/e on the approximation ratio for the k-median problem.

Strategies based on local search and greedy techniques for facility location and
the k-median problem have previously been studied. The work of Korupolu, Plaxton,
and Rajaraman shows that a simple local search heuristic proposed by Kuehn and
Hamburger [20] yields both a constant-factor approximation for the facility location
problem and a bicriteria approximation for the k-median problem [18]. To obtain
their approximation result, Arya et al. [2] analyze a similar local search heuristic with
a generalized local search step. Guha and Khuller [12] show that greedy improvement
can be used as a postprocessing step to improve the approximation guarantee of
certain facility location algorithms. Charikar and Guha [4] achieve an approximation
ratio of 1.728 for facility location by combining a local search heuristic with the best
LP-based algorithm known. Charikar and Guha also give a 4-approximation for the
k-median problem by building on the techniques of Jain and Vazirani [17].

1.3. Contributions. Algorithms for problems in discrete location theory arise
in many practical applications; see [7, 25], for example, for numerous pointers to
the literature. Given that many of these problems are NP-hard, it is desirable to
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THE ONLINE MEDIAN PROBLEM 819

develop fast approximation algorithms. As mentioned above, it is not uncommon
for approximation algorithms to be based on a greedy approach. In this paper, we
show that greedy strategies yield a fast constant-factor approximation algorithm for
the facility location problem and a fast constant-competitive algorithm for the online
median problem.

We give an algorithm for the facility location problem that achieves an approx-
imation ratio of 3 and runs in O(n2) time (i.e., time linear in the size of the input).
The main idea of the algorithm is to compute and use the “value” of balls about every
point in the metric space. In retrospect, the idea of value is implicit in the work of
Jain and Vazirani [17]. We make this idea explicit and use the values of balls to make
greedy choices. Additionally, our algorithm is faster than the Jain-Vazirani algorithm
by a logarithmic factor.

While a simple greedy algorithm yields a constant-factor approximation bound
for the facility location problem, it appears that a more sophisticated approach is
needed to obtain a constant-factor approximation guarantee for the k-median prob-
lem, let alone a constant-competitiveness result for the online median problem. For
example, in section 3, we show that perhaps the most natural greedy approach to
the k-median (resp., online median) problem leads to an unbounded approximation
(resp., competitive) ratio.

Our main result is a constant-competitive algorithm for the online median prob-
lem that runs in time linear in the size of the input. We achieve this result using a
“hierarchically greedy” approach. The basic idea behind this approach is as follows:
Rather than selecting the next point in the ordering based on a single greedy crite-
rion, we greedily choose a region (the set of points lying within some ball) and then
recursively select a point within that region. Thus the choice of point is influenced
by a sequence of greedy criteria addressing successively finer levels of granularity.

Finally, we show that our analysis holds for more general classes of distance func-
tions. We study two classes of “approximate” metrics for which the triangle inequality
holds only to within a constant factor. We define and study λ-approximate metrics
and weakly λ-approximate metrics. We show that our analysis holds to within con-
stant factors given either of these two classes of distance functions. First, we show
that λ-approximate distance functions facilitate an implementation of our online me-
dian algorithm running in time linear in the input size. We then show that weakly
λ-approximate distance functions allow us to apply our techniques to objective func-
tions other than the k-median objective. For example, we show that the approx-
imation bounds for both of our algorithms hold to within constant factors for the
well-known k-means objective function [8].

1.4. Outline. The rest of this paper is organized as follows. In section 2, we
present our facility location algorithm and prove that it achieves an approximation
ratio of 3. In section 3, we present our online median algorithm and prove that it is
constant-competitive. Then, in section 4, we consider a weaker form of the triangle
inequality in which we assume that the triangle inequality holds only to within a
constant factor and show that our approximation bounds still hold (to within constant
factors). Section 5 offers some concluding remarks.

2. Facility location. The following definitions are used throughout the present
section as well as section 3.

(i) For any nonnegative integer m, let [m] denote the set {i | 0 ≤ i < m}.
(ii) A ball A is a pair (x, r), where the center x of A, denoted center(A), belongs

to U , and the radius r of A, denoted radius(A), is a nonnegative real.
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820 RAMGOPAL R. METTU AND C. GREG PLAXTON

(iii) Given a ball A = (x, r), we let Points(A) denote the set {y ∈ U | d(x, y) ≤
r}. However, for the sake of brevity, we tend to write A instead of Points(A). For
example, we write “x ∈ A” and “A∪B” instead of “x ∈ Points(A)” and “Points(A)∪
Points(B),” respectively.

(iv) The value of a ball A = (x, r), denoted value(A), is
∑

y∈A(r−d(x, y)) ·w(y).
(v) For any ball A = (x, r) and any nonnegative real c, we define cA as the ball

(x, cr).

2.1. Algorithm. In the first step of the following algorithm, we assume that
there is at least one point x such that w(x) > 0. (The problem is trivial otherwise.)
The output of the algorithm is the configuration Zn, which we also refer to as Z.
(Remark: The indexing of the sets Zi has been introduced solely to facilitate the
analysis.)

1. For each point x, determine a ball Ax = (x, rx) such that value(Ax) = f(x).
2. Determine a bijection ϕ : [n] → U such that rϕ(i−1) ≤ rϕ(i), 0 < i < n.
3. Let Bi = (xi, ri) denote the ball Aϕ(i), 0 ≤ i < n. Let Z0 = ∅.
4. For i = 0 to n− 1: If Zi ∩ 2Bi = ∅, then let Zi+1 = Zi ∪ {xi}; otherwise, let

Zi+1 = Zi.
We now sketch a simple O(n2)-time implementation of the above algorithm. For

each point x, the associated radius rx can be computed in O(n) time. (This is es-
sentially a weighted selection problem.) Thus the first step requires O(n2) time. The
second step involves sorting n values and can be accomplished in O(n log n) time. The
running time for the third step is negligible. Each iteration of the fourth step can
be easily implemented in O(n) time; thus the time complexity of the fourth step is
O(n2).

2.2. Approximation ratio. In this section, we establish the following theorem.
Theorem 2.1. For any configuration X, cost(Z) ≤ 3 · cost(X).
Proof. The proof is immediate from Lemmas 2.4 and 2.8 below.
Lemma 2.2. For any point xi, there exists a point xj in Z such that j ≤ i and

d(xi, xj) ≤ 2ri.
Proof. If there is no such point xj with j < i, then Zi ∩ 2Bi is empty, and so xi

belongs to Z.
Lemma 2.3. Let xi and xj be distinct points in Z. Then d(xi, xj) > 2·max{ri, rj}.
Proof. Assume without loss of generality that j < i. Thus ri ≥ rj . Furthermore,

d(xi, xj) > 2ri since xj belongs to Zi and Zi ∩ 2Bi is empty.
For any point x and any configuration X, let

charge(x,X) = d(x,X) +
∑
xi∈X

max{0, ri − d(xi, x)}.

Lemma 2.4. For any configuration X,
∑

x∈U charge(x,X) · w(x) = cost(X).
Proof. Note that∑
x∈U

charge(x,X) · w(x) =
∑
xi∈X

∑
x∈Bi

(ri − d(xi, x)) · w(x) +
∑
x∈U

d(x,X) · w(x)

=
∑
xi∈X

value(Bi) +
∑
x∈U

d(x,X) · w(x),

which is equal to cost(X) since value(Bi) = f(xi).
Lemma 2.5. Let x be a point, let X be a configuration, and let xi belong to X.

If d(x, xi) = d(x,X), then charge(x,X) ≥ max{ri, d(x, xi)}.
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THE ONLINE MEDIAN PROBLEM 821

Proof. If x does not belong to Bi, then charge(x,X) ≥ d(x, xi) > ri. Otherwise,
charge(x,X) ≥ d(x, xi) + (ri − d(x, xi)) = ri ≥ d(x, xi).

Lemma 2.6. Let x be a point, and let xi belong to Z. If x belongs to Bi, then
charge(x, Z) ≤ ri.

Proof. By Lemma 2.3, there is no point xj in Z such that i �= j and x belongs
to Bj . The claim now follows from the definition of charge(x, Z), since d(x, Z) ≤
d(x, xi).

Lemma 2.7. Let x be a point, and let xi belong to Z. If x does not belong to Bi,
then charge(x, Z) ≤ d(x, xi).

Proof. The claim is immediate unless there is a point xj in Z such that x belongs to
Bj . If such a point xj exists, then Lemmas 2.3 and 2.6 imply d(xi, xj) > 2·max{ri, rj}
and charge(x, Z) ≤ rj , respectively. The claim now follows since d(x, xi) ≥ d(xi, xj)−
d(x, xj) > 2rj − rj = rj .

Lemma 2.8. For any point x and configuration X, charge(x, Z) ≤ 3·charge(x,X).
Proof. Let xi be some point in X such that d(x, xi) = d(x,X). By Lemma 2.2,

there exists a point xj in Z such that j ≤ i and d(xi, xj) ≤ 2ri.
If x belongs to Bj , then charge(x, Z) ≤ rj by Lemma 2.6. The claim follows since

j ≤ i implies rj ≤ ri and Lemma 2.5 implies charge(x,X) ≥ ri.
If x does not belong to Bj , then charge(x, Z) ≤ d(x, xj) by Lemma 2.7. Thus

charge(x, Z) ≤ d(x, xi) + d(xi, xj) ≤ d(x, xi) + 2ri. The claim now follows by
Lemma 2.5, since the ratio of d(x, xi) + 2ri to max{ri, d(x, xi)} is at most 3.

3. Online median placement. In the previous section, we found that a simple
greedy algorithm yields interesting results for the facility location problem. The most
obvious greedy algorithm for the online median problem is to select as the next point
in the ordering the one that minimizes the objective function. Unfortunately, this
algorithm gives an unbounded competitive (resp., approximation) ratio for the online
median (resp., k-median) problem. To see this, consider an instance consisting of
n > 3 points, one “red” and the rest “blue,” such that the following conditions are
satisfied: the red point has weight 0; each blue point has weight 1; the distance from
the red point to any blue point is 1, and the distance between any pair of distinct
blue points is 2. The aforementioned greedy algorithm chooses the red point first in
the ordering, since that gives a cost of n − 1, while choosing any other point gives a
cost of 2n− 4. Consequently, the ratio for a configuration of size n− 1 is unbounded
since the greedy cost is 1 and the optimal cost is 0. (This example also shows that
no online median algorithm can achieve a competitive ratio below 2− 2

n−1 .)
We show that a more careful choice of the point, which we call hierarchically

greedy, works well. Let ∆ (resp., δ) denote the largest (resp., smallest) distance
between two distinct points in the metric space. We define a certain ball about each
point and select a ball A of maximum value. However, rather than simply choosing the
center of ball A as the next point in the ordering, we apply the approach recursively
to select a point within a region defined by A. At each successive level of recursion,
we consider geometrically smaller balls about the remaining candidate points. Within
O(log ∆

δ ) levels of recursion, we arrive at a ball containing a single point, and we return
this point as the next one in the ordering. Note that whereas the greedy algorithm
discussed in the previous paragraph makes a single greedy choice to select a point,
the hierarchically greedy algorithm makes O(log ∆

δ ) greedy choices per point.
Throughout this section, let λ, α, β, and γ denote real numbers satisfying the

following inequalities:

λ ≥ 1,(1)
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822 RAMGOPAL R. METTU AND C. GREG PLAXTON

α > 1 + λ,(2)

β ≥ λ(α− 1)

α− 1− λ
,(3)

γ ≥
(
α2β + αβ

α− 1
+ α

)
λ.(4)

The online median algorithm of section 3.1 below makes use of the following
additional definitions.

(i) A child of a ball (x, r) is any ball (y, r
α ), where d(x, y) ≤ βr.

(ii) For any point x and configuration X, let isolated(x,X) denote the ball
(x, d(x,X)/γ). We let isolated(x, ∅) denote the ball (x,maxy∈U d(x, y)).

(iii) For any nonempty sequence !, we let head(!) (resp., tail(!)) denote the first
(resp., last) element of !.

3.1. Algorithm. Let Z0 = ∅. For i = 0 to n− 1, execute the following steps:
1. Let σi denote the singleton sequence 〈A〉, where A is a maximum value ball

in {isolated(x, Zi) | x ∈ U \ Zi}.
2. While the ball tail(σi) has more than one child, append a maximum value

child of tail(σi) to σi.
3. Let Zi+1 = Zi ∪ {center(tail(σi))}.

The output of the online median algorithm is a collection of point sets Zi such
that |Zi| = i, 0 ≤ i ≤ n, and Zi ⊆ Zi+1, 0 ≤ i < n. Note that it is sufficient for an
implementation of the algorithm to maintain the ball tail(σi) as opposed to the entire
sequence σi. The sequence σi has been introduced in order to facilitate the analysis.

We discuss two implementations of the online median algorithm in section 3.4.
The first implementation has a running time that is slightly superlinear in the input
size. The second implementation has a running time that is linear in the input size but
assumes a (linear) preprocessing phase in which all distances are rounded down to the
nearest integral power of λ. (Note that for the preprocessing phase to be well defined,
we require λ > 1.) If the input distance function is a metric, it is straightforward to
see that such rounding produces a λ-approximate metric.

3.2. Competitive ratio. Before proceeding with the analysis, we introduce a
number of additional definitions.

(i) Let zi denote the unique point in Zi+1 \ Zi, 0 ≤ i < n.
(ii) For any configurationX and set of points Y , let cost(X,Y ) =

∑
y∈Y d(y,X)·

w(y).
(iii) For any configuration X, we partition U into |X| sets {cell(x,X) | x ∈ X}

as follows: For each point y in U , we choose a point x in X such that d(y,X) = d(y, x)
and add y to cell(x,X).

(iv) For any configuration X, point x in X, and set of points Y , we define
in(x,X, Y ) as cell(x,X) ∩ isolated(x, Y ) and out(x,X, Y ) as cell(x,X) \ in(x,X, Y ).

(v) For any configuration X and set of points Y , we let in(X,Y ) denote the set
∪x∈X in(x,X, Y ) and out(X,Y ) denote U \ in(X,Y ).

Note that the |X| sets cell(x,X), x ∈ X, partition U by assigning each point
in U to its closest point in X, breaking ties arbitrarily. The sets in(x,X, Y ) and
out(x,X, Y ) partition the set cell(x,X) into two disjoint sets. In our arguments, we
will consider the sets in(x,X,Z|X|) and out(x,X,Z|X|) for x ∈ X, where X is an
arbitrary configuration.

We note that the set out(x,X,Z|X|) corresponds to the points in cell(x,X) that
are “outside” the ball isolated(x, Z|X|). That is, if isolated(x, Z|X|) has radius r,
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THE ONLINE MEDIAN PROBLEM 823

then by the definition of isolated(x, Z|X|), the points contained in out(x,X,Z|X|) are
exactly the points in cell(x,X) that have distance greater than r to x but distance at
most γr to some point in Z|X|. Thus we can view the points in out(x,X,Z|X|) as the
points that are “close” to Z|X| and “far” from X. For any point y in out(X,Z|X|), it is
relatively straightforward (see Lemma 3.2) to show that d(y, Z|X|) (i.e., the distance to
the configuration Z|X| computed by our online median algorithm) is within a constant
factor of d(y,X).

We devote considerably more effort to showing that the cost incurred by Z|X| to
serve the set in(x,X,Z|X|) is within a constant factor of optimal. The set in(x,X,Z|X|)
corresponds to the points in cell(x,X) that are contained in the ball isolated(x, Z|X|).
Suppose that isolated(x, Z|X|) has radius r. By the definition of isolated(x, Z|X|), the
points contained in in(x,X,Z|X|) are exactly the points in cell(x,X) that are in the
ball (x, r) but have distance strictly greater than γr to any point in Z|X|. Thus the
points in in(x,X,Z|X|) are those points in cell(x,X) that are “close” to X and “far”
from Z|X|. Accounting for the cost incurred by Z|X| for the points in(X,Z|X|) will
comprise the majority of the proofs in this subsection and the following subsection.

We now present our main result, Theorem 3.1. In order to minimize the compet-
itive ratio of 2λ(γ + 1) implied by the theorem, we set λ to 1, set α to 2 +

√
3, and

set β and γ to the right-hand sides of (3) and (4), respectively. We thereby establish
a competitive ratio of below 29.86 for the online median problem. In section 3.4, we
describe an implementation of the online median algorithm for which the parameter
λ is required to be strictly greater than 1. The degradation in the competitive ratio
that results by setting λ greater than 1 can be made arbitrarily small by choosing λ
sufficiently close to 1.

Theorem 3.1. For any configuration X, cost(Z|X|) ≤ 2λ(γ + 1) · cost(X).

Proof. Let Y = in(X,Z|X|), and let Y ′ = out(X,Z|X|) = U \ Y . Note that
cost(X) = cost(X,Y ) + cost(X,Y ′) and cost(Z|X|) = cost(Z|X|, Y ) + cost(Z|X|, Y ′).
Thus the theorem follows immediately from Lemmas 3.3, 3.5, and 3.6 below.

Lemma 3.2. For any configuration X, and points x in X and y in out(x,X,Z|X|),
d(y, Z|X|) ≤ λ(γ + 1) · d(y,X).

Proof. Let isolated(x, Z|X|) = (x, r). Note that d(x, y) > r. Also, by the definition
of isolated(x, Z|X|), there is a point z in Z|X| such that d(x, z) = γr. Hence d(y, z) ≤
λ[d(x, y) + d(x, z)] = λ[d(x, y) + γr] < λ[d(x, y) + γ · d(x, y)] = λ(γ + 1) · d(x, y) =
λ(γ+1) ·d(y,X), where the last step follows since y is in cell(x,X). The claim follows
since d(y, z) ≥ d(y, Z|X|).

Lemma 3.3. For any configuration X, cost(Z|X|, out(X,Z|X|)) is at most λ(γ +
1) · cost(X, out(X,Z|X|)).

Proof. Summing the inequality of Lemma 3.2 over all y in out(x,X,Z|X|), we
obtain

cost(Z|X|, out(x,X,Z|X|)) ≤ λ(γ + 1) · cost(X, out(x,X,Z|X|)).

The claim now follows by summing the above inequality over all x in X.

Lemma 3.4. For any configuration X and point x in X, cost(Z|X|, in(x,X,Z|X|))
is at most λ(γ + 1)[cost(X, in(x,X,Z|X|)) + value(isolated(x, Z|X|))].

Proof. Assume that isolated(x, Z|X|) = (x, r). Note that d(x, y) = γr for some
y in Z|X|. Thus, for any z in isolated(x, Z|X|), d(y, z) ≤ λ[d(y, x) + d(x, z)] ≤
λ(γ + 1)r, where the last step follows from our bound on d(x, y) and the defini-
tion of isolated(x, Z|X|). It follows that cost(Z|X|, in(x,X,Z|X|)) is at most λ(γ + 1)

D
ow

nl
oa

de
d 

05
/3

0/
15

 to
 1

29
.9

7.
15

0.
67

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



824 RAMGOPAL R. METTU AND C. GREG PLAXTON

times∑
z∈in(x,X,Z|X|)

r · w(z) ≤
∑

z∈in(x,X,Z|X|)

d(x, z) · w(z) +
∑

z∈isolated(x,Z|X|)

(r − d(x, z)) · w(z)

= cost(X, in(x,X,Z|X|)) + value(isolated(x, Z|X|)).

Lemma 3.5. For any configuration X and point x in X, cost(Z|X|, in(X,Z|X|))
is at most λ(γ + 1)[cost(X, in(X,Z|X|)) +

∑
x∈X value(isolated(x, Z|X|))].

Proof. The claim follows by summing the inequality of Lemma 3.4 over all x in
X.

Our main technical lemma is stated below. The proof is given in the next sub-
section.

Lemma 3.6. For any configuration X,

∑
x∈X

value(isolated(x, Z|X|)) ≤ cost(X).

3.3. Proof of Lemma 3.6. In this section, we establish our main technical
lemma, Lemma 3.6. Informally, Lemma 3.6 yields an upper bound on the value of
certain balls containing points “far” from Z|X|, where X is an arbitrary configuration.
The upper bound we obtain states that the value associated with these points is at
most cost(X). Thus, in combination with Lemmas 3.3 and 3.5, we can conclude
that cost(Z|X|) is O(cost(X)). To prove Lemma 3.6, we argue that for each ball
isolated(x, Z|X|), it is possible to identify a ball with commensurately high value that
does not contain a point from X. More precisely, we construct a matching between
the points in Z|X| and X and show that for each point x in X \Z|X| we can identify a
ball Ax appearing in some sequence σi < |X| such that value(Ax) ≥ isolated(x, Z|X|),
cost(X,Ax) ≥ value(Ax), and all such balls Ax are disjoint. Intuitively, we will
identify these balls by making use of the greedy manner in which our online median
algorithm constructs the sequences of balls σi, 0 ≤ i < |X|.

Lemma 3.7. Let A = (x, r) belong to σi. Then d(x, Zi) ≥ γr.
Proof. Let z be a point in Zi such that d(x, z) = d(x, Zi). If A = head(σi), then

A = isolated(x, Zi), and the result is immediate. Otherwise, let B = (y, s) denote the
predecessor of A in σi, and assume inductively that d(y, Zi) ≥ γs. Note that d(x, y) ≤
βs and s = αr. Thus d(x, Zi) = d(x, z) ≥ d(y, z)/λ − d(x, y) ≥ (γ/λ − β)αr ≥ γr,
where the last step follows from (4).

Lemma 3.8. Let A = (x, r) belong to σi, and let B = (y, s) belong to σj. If i < j
and d(x, y) ≤ r+s, then the following claims hold: (i) radius(head(σj)) ≤ r

α ; (ii) A �=
tail(σi); (iii) the successor of A in σi (call it C) satisfies value(C) ≥ value(head(σj)).

Proof. Let head(σj) = (y′, s′). For part (i), we begin by deriving upper and lower
bounds on d(y′, zi). For a lower bound on d(y′, zi), note that d(y′, zi) ≥ d(y′, Zj) (since
i < j) and d(y′, Zj) ≥ γs′ by Lemma 3.7. To derive an upper bound on d(y′, zi), we
first let P denote the prefix of sequence σj ending with ball B, and we let S denote the
suffix of sequence σi beginning with ball A. We then apply the λ-approximate triangle
inequality to the sequence of points 〈y′, . . . , y, x, . . . , zi〉, where the prefix 〈y′, . . . , y〉
corresponds to the centers of the balls in P and the suffix 〈x, . . . , zi〉 corresponds to
the centers of the balls in S. By repeated application of the definition of a child, and
using the given upper bound on d(x, y), we obtain

d(y′, zi) ≤ λ

[
β

(
s′ +

s′

α
+ · · ·+ αs

)
+ s+ r + β

(
r +

r

α
+ · · ·

)]D
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THE ONLINE MEDIAN PROBLEM 825

≤
[

αβ

α− 1
· (r + s′) + r

]
λ.

Combining the bounds on d(y′, zi) and applying (4), we obtain

(
α2β + αβ

α− 1
+ α

)
λs′ ≤

[
αβ

α− 1
· (r + s′) + r

]
λ.

Multiplying through by (α − 1)/λ and rearranging, we get r ≥ α2β+α2−α
αβ+α−1 · s′ = αs′,

establishing the claim.
For part (ii), note that d(x, y) ≤ r + r

α < βr by part (i) and (3). Thus A has at
least two children; the claim follows.

For part (iii), we obtain an upper bound on d(x, y′) by applying the λ-approximate
triangle inequality to the sequence of points 〈y′, . . . , y, x〉, where the prefix 〈y′, . . . , y〉
corresponds to the centers of the balls in P (as defined in part (i) above). By repeated
application of the definition of a child and by the given upper bound on d(x, y), we
observe that

d(x, y′) ≤ λ
[
r + s+

(
αs+ α2s+ · · ·+ s′

)
β
]
.

Then, by using (2) and (3) and part (i), we observe that

λ
[
r + s+

(
αs+ α2s+ · · ·+ s′

)
β
] ≤ λr +

αβλ

α− 1
· s′

≤ λr +
αβλ

α− 1
· r
α

≤
(

β

α− 1
+ 1

)
λr.

Observe that ( β
α−1 + 1)λr is at most βr by (3). It then follows that head(σj) is

contained in a child of A. Thus value(C) ≥ value(head(σj)).
For ease of notation, throughout the remainder of this section, we fix a configu-

ration X, and let k denote |X|. We now describe a pruning procedure that we use
for the purpose of analyzing our online median algorithm. The pruning procedure
takes as input the k sequences σi, 0 ≤ i < k, and produces as output k sequences τi,
0 ≤ i < k. The sequence τi is initialized to σi, 0 ≤ i < k. The (nondeterministic)
pruning procedure then performs a number of iterations. In a general iteration, the
pruning procedure checks whether there exist two balls A = (x, r) and B = (y, s)
in distinct sequences τi and τj , respectively, such that i < j and d(x, y) ≤ r + s.
If not, the pruning procedure terminates. If so, the sequence τi is redefined as the
proper suffix of (the current) τi beginning at the successor of A. Note that part (ii)
of Lemma 3.8 ensures that the pruning procedure is well defined. Furthermore, the
procedure is guaranteed to terminate since each iteration reduces the length of some
sequence τi.

Lemma 3.9. Let A = (x, r) belong to τi, and let B = (y, s) belong to τj. If i < j,
then d(x, y) > r + s.

Proof. The proof is immediate from the definition of the pruning procedure.
Lemma 3.10. Each sequence τi is nonempty.
Proof. The proof is immediate from part (ii) of Lemma 3.8 and the definition of

the pruning procedure.
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826 RAMGOPAL R. METTU AND C. GREG PLAXTON

Lemma 3.11. Let x be a point, and assume that 0 ≤ i < j ≤ n. Then

value(isolated(x, Zi)) ≥ value(isolated(x, Zj)).

Proof. Since Zi ⊆ Zj , radius(isolated(x, Zi)) ≥ radius(isolated(x, Zj)). The claim
follows.

Lemma 3.12. Let x be a point, and assume that 0 ≤ i < k. Then

value(head(σi)) ≥ value(isolated(x, Zk)).

Proof. If x belongs to Zi, then radius(isolated(x, Zi)) = 0. It follows that
value(isolated(x, Zi)) = 0, and there is nothing to prove. Otherwise, value(head(σi)) ≥
value(isolated(x, Zi)) by the definition of the online median algorithm, and the claim
follows by Lemma 3.11.

Lemma 3.13. Let x be a point, and assume that 0 ≤ i < k. Then

value(head(τi)) ≥ value(isolated(x, Zk)).

Proof. We prove that the claim holds before and after each iteration of the pruning
procedure. Initially, τi = σi, and the claim holds by Lemma 3.12. If the claim holds
before an iteration of the pruning procedure, then it holds after the iteration by
part (iii) of Lemma 3.8.

A ball A = (x, r) is defined to be covered iff d(x,X) < r. A ball is uncovered iff
it is not covered.

Lemma 3.14. For any uncovered ball A = (x, r), cost(X,A) ≥ value(A).
Proof. Note that cost(X,A) ≥ ∑

y∈A d(y,X) ·w(y) ≥ ∑
y∈A(r− d(y, x)) ·w(y) =

value(A).
Let I denote the set of all indices i in [k] such that some ball in τi is covered.

We now construct a matching between the sets [k] and X as follows. First, for each
i in I, we match i with a point x in X that belongs to the last covered ball in the
sequence τi. (Note that such a point x is guaranteed to exist by the definition of I.
Furthermore, Lemma 3.9 ensures that we do not match the same point with more
than one index.) Second, for each i in [k] \ I in turn, we match i with an arbitrary
unmatched point x in X.

We now construct a function ϕ mapping each point x in X to an uncovered ball.
For each x in X that is matched with an index i in [k] \ I, we set ϕ(x) to head(τi).
For each x in X that is matched with an index i in I, we set ϕ(x) to the successor of
the last covered ball in τi unless tail(τi) is covered, in which case we set ϕ(x) to the
ball (x, 0).

Lemma 3.15. For any pair of distinct points x and y in X, ϕ(x) ∩ ϕ(y) = ∅.
Proof. The proof is immediate from Lemma 3.9 and the fact that the ball (x, 0)

is contained in tail(τi).
Lemma 3.16. For any point x in X, value(ϕ(x)) ≥ value(isolated(x, Zk)).
Proof. If x is matched with an index i in [k]\ I, the claim follows by Lemma 3.13.

If x is matched with an index i in I, we consider two cases. If tail(τi) is covered,
then x = zi since tail(τi) has exactly one child. The claim follows since ϕ(x) =
isolated(x, Zk) = (x, 0). If tail(τi) is uncovered, then the predecessor of ϕ(x) in τi
(call it A = (y, r)) exists and contains x. It follows that value(ϕ(x)) ≥ value(B),
where B = (x, r/α) is the child of A centered at x. Let C = (x, s) denote the ball
isolated(x, Zk). Below we complete the proof of the claim by showing that r/α ≥ s,
which implies that B ⊇ C and hence value(B) ≥ value(C).
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THE ONLINE MEDIAN PROBLEM 827

It remains to prove that r/α ≥ s in the final case considered above. We prove
the claim by deriving upper and lower bounds on d(x, zi). Let S be the suffix of the
sequence τi beginning with the ball A. For the upper bound, we apply the triangle
inequality to the sequence of points 〈x, y, . . . , zi〉, where the suffix 〈y, . . . , zi〉 consists
of the centers of the balls in S. We then obtain that

d(x, zi) ≤ λ

(
r + β

(
r +

r

α
+ · · ·

))

≤
(
1 +

αβ

α− 1

)
λr,

which is less than γr/α by (4). The desired inequality follows since d(x, zi) ≥ γs by
the definition of C.

Lemmas 3.14, 3.15, and 3.16 together yield a proof of Lemma 3.6.

3.4. Time complexity. In this section, we describe two implementations of the
online median algorithm given in section 3.1. Throughout this section, let � denote the
quantity log ∆

δ . The first implementation runs in O((n+ �) ·n log n) time. The second
implementation runs in O(n2 + �n) time and assumes an O(n2)-time preprocessing
phase in which all distances are rounded down to the nearest integral power of λ. To
analyze the running time of the implementations given below, we make use of the
following lemma.

Lemma 3.17. Let A = (x, r) be a child of a ball B in sequence σi, and let
A′ = (x, r′) be a child of a ball B′ in sequence σj. If i < j, then r ≥ (α+ 1 + 1

β )r
′.

Proof. We first obtain an upper bound on d(x, zi) by applying the λ-approximate
triangle inequality to a sequence of points consisting of the centers of the balls in the
suffix of σi beginning with ball A. Thus d(x, zi) ≤ λβ (r + r/α+ · · ·) ≤ λαβr/(α−1).
By Lemma 3.7 and since j > i, we get that γr′ ≤ d(x, Zj) ≤ d(x, zi). Combining
these inequalities and using (4), we obtain

r ≥ (α− 1)γ

λαβ
· r′

≥ α− 1

αβ
·
(
α2β + αβ

α− 1
+ α

)
λ · r′

=

(
α+ 1 +

1

β

)
r′.

In the first implementation, for each point x in U , we sort the remaining points by
their distance from x. The total sorting time is O(n2 log n). Using these sorted arrays,
we can compute the value of any given ball in O(log n) time. We also maintain the
distance from x to the nearest point in Zi. Note that d(x, Zi+1) can be determined
in constant time given d(x, Zi) and zi. The total time to maintain such distances
is thus O(n2). It follows that the first step of each iteration can be implemented in
O(n) time. The total time for the second step is O(log n) times the sum over all balls
A appearing in some sequence σi, 0 ≤ i < n, of the number of children of A. By
Lemma 3.17, it is straightforward to see that the latter sum is O(�n), and thus the
total time for the second step is O(�n log n). The running time of the third step is
negligible. Thus the running time of the first implementation is O((n + �) · n log n),
as claimed above.

For the second implementation, note that after the preprocessing phase, there are
O(�) distinct distances. Thus, for each point x, O(n+�) time is sufficient to construct
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828 RAMGOPAL R. METTU AND C. GREG PLAXTON

an O(�)-sized table that can be used to compute the value of any ball (x, r) in O(1)
time. It follows that the total time for the second step can be improved to O(�n). The
running time of the second implementation is therefore O(n2 + �n), which is linear in
the size of the input (in bits).

4. Weakly λ-approximate metrics. The analysis in section 3 of this paper
assumes that the (nonnegative, symmetric) distance function d approximately satisfies
the triangle inequality. Recall that we defined a “λ-approximate” triangle inequality
for λ ≥ 1 as follows: For any sequence of points x0, . . . , xm in U , d(x0, xm) ≤ λ ·∑

0≤i<m d(xi, xi+1). We refer to such a distance function as a λ-approximate metric.
In this section, we show that the analysis in both sections 2 and 3 holds to within

constant factors for an even weaker form of the triangle inequality. We say that a
distance function d satisfies a “weakly λ-approximate” triangle inequality if, for any
x, y, and z, d(x, z) ≤ λ(d(x, y) + d(y, z)). We note that this inequality has been
studied previously and is also referred to as the relaxed triangle inequality [10], the
parameterized triangle inequality [1], and the λ-triangle inequality [9]. We will say
that a distance function satisfying this inequality is a weakly λ-approximate metric.
We will make use of such distance functions to extend our results to other objective
functions. For example, the well-known k-means heuristic [8] has a sum of squared
distances in its objective function. It is straightforward to show that squaring the
distances in a metric yields a weakly 2-approximate metric. Thus the results in this
section show that our analysis also holds, to within constant factors, with respect
to the k-means objective function. (Remark: More generally, it is not hard to show
that raising the distances in a metric to any constant power yields a weakly O(1)-
approximate metric.)

Lemmas 4.1 and 4.2 establish that the approximation results in this paper hold, up
to constant factors, even for weakly λ-approximate metrics. Recall that, in sections 2
and 3, we make use of the triangle inequality and the λ-approximate triangle inequality
on sequences of points to derive upper bounds on the distances between pairs of
points. In most cases, we consider constant-length sequences of points to derive our
upper bounds. In such cases, Lemma 4.1 shows that a weakly λ-approximate metric
is sufficient to guarantee that our upper bounds hold to within constant factors.
Unfortunately, Lemma 4.1 alone is not sufficient to generalize our upper bounds based
on nonconstant-length sequences of points, which arise in Lemmas 3.8, 3.16, and 3.17.
For these cases, we require Lemma 4.2. Lemmas 4.1 and 4.2 together show that the
upper bounds derived in Lemmas 3.8, 3.16, and 3.17 still hold up to constant factors
given only a weakly λ-approximate triangle inequality.

Lemma 4.1. Let d be a weakly λ-approximate metric, and let x0, x1, . . . , xm be
points with m ≥ 1. Then d(x0, xm) ≤ λ�log2 m	 ·∑0≤i<m d(xi, xi+1).

Proof. We will prove the lemma by induction. The base case, m = 1, is trivial.
For the induction step, assume that for any sequence of points y0, . . . , yi, 1 ≤ i < m,
d(y0, yi) ≤ λ�log2 i	 ∑

0≤j<i d(yj , yj+1). Then

d(x0, xm) ≤ λ
(
d(x0, x�m

2 �) + d(x�m
2 �, xm)

)

≤ λ


λ�log2 �m

2 ��

 ∑

0≤j<�m
2 �

d(xj , xj+1)


+ λ�log2 �m

2 �� ∑
�m

2 �≤j<m

d(xj , xj+1)




≤ λ · λ�log2 m	−1
∑

0≤j<m

d(xj , xj+1)
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THE ONLINE MEDIAN PROBLEM 829

= λ�log2 m	 ∑
0≤j<m

d(xj , xj+1).

The first step follows from the weakly λ-approximate triangle inequality. The second
step follows by applying the induction hypothesis twice. (Note that m ≥ 2 implies
that 0 <

⌈
m
2

⌉
< m, so the induction hypothesis is applicable.) The last step follows

from the fact that
⌈
log2

⌈
m
2

⌉⌉
= �log2 m� − 1.

If λ and m are constant, then Lemma 4.1 implies that d(x0, xm) is

Θ


 ∑

0≤i<m

d(xi, xi+1)


 .

Thus Lemma 4.1 is sufficient to show that the upper bounds derived in section 2
using the triangle inequality hold to within a constant factor given only a weakly
λ-approximate metric. Similarly, the upper bounds derived in section 3 using the
λ-approximate triangle inequality on constant-length sequences of points also hold
to within constant factors given only a weakly λ-approximate metric. However, in
Lemmas 3.8, 3.16, and 3.17, we derive upper bounds on distances by applying the
λ-approximate triangle inequality to nonconstant-length sequences of points that ap-
pear in the sequences σi associated with our online median algorithm. In these cases,
the nonconstant-length sequences of points we consider have the property that they
are composed of a constant number of contiguous subsequences in which distances be-
tween successive points are either geometrically increasing or geometrically decreasing.
Lemma 4.2 shows that the upper bounds derived using these sequences hold to within
a constant factor assuming only a weakly λ-approximate metric.

Lemma 4.2. Let d be a weakly λ-approximate metric, and let x0, x1, . . . , xm be
points such that for 1 ≤ i ≤ m, d(xi, xi+1) ≤ d(xi−1, xi)/ξ for a positive real ξ > λ.
Then d(x0, xm) ≤ λξ

ξ−λd(x0, x1).

Proof. We first prove by induction that d(x0, xm) ≤ ∑
0≤i<m λi+1d(xi, xi+1).

For the base case, take m = 1. Then d(x0, x1) ≤ λd(x0, x1) since λ ≥ 1. For
the induction step, assume that for any sequence of points y0, . . . , yi, 1 ≤ i < m,
d(y0, yi) ≤

∑
0≤j<i λ

j+1d(yj , yj+1). Observe that

d(x0, xm) ≤ λ (d(x0, x1) + d(x1, xm))

≤ λd(x0, x1) + λ


 ∑

1≤i<m

λid(xi, xi+1)




≤
∑

0≤i<m

λi+1d(xi, xi+1),

where the first step follows from the weakly λ-approximate triangle inequality and
the second step follows from the induction hypothesis. Then

d(x0, xm) ≤
∑

0≤i<m

λi+1d(xi, xi+1)

≤
∑

0≤i<m

λi+1

ξi
d(x0, x1)

≤ ξλ

ξ − λ
d(x0, x1),

D
ow

nl
oa

de
d 

05
/3

0/
15

 to
 1

29
.9

7.
15

0.
67

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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where the second step follows from the assumption that d(xi, xi+1) ≤ d(xi−1, xi)/ξ
for 0 ≤ i < m and the third step follows from the assumption that ξ > λ.

As stated above, Lemma 4.2 is needed in addition to Lemma 4.1 to show that
the upper bounds derived in Lemmas 3.8, 3.16, and 3.17 hold to within a constant
factor given only a weakly λ-approximate metric. We now explain how Lemmas 4.1
and 4.2 may be used to show that the upper bound obtained in part (i) of Lemma 3.8
holds to within a constant factor given a weakly λ-approximate metric. Recall that
in part (i) of Lemma 3.8, we derive an upper bound on the distance d(y′, zi). For the
argument, we apply the λ-approximate triangle inequality to the sequence of points
〈y′, . . . , y, x, . . . , zi〉 and show that d(y′, zi) is within a constant factor of the sum of
the distances between successive points in this sequence. The prefix 〈y′, . . . , y〉 of
this sequence appears in the sequence of balls σj associated with our online median
algorithm. By the definition of our online median algorithm, the distances between
successive points in 〈y′, . . . , y〉 decrease by a factor of β. Since β and λ are con-
stants, and since β > λ, we can apply Lemma 4.2 with ξ = β to conclude that
d(y′, y) is within a constant factor of the sum of distances between successive points
in 〈y′, . . . , y〉 given only a weakly λ-approximate metric. By a similar application
of Lemma 4.2 to d(x, zi) with 〈x, . . . , zi〉 as the sequence of points, we can conclude
that d(x, zi) is within a constant factor of the sum of distances between successive
points in 〈x, . . . , zi〉 given only a weakly λ-approximate metric. With upper bounds
on d(y′, y) and d(x, zi), we can then apply Lemma 4.1 to the constant-length sequence
〈y′, y, x, zi〉 to conclude that, given only a weakly λ-approximate metric, d(y′, zi) is
within a constant factor of the sum of distances between successive points in the se-
quence 〈y′, . . . , y, x, . . . , zi〉. Using Lemmas 4.1 and 4.2 in this manner, the bounds
derived in part (iii) of Lemma 3.8 and in Lemmas 3.16 and 3.17 can also be shown to
hold to within constant factors given only a weakly λ-approximate metric.

5. Concluding remarks. We plan to investigate whether the ideas presented in
this paper can be applied to other problems. Korupolu, Plaxton, and Rajaraman [19]
give an algorithm and an efficient distributed implementation for hierarchical coop-
erative caching in which the distance function is an ultrametric. We would like to see
if the hierarchical greedy strategy can be used or extended to solve the cooperative
caching problem in an arbitrary metric space. It would also be interesting to see if
the hierarchical greedy strategy admits an efficient distributed implementation for
this problem.

This paper has focused on the development of fast deterministic algorithms for the
facility location problem and the online median problem. It is worth noting that there
have been a number of recent results that make use of randomization to obtain fast
algorithms for the k-median problem. The first such result was due to Indyk [14]; for
the uniform-demand k-median problem, he gives a bicriteria approximation algorithm
that uses random sampling and a black-box k-median algorithm. His algorithm has a
constant probability of success and runs in Õ(nk3) time. (The Õ-tilde notation omits
polylogarithmic factors in n and k.) Assuming the existence of an Õ(n2)-time bicri-
teria k-median algorithm, this time bound can be reduced to Õ(nk). Subsequently,
Guha et al. obtained an Õ(nk)-time constant-factor approximation algorithm for the
k-median problem in the data stream model of computation [13]. More recently, Tho-
rup [27] has obtained a randomized constant-factor approximation algorithm for the
k-median problem in a graph setting. For this problem, the interpoint distances are
given by a graph on m edges rather than being fully specified in the input. That is, to
obtain the distance between two points x and y, we must compute the shortest path
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THE ONLINE MEDIAN PROBLEM 831

between x and y. Thorup gives an Õ(m) constant-factor approximation algorithm for
this problem. His algorithm implies an Õ(nk)-time algorithm for the version of the
k-median problem defined in section 1.

Recently, we have obtained a randomized constant-factor approximation algo-
rithm for the k-median problem that runs in O(n(k + log n) + k2 log2 n) time under
the standard assumption that the point weights and interpoint distances are polyno-
mially bounded [24]. Thus, for k such that logn ≤ k ≤ n/ log2 n, our algorithm runs
in O(nk) time. Our algorithm succeeds with high probability, that is, for any positive
constant ξ, we can adjust constant factors in the definition of the algorithm to achieve
a failure probability less than n−ξ. We also establish a matching Ω(nk) lower bound
on the running time of any randomized constant-factor approximation algorithm for
the k-median problem that has even a nonnegligible success probability (e.g., at least
1

100 ).
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