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Copyright 1995 by the Society for Industrial and Applied Mathematics.  All rights reserved. A GENERAL APPROXIMATION TECHNIQUEFOR CONSTRAINED FOREST PROBLEMS�MICHEL X. GOEMANSy AND DAVID P. WILLIAMSONzAbstract. We present a general approximation technique for a large class of graph problems.Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graphwith trees, cycles or paths satisfying certain requirements. In particular, many basic combinatorialoptimization problems �t in this framework, including the shortest path, minimum-cost spanningtree, minimum-weight perfect matching, traveling salesman and Steiner tree problems.Our techniqueproduces approximationalgorithms that run inO(n2 logn) time and come within afactor of 2 of optimal for most of these problems. For instance, we obtain a 2-approximationalgorithmfor the minimum-weight perfect matching problem under the triangle inequality. Our running time ofO(n2 logn) time compares favorably with the best strongly polynomial exact algorithms running inO(n3) time for dense graphs. A similar result is obtained for the 2-matchingproblem and its variants.We also derive the �rst approximationalgorithms for many NP-completeproblems, including the non-�xed point-to-point connection problem, the exact path partitioning problem and complex location-design problems. Moreover, for the prize-collecting traveling salesman or Steiner tree problems,we obtain 2-approximation algorithms, therefore improving the previously best-known performanceguarantees of 2.5 and 3, respectively [4].Key words. Approximation algorithms, combinatorial optimization, matching, Steiner treeproblem, T-joins, traveling salesman problemAMS subject classi�cations. 68Q25, 90C271. Introduction. Given a graph G = (V;E), a function f : 2V ! f0; 1g and anon-negative cost function c : E ! Q+, we consider the integer program:Min Xe2E cexesubject to:(IP ) x(�(S)) � f(S) ; 6= S � Vxe 2 f0; 1g e 2 Ewhere �(S) denotes the set of edges having exactly one endpoint in S and x(F ) =Pe2F xe. The integer program (IP ) can be interpreted as a very special type ofcovering problem in which we need to �nd a minimum-cost set of edges that coverall cutsets �(S) corresponding to sets S with f(S) = 1. The minimal solutions to(IP ) are incidence vectors of forests. We shall therefore refer to the graph problemassociated with (IP ) as a constrained forest problem. Let (LP ) denote the linearprogramming relaxation of (IP ) obtained by relaxing the integrality restriction onthe variables xe to xe � 0. For the most part we will consider constrained forestproblems corresponding to proper functions; that is, a function f : 2V ! f0; 1g suchthat the following properties hold:(i) [Symmetry] f(S) = f(V � S) for all S � V ; and� Research partially supported by DARPA contract N00014-89-J-1988.y Department of Mathematics, MIT, Cambridge, MA 02139. Additional support provided by AirForce contract AFOSR-89-0271.z School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY,14853. This research was conducted while the author was a graduate student at MIT. Additionalsupport provided by an NSF graduate fellowship.1



2 M.X. GOEMANS AND D.P. WILLIAMSONTable 1Examples of proper functions and proper constrained forest problems.Input f(S) Minimal forestsf(S) = 1 8S Spanning treess; t 2 V f(S) = n 1 jS \ fs; tgj = 10 otherwise s-t pathsT � V f(S) = n 1 ; 6= S \ T 6= T0 otherwise Steiner trees with terminals TT � V f(S) = n 1 jS \ T j odd0 otherwise T -joins(ii) [Disjointness] If A and B are disjoint, then f(A) = f(B) = 0 implies f(A [B) = 0.We also assume that f(V ) = 0. Many interesting families of forests can be modelledby (IP ) with proper functions. In Table 1, we have indicated some examples of properfunctions along with the corresponding set of minimal forests. Thus the minimum-cost spanning tree, shortest path, Steiner tree and T -join problems (see Section 3for de�nitions) can be stated as proper constrained forest problems; that is, theycan be modelled as (IP ) with a proper function. Many more complex combinatorialoptimization problems, such as the non-�xed point-to-point connection problem andthe generalized Steiner tree problem, are also proper constrained forest problems.Since many proper constrained forest problems are NP-complete, we focus ourattention on heuristics. If a heuristic algorithm for an optimization problem deliversa solution guaranteed to be within a factor of � of optimal, it is said to have aperformance guarantee of �. Furthermore, if it runs in polynomial time, it is calledan �-approximation algorithm. In this paper, we present a (2 � 2jAj )-approximationalgorithm for proper constrained forest problems, where A = fv 2 V : f(fvg) = 1g.Our algorithm runs in O(min(n2 logn;mn�(m;n))) time, where n = jV j, m = jEj,and � is the inverse Ackermann function. For the sake of the analysis, we implicitlyconstruct a feasible solution to the dual linear program to (LP ), and we prove thatthe value of our approximate integral primal solution is within a factor of 2 � 2jAj ofthe value of this dual solution. Therefore, for all proper functions f , the ratio betweenthe optimal values of (IP ) and (LP ) is upper bounded by 2 � 2jAj . This result canbe contrasted with the various logarithmic upper bounds on the ratio between theoptimal values of general integer covering problems and their fractional counterparts(Johnson [19], Lov�asz [27] and Chv�atal [5]).Our algorithm can be characterized in several ways. It is an adaptive greedyalgorithm in which, at every iteration, the edge with minimum reduced cost is selected.It is adaptive in the sense that the reduced costs are updated throughout the executionof the algorithm. It can also be seen as a primal-dual algorithm in which, alternately,primal and dual updates are performed.Our approximation algorithm generalizes many classical exact and approximatealgorithms. When applied to the spanning tree problem, it reduces to Kruskal's greedyalgorithm [23]. For the s-t shortest path problem, our algorithm is reminiscent of thevariant of Dijkstra's algorithm that uses bi-directional search (Nicholson [28]). Thealgorithm is exact in these two cases. For the Steiner tree problem, we obtain theminimum spanning tree heuristic whose many variants have been described in theliterature (see [39]). In the case of the generalized Steiner tree problem, our algorithmsimulates Agrawal, Klein and Ravi's 2-approximation algorithm [1]. Their algorithm



A GENERAL APPROXIMATION TECHNIQUE 3was instrumental in motivating our work. In particular, we generalize their use ofduality from generalized Steiner trees to all proper constrained forest problems. Inthe process, we make their use of linear programming duality explicit and providesome conceptual simpli�cations since neither our algorithm nor its analysis requirecontractions, recursive calls to construct the forest or subdivisions of edges, as is usedin the presentation of Agrawal et al. [1].One important consequence of the algorithm is that it can be turned into a 2-approximation algorithm for the minimum-weight perfect matching problem giventhat the edge costs obey the triangle inequality. Our running time of O(n2 logn) timeis faster than the currently best-known algorithms that solve the problem exactly(due to Gabow [11] and Gabow and Tarjan [13]) on all but very sparse graphs. Inaddition, our algorithm improves upon all known approximation algorithms for thisproblem in either running time or performance guarantee.Given the triangle inequality, the algorithm can also be turned into an approxi-mation algorithm for related problems involving cycles or paths, instead of trees. Thisobservation allows us to consider additional problems such as the traveling salesmanproblem, Hamiltonian location problems [25] and many other problems. Our algo-rithm can also be extended to handle some non-proper constrained forest problems.In general, our technique applies to many NP-complete problems arising in the designof communication networks, VLSI design and vehicle routing. We have also been ableto apply the technique to the prize-collecting traveling salesman problem (given thetriangle inequality) and the prize-collecting Steiner tree problem, thereby deriving the�rst 2-approximation algorithms for these problems.The rest of the paper is structured as follows. In Section 2, we describe our ap-proximation algorithm for proper constrained forest problems. We also present itsanalysis and an e�cient implementation. In Section 3, we describe how the algorithmcan be applied to the various proper constrained forest problems mentioned above. InSection 4, we show how to extend the algorithm and proof techniques to other prob-lems, including the prize-collecting traveling salesman problem. We discuss previouswork for particular constrained forest problems in Sections 3 and 4. We conclude inSection 5 with a discussion of subsequent work.2. The Algorithm for Proper Constrained Forest Problems.2.1. Description. The main algorithm is shown in Figure 1. The algorithmtakes as input an undirected graph G = (V;E), edge costs ce � 0 for all e 2 E,and a proper function f . The algorithm produces as output a set of edges F 0 whoseincidence vector of edges is feasible for (IP ). The basic structure of the algorithminvolves maintaining a forest F of edges, which is initially empty. The edges of Fwill be candidates for the set of edges to be output. The algorithm loops, in everyiteration selecting an edge (i; j) between two distinct connected components of F ,then merging these two components by adding (i; j) to F . The loop terminates whenf(C) = 0 for all connected components C of F ; since f(V ) = 0, the loop will �nishafter at most n � 1 iterations. The set F 0 of edges that are output consists of onlythe edges of F needed to meet the covering requirements. More precisely, if an edgee can be removed from F such that f(C) = 0 for all components C of F � e, then eis omitted from F 0.The approximation properties of the algorithmwill follow from the way we choosethe edge each iteration. The decision is based on a greedy construction of an implicit



4 M.X. GOEMANS AND D.P. WILLIAMSONInput: An undirected graph G = (V;E), edge costs ce � 0, and a proper function fOutput: A forest F 0 and a value LB1 F  ;2 Comment: Implicitly set yS  0 for all S � V3 LB  04 C  ffvg : v 2 V g5 For each v 2 V6 d(v) 07 While 9C 2 C : f(C) = 18 Find edge e = (i; j) with i 2 Cp 2 C, j 2 Cq 2 C, Cp 6= Cq that minimizes� = ce�d(i)�d(j)f(Cp)+f(Cq)9 F  F [ feg10 For all v 2 Cr 2 C do d(v) d(v) + � � f(Cr)11 Comment: Implicitly set yC  yC + � � f(C) for all C 2 C.12 LB  LB + �PC2C f(C)13 C  C [ fCp [Cqg � fCpg � fCqg14 F 0  fe 2 F : For some connected component N of (V; F � feg); f(N) = 1gFig. 1. The main algorithm.solution to the dual of (LP ). This dual isMax XS�V f(S) � ySsubject to:(D) XS:e2�(S) yS � ce e 2 E;yS � 0 ; 6= S � V:De�ne an active component to be any component C of F for which f(C) = 1. In eachiteration the algorithm tries to increase yC uniformly for each active component Cby a value � which is as large as possible without violating the packing constraintsP yS � ce. Finding such an � will make a packing constraint tight for some edge (i; j)between two distinct components; the algorithm will then add (i; j) to F and mergethese two components. An alternate view of this process is that the algorithm tries to�nd the edge (i; j) between distinct components with the minimum \reduced" cost �.We claim that the algorithm shown in Figure 1 behaves in exactly this manner.To see that the dual solution generated in steps 2 and 11 is feasible for (D), note�rst that initiallyPe2�(S) yS = 0 � ce for all e 2 E. We show by induction that thepacking constraints continue to hold. Notice that it can be shown by induction thatd(i) = PS:i2S yS for each vertex i; thus as long as vertices i and j are in di�erentcomponents, Pe2�(S) yS = d(i) + d(j) for edge e = (i; j). It follows that in a giveniteration yC can be increased by � for each active component C without violating thepacking constraints as long asd(i) + d(j) + � � f(Cp) + � � f(Cq) � ce;for all e = (i; j) 2 E, i 2 Cp and j 2 Cq, Cp and Cq distinct. Thus the largestfeasible increase in � for a particular iteration is given by the formula in step 8. Oncethe endpoints i and j of an edge e = (i; j) are in the same component, the sum
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10Fig. 2. Snapshot of the algorithm.PS:e2�(S) yS does not increase, so that these packing constraints will continue tohold. Hence when the algorithm terminates, the dual solution y constructed by thealgorithm will be feasible for (D). By the preceding discussion, we also have thatce = PS:e2�(S) yS for each e 2 F . Note that the value LB computed in steps 3 and12 corresponds to the value of the dual solution y. As the value of the dual solutionis a lower bound on the optimal cost, LB provides a guarantee on the performanceof the algorithm for any speci�c instance. Furthermore, LB will also be used in theanalysis below to evaluate the worst-case performance guarantee of the algorithm.To complete our claim that the algorithm in Figure 1 behaves as described, weneed to show that the edges removed in the �nal step of the algorithmare not necessaryto meet the covering requirements; in other words, we need to show that F 0 is a feasiblesolution to (IP ). We do this below.Two snapshots of the algorithm for the proper function f(S) � jSj(mod 2) areshown in Figures 2 and 3. The two snapshots are one iteration apart. In both �gures,the cost of an edge is the Euclidean distance between its endpoints. The radius aroundeach vertex v represents the value d(v). Thick radii represent active components, thinradii inactive components. The region of the plane de�ned by these radii are theso-called moats of J�unger and Pulleyblank [20, 21]. The set of edges F at the end ofthe main loop is shown in Figure 4, and the set of edges F 0 output by the algorithmis shown in Figure 5.We can now see that the algorithm is a generalization of some classical graph al-gorithms. The shortest s-t path problem corresponds to the proper function f(S) = 1if and only if jS \ fs; tgj = 1. Our algorithm adds minimum-cost edges extendingpaths from both s and t in a manner reminiscent of Nicholson's bidirectional shortest
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10Fig. 3. Snapshot of the algorithm one iteration later.
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10Fig. 4. Set of edges after the main loop terminates.



A GENERAL APPROXIMATION TECHNIQUE 7
1

2

3 4

5

6

7

8

9

10Fig. 5. Final set of edges.path algorithm [28]. The main loop terminates when s and t are in the same compo-nent, and the �nal step of the algorithm removes all edges not on the path from s tot. Thus for this problem, whenever yS > 0, jF 0 \ �(S)j = 1, and whenever e 2 F 0,PS:e2�(S) yS = ce. In other words, the primal and dual feasible solutions F 0 and yobey the complementary slackness conditions; hence the solutions are optimal. Noticethat the edge removal step is necessary to obtain a good performance guarantee in thiscase; this statement is also true in general. The minimum-cost spanning tree problemcorresponds to a proper function f(S) = 1 for ; � S � V . For this function f , ouralgorithm reduces to Kruskal's algorithm: all components will always be active, andthus in each iteration the minimum-cost edge joining two components will be selected.Since Kruskal's algorithm produces the optimal minimum-cost spanning tree, our al-gorithm will also. The solutions produced do not obey the complementary slacknessconditions for (LP ), but induce optimal solutions for a stronger linear programmingformulation of the spanning tree problem introduced by J�unger and Pulleyblank [20].2.2. Analysis. We now need to show that the algorithm has the properties weclaim. We will begin by showing that the algorithm produces a feasible solution, andthen we will turn to proving that the solution is within a factor of (2 � 2jAj ) of theoptimal solution. We assume throughout the ensuing discussion that F is the set ofcandidate edges selected by the algorithm, F 0 is the forest output by the algorithm,and that x0 is the incidence vector of edges of F 0.Observation 2.1. If f(S) = 0 and f(B) = 0 for some B � S, then f(S�B) = 0.
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F´Fig. 6. Illustration of Lemma 2.2.Proof. By the symmetry property of f , f(V � S) = f(S) = 0. By disjointness,f((V � S) [B) = 0. By symmetry again, f(S �B) = f((V � S) [B) = 0.Lemma 2.2. For each connected component N of F 0, f(N ) = 0.Proof. By the construction of F 0, N � C for some component C of F . Now, lete1; : : : ; ek be edges of F such that ei 2 �(N ) (possibly k = 0). Let Ni and C � Nibe the two components created by removing ei from the edges of component C, withN � C � Ni (see Figure 6). Note that since ei 62 F 0, it must be the case thatf(Ni) = 0. Note also that the sets N;N1; N2; : : : ; Nk form a partition of C. So thenf(C �N ) = f([ki=1Ni) = 0 by disjointness. Because f(C) = 0, the observation aboveimplies that f(N ) = 0.Theorem 2.3. The incidence vector x0 is a feasible solution to (IP ).Proof. Suppose not, and assume that x0(�(S)) = 0 for some S such that f(S) = 1.Let N1; : : : ; Np be the components of F 0. In order for x0(�(S)) = 0, it must be thecase that for all i, either S \ Ni = ; or S \ Ni = Ni. Thus S = Ni1 [ : : :Nik forsome i1; : : : ; ik. By the lemma above, however, f(Ni) = 0 for all i, so f(S) = 0 bythe disjointness of f . This contradicts our assumption that f(S) = 1. Therefore, x0must be a feasible solution.Now we will show that the algorithm has the approximation properties that weclaim. For this purpose, we use the dual solution y implicitly constructed by thealgorithm. Let Z�LP be the cost of the optimal solution to (LP ), and let Z�IP be thecost of the optimal solution to (IP ). Obviously Z�LP � Z�IP . Because y is a feasibledual solution and yS > 0 only if f(S) = 1, it follows that LB = PS�V yS � Z�LP .We will now prove the following theorem.Theorem 2.4. The algorithm in Figure 1 produces a set of edges F 0 and a valueLB such thatXe2F 0 ce � �2� 2jAj�LB = �2� 2jAj� XS�V yS � �2� 2jAj�Z�LP � �2� 2jAj�Z�IP :Hence the algorithm is a (2� 2jAj)-approximation algorithm for the constrained forestproblem for any proper function f .Proof. Since we know that Pe2F 0 ce = Pe2F 0 PS:e2�(S) yS ; by exchanging thesummations we can rewritePe2F 0 ce asPS�V yS � jF 0\ �(S)j. To prove the theorem,we will show by induction on the main loop thatXS�V yS � jF 0 \ �(S)j � �2� 2jAj� XS�V yS :
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NFig. 7. Illustration of claim that all leaves of H are active.Certainly the inequality holds before the �rst iteration of the loop, since initially allyS = 0. Consider the set C of components at the beginning of some iteration of theloop. The left-hand side of the inequality will increase byXC2C:f(C)=1 � � jF 0 \ �(C)jin this iteration. If we can prove that this increase is bounded above by the increaseof the right-hand side, namely �2� 2jAj� � � jC1j;where C1 = fC 2 C : f(C) = 1g, then we will be done.The basic intuition behind the proof of this result is that the average degree ofa vertex in a forest of at most jAj vertices is at most 2 � 2jAj . To begin, constructa graph H by considering the active and inactive components of this iteration asvertices of H, and the edges e 2 �(C) \ F 0 for all C 2 C as the edges of H. Removeall isolated vertices in H that correspond to inactive components. Notice that H isa forest. We claim that no leaf in H corresponds to an inactive vertex. To see this,suppose otherwise, and let v be a leaf, Cv its associated inactive component, e theedge incident to v, and C the component of F which contains Cv. Let N and C �Nbe the two components formed by removing edge e from the edges of component C.Without loss of generality, say that Cv � N . The set N �Cv is partitioned by someof the components of the current iteration; call these C1; : : : ; Ck (see Figure 7). Sincevertex v is a leaf, no edge in F 0 connects Cv to any Ci. Thus by the construction ofF 0, f([Ci) = 0. Since f(Cv) = 0 also, it follows that f(N ) = 0. We know f(C) = 0,so by Observation 2.1 f(C � N ) = 0 as well, and thus by the construction of F 0,e 62 F 0, which is a contradiction.In the graph H, the degree dv of vertex v corresponding to component C must bej�(C) \ F 0j. Let Na be the set of vertices in H corresponding to active components,so that jNaj = jC1j. Let Ni be the set of vertices in H that correspond to inactivecomponents. Then Xv2Na dv = Xv2Na[Ni dv � Xv2Ni dv� 2(jNaj+ jNij � 1)� 2jNij= 2jNaj � 2:



10 M.X. GOEMANS AND D.P. WILLIAMSONThis inequality holds since H is a forest with at most jNaj+ jNij � 1 edges, and sinceeach vertex corresponding to an inactive component has degree at least 2. Multiplyingeach side by �, we obtain �Pv2Na dv � �(2jNaj � 2); or� XC2C1 jF 0 \ �(C)j � 2�(jC1j � 1) � �2� 2jAj� � � jC1j;since the number of active components is always no more than jAj. Hence the theoremis proven.2.3. Implementing the Algorithm. We now turn to the problem of imple-menting the algorithm e�ciently, and show how the algorithm can be made to runin O(min(n2 logn;mn�(m;n))) time. We neglect the time taken to compute f fromthis discussion, since we can compute f(C) in O(n) time for all problems of interest,and since we need to perform this computation at most O(n) times.Some of the implementation details are obvious. For example, we can maintainthe components C as a union-�nd structure of vertices. Then all merging will take atmost O(n�(n; n)) time overall, where � is the inverse Ackermann function [33]. Thetwo main algorithmic problems arise from selecting the edge that minimizes � at eachiteration, and from �nding the edges in F that belong in F 0. We consider each ofthese problems separately.As a naive approach to �nding the minimumedge, we can simply use O(m�(m;n))time each iteration to compute the reduced cost ce�d(i)�d(j)f(Cp)+f(Cq) for each edge e = (i; j)and to check whether or not the edge spans two di�erent components. Other loopoperations take O(n) time, resulting in a running time of O(mn�(m;n)) for the mainloop, since there are at most n� 1 iterations.By being somewhat more careful, we can reduce the time taken to �nd the min-imum edge in dense graphs to O(n logn). We need three ideas for this reduced timebound. The �rst idea is to introduce a notion of time into the algorithm. We let thetime T be 0 at the beginning of the algorithm, and increment it by the value of � eachtime through the main loop. The second idea is that instead of computing the reducedcost for an edge every time through the loop, we can maintain a priority queue ofedges, where the key of an edge is the time T at which its reduced cost is expectedto be zero. If we know whether the components of an edge's endpoints are active orinactive, and assume that the activity (or inactivity) will continue inde�nitely, it iseasy to compute this time T . Of course the activity of a component can change, butthis occurs only when it is merged with another component, and only edges incidentto the component are a�ected. In this case, we can recompute the key for each inci-dent edge, delete the element with the old key, and reinsert it with the new key. Thelast idea we need for the lower time bound is that we only need to maintain a singleedge between any two components. If there is more than one edge between any twocomponents, one of the edges will always have a reduced cost no greater than that ofthe others; hence the others may be removed from consideration altogether.Combining these ideas, we get the following algorithm for the main loop: �rst,we calculate the initial key value for each edge and insert each edge into the queue (intime O(m logn)). Each time through the loop, we �nd the minimum edge (i; j) byextracting the minimum element from the queue. If i 2 Cp and j 2 Cq, we delete alledges incident to Cp and Cq from the queue. For each component Cr di�erent fromCp and Cq we update the keys of the two edges from Cp to Cr and Cq to Cr, select



A GENERAL APPROXIMATION TECHNIQUE 11the one edge that has the minimum key value, then reinsert it into the queue. Sincethere are at most n components at any point in time, each iteration will have O(n)queue insertions and deletions, yielding a time bound of O(n logn) per iteration, orO(n2 logn) for the entire loop.To compute F 0 from F , we iterate through the components C of F . Given acomponent C, we root the tree at some vertex, put each leaf of the tree in a separatelist, and compute the f value for each of the leaves. An edge joining a vertex to itsparent is discarded if the f value for the set of vertices in its subtree is 0. Wheneverwe have computed the f value for all the children of some vertex v, we concatenatethe lists of all the children of v, add v to the list, and compute f of the vertices in thelist. We continue this process until we have examined every edge in the tree. Sincethere are O(n) edges, the process takes O(n) time.3. Applications of the Algorithm. In this section, we list several problemsto which the algorithm can be applied.The generalized Steiner tree problem. The generalized Steiner tree problemis the problem of �nding a minimum-cost forest that connects all vertices in Ti fori = 1; : : : ; p. The generalized Steiner tree problem is a proper constrained forestproblem with f(S) = 1 if there exists i 2 f1; : : : ; pg with ; 6= S \ Ti 6= Ti and 0otherwise. In this case, our approximation algorithm has a performance guarantee of2 � 2k , where k = ���Si=1;:::;p Ti���, and simulates an algorithm of Agrawal, Klein, andRavi [1]. Their algorithm was the �rst approximation algorithm for this problem.When p = 1, the problem reduces to the classical Steiner tree problem. For a longtime, the best approximation algorithm for this problem had a performance guaranteeof (2� 2k ) (for a survey, see Winter [39]) but, very recently, Zelikovsky [40] obtained an116 �approximation algorithm. An improved 169 -approximation algorithm based uponZelikovsky's ideas was later proposed by Berman and Ramaiyer [3].The performance guarantee of the algorithm can be shown to be tight for thisproblem. When p = 1, our algorithm reduces to the standard minimum-cost spanningtree heuristic (see Goemans and Bertsimas [15]). The heuristic can produce solutionswhich have cost 2� 2k times the optimal cost, as is shown in [15].The T -join problem. Given an even subset T of vertices, the T -join problemconsists of �nding a minimum-cost set of edges that has odd degree at vertices in Tand even degree at vertices not in T . Edmonds and Johnson [9] have shown that theT -join problem can be solved in polynomial time and can be formulated by the linearprogram (LP ) with the proper function f(S) = 1 if jS\T j is odd and 0 otherwise. Theedge-removing step of our algorithm guarantees that the solution produced is a T -join(see below). Using our algorithm, we obtain a (2� 2jT j )-approximation algorithm forthe T -join problem.The performance guarantee of the algorithm is tight for the T -join problem. Fig-ure 8 (a)-(c) shows an example on 8 vertices in which the minimum-cost V -join hascost 4+3�, while the solution produced by the algorithm has cost 7, yielding a worst-case ratio of approximately 74 = 2� 28 . Clearly the example can be extended to largernumbers of vertices and to an arbitrary set T .When jT j = 2, the T -join problem reduces to the shortest path problem. Ouralgorithm is exact in this case, since 2� 2jT j = 1.The minimum-weight perfect matching problem. The minimum-weight perfectmatching problem is the problem of �nding a minimum-cost set of non-adjacent edges



12 M.X. GOEMANS AND D.P. WILLIAMSONthat cover all vertices. This problem can be solved in polynomial time by the originalprimal-dual algorithm discovered by Edmonds [7]. The fastest strongly polynomialtime implementation of Edmonds' algorithm is due to Gabow [11]. Its running timeis O(n(m + n logn)). For integral costs bounded by C, the best weakly polynomialalgorithm runs in O(mpn�(m;n) logn lognC) time and is due to Gabow and Tarjan[13].These algorithms are fairly complicated and, in fact, too time-consuming forlarge instances that arise in practice. This motivated the search for faster approx-imation algorithms. Reingold and Tarjan [30] have shown that the greedy pro-cedure has a tight performance guarantee of 43n0:585 for general non-negative costfunctions. Supowit, Plaisted and Reingold [32] and Plaisted [29] have proposed anO(min(n2 logn;m log2 n)) time approximation algorithm for instances that obey thetriangle inequality. Their algorithm has a tight performance guarantee of 2 log3(1:5n).As shown by Gabow and Tarjan [13], an exact scaling algorithm for the maximum-weight matching problem can be used to obtain an (1 + 1=na)-approximation algo-rithm (a � 0) for the minimum-weight perfect matching problem. Moreover, if theoriginal exact algorithm runs in O(f(m;n) logC) time, the resulting approximationalgorithm runs in O(mpn logn+(1+a)f(m;n) logn). Vaidya [34] obtains a (3+2�)-approximation algorithm for minimum-weight perfect matching instances satisfyingthe triangle inequality. His algorithm runs in O(n2 log2:5 n log(1=�)) time.The algorithm for proper constrained forest problems can be used to approximatethe minimum-weight perfect matching problem when the edge costs obey the triangleinequality. We use the algorithm with the proper function f(S) being the parity ofjSj, i.e. f(S) = 1 if jSj is odd and 0 if jSj is even. This function is the same as theone used for the V -join problem. The algorithm returns a forest whose componentshave even size. More precisely, the forest is a V -join, and each vertex has odd degree:if a vertex has even degree, then, by a parity argument, some edge adjacent to thevertex could have been deleted so that the resulting components have even size. Thusthis edge would have been deleted in the �nal step of the algorithm. The forest canbe transformed into a perfect matching with no increase of cost by repeatedly takingtwo edges (u; v) and (v; w) from a vertex v of degree three or more and replacingthese edges with the edge (u;w). This procedure maintains the property that thevertices have odd degree. After O(n) iterations, each vertex has degree one. Sinceeach iteration takes O(1) time, the overall procedure gives an approximation algorithmfor weighted perfect matching which runs in O(n2 logn) time and has a performanceguarantee of 2� 2n .The performance guarantee of the algorithm is tight for this problem also, as inshown in Figure 8 (d).Point-to-point connection problems. In the point-to-point connection problem,we are given a set C = fc1; : : : ; cpg of sources and a set D = fd1; : : : ; dpg of desti-nations in a graph G = (V;E) and we need to �nd a minimum-cost set F of edgessuch that each source-destination pair is connected in F [26]. This problem arises inthe context of circuit switching and VLSI design. The �xed destination case in whichci is required to be connected to di is a special case of the generalized Steiner treeproblem where Ti = fci; dig. In the non-�xed destination case, each component ofthe forest F is only required to contain the same number of sources and destinations.This problem is NP-complete [26].The non-�xed case is a proper constrained forest problem with f(S) = 1 if jS \
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(a) (b)

(d)(c)Fig. 8. Worst-case example for V -join or matching. Graph (a) gives the instance: plain edgeshave cost 1, dotted edges have cost 1+�, and all other edges have cost 2. Graph (b) is the minimum-cost solution. Graph (c) is the set of edges found by the constrained forest algorithm, and graph (d)shows a bad (but possible) shortcutting of the edges to a matching.Cj 6= jS \Dj and 0 otherwise. For this problem, we obtain a (2� 1p )-approximationalgorithm.Exact partitioning problems. In the exact tree (cycle, path) partitioning problem,for a given k we must �nd a minimum-cost collection of vertex-disjoint trees (cycles,paths) of size k that cover all vertices. These problems and related NP-completeproblems arise in the design of communication networks, vehicle routing and clusteranalysis. These problems generalize the minimum-weight perfect matching problem(in which each component must have size exactly 2), the traveling salesman problem,the Hamiltonian path problem and the minimum-cost spanning tree problem.We can approximate the exact tree, cycle and path partitioning problems for in-stances that satisfy the triangle inequality. For this purpose, we consider the properconstrained forest problem with the function f(S) = 1 if S 6� 0 (mod k) and 0 other-wise. Our algorithm �nds a forest in which each component has a number of verticeswhich is a multiple of k, and such that the cost of the forest is within 2 � 2n of theoptimal such forest. Obviously the cost of the optimal such forest is a lower bound onthe optimal exact tree and path partitions. Given the forest, we duplicate each edgeand �nd a tour of each component by shortcutting the resulting Eulerian graph oneach component. If we remove every kth edge of the tour, starting at some edge, thetour is partitioned into paths of k nodes each. Some choice of edges to be removed(i.e., some choice of starting edge) accounts for at least 1k of the cost of the tour, andso we remove these edges. Thus this algorithm is a �4(1� 1k )(1� 1n)�-approximationalgorithm for the exact tree and path partitioning problems.To produce a solution for the exact cycle partitioning problem, we add the edgejoining the endpoints of each path; given the triangle inequality, this at most doubles



14 M.X. GOEMANS AND D.P. WILLIAMSONthe cost of the solution produced. We claim, however, that the algorithm is still a�4(1� 1k )(1� 1n )�-approximation algorithm for the cycle problem. To see that thisclaim is true, note that the following linear program is a linear programming relaxationof the exact cycle partitioning program, given the function f above:Min Xe2E cexesubject to: x(�(S)) � 2f(S) S � Vxe � 0 e 2 E:Its dual is Max 2 XS�V f(S) � ySsubject to: XS:e2�(S) yS � ce e 2 E;yS � 0 ; 6= S � V:We know the algorithm produces a solution y that is feasible for this dual such thatPe2F 0 ce � (2� 2n)P yS . The argument above shows how to take the set of edges F 0and produce a set of edges T such that T is a solution to the exact cycle partitioningproblem, and Pe2T ce � 4(1� 1k )Pe2F 0 ce, so thatXe2T ce � 8�1� 1k��1� 1n�X yS :Since 2PyS is the dual objective function, 2PyS is a lower bound on the cost ofthe optimal exact cycle partition, Z�C . ThusXe2T ce � 4�1� 1k��1� 1n�Z�C :The proper functions corresponding to the non-�xed point-to-point connectionproblem, the T -join problem and the exact partitioning problems are all of the formf(S) = 1 if Pi2S ai 6� 0 (mod p) and 0 otherwise, for some integers ai, i 2 V , andsome integer p.4. Extensions. The main algorithm can be extended in a number of ways tohandle non-proper functions f and even other somewhat di�erent integer program-ming problems. We describe these extensions in this section.4.1. More general functions f . We can weaken the conditions for a properfunction f and obtain a modi�ed (2� 1n)-approximation algorithm for the constrainedforest problem. A number of new problems can be approximated under these weakerconditions; these problems are listed below. In order to solve these problems, the mainalgorithm must be modi�ed to handle functions f that are not symmetric and cannotbe made symmetric without violating disjointness. The central modi�cations thatmust be made involve maintaining a root vertex for each component, in order to cope



A GENERAL APPROXIMATION TECHNIQUE 15with the asymmetry of f , and maintaining sets of vertices that must be connected inthe �nal solution.We omit discussion of the extended algorithm here because a recent algorithm ofWilliamson, Goemans, Mihail, and Vazirani [38] simpli�es and subsumes our extendedalgorithm. Williamson et al. have shown how some of the results of this paper canbe extended to uncrossable functions h. A function h : 2V ! f0; 1g is uncrossable ifwhenever h(A) = h(B) = 1 then either h(A � B) = h(B � A) = 1, or h(A [ B) =h(A \ B) = 1. Williamson et al. show that an algorithm somewhat similar to ouralgorithm �nds solutions to (IP ) for uncrossable functions that are within a factor of2 � 1n of optimal. The algorithm can be implemented in polynomial time for manyuncrossable functions, including those for which the function has the property thatif h(A) = 1 then h(B) = 1 for ; 6= B � A. The problems listed below �t in thiscategory. See Williamson [36] and Goemans and Williamson [17] for a discussion ofhow the techniques of Williamson et al. apply to these problems.Lower capacitated partitioning problems. The lower capacitated partitioningproblems are like the exact partitioning problems except that each component isrequired to have at least k vertices rather than exactly k vertices. The lower ca-pacitated cycle partitioning problem is a variant of the 2-matching problem. Moreprecisely, the cases k = 2, 3 and 4 correspond to integer, binary and triangle-freebinary 2-matchings respectively. The lower capacitated cycle partitioning problem isNP-complete for k � 5 (Papadimitriou [6] for k � 6 and Vornberger [35] for k = 5),polynomially solvable for k = 2 or 3 (Edmonds and Johnson [8]), while its complexityfor k = 4 is open. Imielinska, Kalantari, and Khachiyan [18] have shown that thelower capacitated tree partitioning problem is NP-complete for k � 4.The lower capacitated tree partitioning problem is the constrained forest prob-lem corresponding to f(S) = 1 if 0 < jSj < k and 0 otherwise. The extendedalgorithm gives a (2 � 1n )-approximation algorithm for this problem for any k. Fur-thermore, assuming the triangle inequality, this algorithm can be turned into a (2� 1n )-approximation algorithm for the lower capacitated cycle partitioning problem and a(4� 2n)-approximation algorithm for the lower capacitated path partitioning problem.Location-design and location-routing problems. Many network design or ve-hicle routing problems require two levels of decisions. In the �rst level, the locationof special vertices, such as concentrators or switches in the design of communicationnetworks, or depots in the routing of vehicles, need to be decided. There is typicallya set of possible locations and a �xed cost is associated with each of them. Once thelocations of the depots are decided, the second level deals with the design or routingper se. These problems are called location-design or location-routing problems [24].Several of these problems can be approximated using the extended algorithm. Forexample, we can provide a (2� 1n )-approximation algorithm for the problem in whichwe need to select depots among a subset D of vertices of a graph G = (V;E) andcover all vertices in V with a set of cycles, each containing a selected depot [25, 24].The goal is to minimize the sum of the �xed costs of opening our depots and the sumof the costs of the edges of our cycles. The algorithm can also be extended to the casein which every cycle is required to have at least k vertices.4.2. Non-negative functions f . Using techniques from Goemans and Bertsi-mas [15], we can provide approximation algorithms for many functions f : 2V ! N,assuming that we can have multiple copies of an edge in the solution. Supposef satis�es f(S) = f(V � S) for all S � V , and, if A and B are disjoint, then



16 M.X. GOEMANS AND D.P. WILLIAMSONmaxff(A); f(B)g � f(A [ B). Suppose also that f assumes at most p di�erentnon-zero values, �0 = 0 < �1 < � � � < �p. Let (IP 0) denote the integer program(IP ) with the xe 2 f0; 1g constraint replaced by the constraint xe 2 N. Then wecan show that there is an approximation algorithm for (IP 0) that comes within afactor of 2Ppk=1 �k��k�1�k of optimal. Notice that at worst the values of f will be0; 1; 2; 3; : : :; fmax = maxS f(S), so that the performance guarantee will be at most2Pfmaxk=1 1k = O(log fmax). The performance guarantee will also be no worse than 2p.The algorithm for (IP 0) works by performing p iterations of our main algorithm. Initeration i, set g(S) = 1 if f(S) � �p+1�i, g(S) = 0 otherwise, and call the main algo-rithm with function g. By the properties of f , g will be a proper function for the mainalgorithm. When the algorithm returns F 0, we make (�p+1�i � �p�i) copies of eachedge, and add them to the set of edges to be output. The proof that constructing a setof edges in this way comes within a factor of 2Ppk=1 �k��k�1�k of optimal is essentiallythe same as the proof used by Goemans and Bertsimas. We can potentially reducethe number of calls to our main algorithm by using a \scaling" technique introducedby Agrawal et al. [1] which requires blog fmaxc + 1 iterations. In iteration i, we setg(S) = 1 if f(S) � 2blog fmaxc+1�i, g(S) = 0 otherwise, and call the main algorithmwith the function g. We make 2blog fmaxc+1�i copies of the edges in the resulting F 0,and add them to the set of edges to be output. Using the Goemans and Bertsimasproof, it can be shown that this procedure results in a (2blog fmaxc+2)-approximationalgorithm.One application of allowing fmax > 1 is the generalized Steiner network problemin which each pair of vertices i; j must be connected by rij edge-disjoint paths. Inthis case we want f(S) = maxi2S;j 62S rij For this particular problem, Agrawal et al.[1] showed how to reduce this general case to the 0-1 case.Williamson et al. [38] have recently shown how to approximate (IP ) for functionsof the type mentioned above when no edge replication is allowed.4.3. The Prize-Collecting Problems. The prize-collecting traveling salesmanproblem is a variation of the classical traveling salesman problem (TSP). In additionto the cost on the edges, we have also a penalty �i on each vertex i. The goal isto �nd a tour on a subset of the vertices that minimizes the sum of the cost of theedges in the tour and the vertices not in the tour. We consider the version in which aprespeci�ed root vertex r has to be in the tour; this is without loss of generality, sincewe can repeat the algorithm n times, setting each vertex to be the root. This versionof the prize-collecting TSP is a special case of a more general problem introducedby Balas [2]. The prize-collecting Steiner tree problem is de�ned analogously. Thestandard Steiner tree problem can be seen to be a special case of the prize-collectingSteiner tree problem in which non-terminals have a penalty of zero, while terminalshave a very large penalty (e.g., equal to the diameter of the graph).Bienstock, Goemans, Simchi-Levi and Williamson [4] developed the �rst approxi-mation algorithms for these problems. Their performance bounds are 5=2 for the TSPversion (assuming the triangle inequality) and 3 for the Steiner tree version. Theseapproximation algorithms are not very e�cient, however, since they are based uponthe solution of a linear programming problem.These problems do not �t in the framework of problems considered so far sincethey cannot be modelled by (IP ). However, the main algorithm can be modi�edto give a (2 � 1n�1)-approximation algorithm for both the prize-collecting TSP (un-der the triangle inequality) and the prize-collecting Steiner tree problem. Moreover,



A GENERAL APPROXIMATION TECHNIQUE 17these algorithms are purely combinatorial and do not require the solution of a linearprogramming problem as in [4]. We will focus our attention on the prize-collectingSteiner tree problem, and at the end of the section we will show how the algorithmfor the tree problem can be easily modi�ed to yield a prize-collecting TSP algorithm.4.3.1. The Prize-Collecting Steiner Tree. The prize-collecting Steiner treecan be formulated as the following integer program:Min Xe2E cexe + XT�V ;r 62T zT (Xi2T �i)subject to:(PC-IP ) x(�(S)) + XT�S zT � 1 S � V ; r 62 SXT�V ;r =2T zT � 1xe 2 f0; 1g e 2 EzT 2 f0; 1g T � V ; r 62 T:Intuitively, zT is set to 0 for all T except the set T of all vertices not spanned by the treeof selected edges. A linear programming relaxation (PC-LP ) of the integer programcan be created by replacing the integrality constraints with the constraints xe � 0and zT � 0 and dropping the constraintPT zT � 1 (in fact, including this constraintdoes not a�ect the optimal solution). The LP relaxation (PC-LP ) can be shown to beequivalent to the following, perhaps more natural, linear programming relaxation ofthe prize-collecting Steiner tree problem, which was used by the algorithmof Bienstocket al. [4]: Min Xe2E cexe +Xi6=r(1� si)�isubject to: x(�(S)) � si i 2 S; r =2 Sxe � 0 e 2 Esi � 0 i 2 V ; i 6= r:The dual of (PC-LP ) can be formulated as follows:Max XS:r 62S ySsubject to:(PC-D) XS:e2�(S) yS � ce e 2 EXS�T yS �Xi2T �i T � V ; r 62 TyS � 0 S � V ; r 62 S:



18 M.X. GOEMANS AND D.P. WILLIAMSONThe algorithm for the prize-collecting Steiner tree problem is shown in Figure9. The basic structure of this algorithm is similar to that of the main algorithm.The algorithm maintains a forest F of edges, which is initially empty. Hence eachvertex v is initially in its own connected component. All components except the rootr are considered active, and each vertex is initially unmarked. The algorithm loops,in each iteration doing one of two things. First, the algorithm may add an edgebetween two connected components of F . If the resulting component contains theroot r, it becomes inactive; otherwise it is active. Second, the algorithm may decideto \deactivate" a component. Intuitively, a component is deactivated if the algorithmdecides it is willing to pay the penalties for all vertices in the component. In this case,the algorithm labels each vertex in the component with the name of the component.The main loop terminates when all connected components of F are inactive. Sincein each iteration the sum of the number of components and the number of activecomponents decreases, the loop terminates after at most 2n� 1 iterations. The �nalstep of the algorithm removes as many edges from F as possible while maintainingtwo properties. First, all unmarked vertices must be connected to the root, since thesevertices were never in any deactivated component and the algorithm was never willingto pay the penalty for these vertices. Second, if a vertex with label C is connected tothe root, then so is every vertex with label C 0 � C.As with the main algorithm, the choices of the algorithm are motivated by thegreedy construction of an implicit solution to the dual (PC-D). Initially all dualvariables are set to zero. In each iteration of the main loop, the algorithm increases yCfor all active C by a value � which is as large as possible without violating the two typesof packing constraints of (PC-D): PS:e2�(S) yS � ce for all e 2 E, and PS�T yS �Pi2T �i for all T � V . Increasing the yC for active C by � will cause one of thepacking constraints to become tight. If one of the �rst kind of constraints becomestight, then it becomes tight for some edge e between two connected components of thecurrent forest F ; hence we add this edge to F . If one of the second kind of constraintsbecomes tight, then it becomes tight for some active component C. In this case, thealgorithm chooses to deactivate C.We claim that the algorithm shown in Figure 9 behaves exactly in the mannerdescribed above. The claim follows straightforwardly from the algorithm's construc-tion of y and F , and from the fact that d(i) = PS:i2S yS and w(C) = PS�C yS atthe beginning of each iteration. Note that the algorithm keeps track of the activityof component C by setting �(C) = 1 if and only if component C is active.Let Z�PCLP and Z�PCIP be the optimal solutions to (PC-LP ) and (PC-IP ) re-spectively. Obviously PS�V yS � Z�PCLP � Z�PCIP . In a manner analogous to thatof Theorem 2.4, we will show the following theorem.Theorem 4.1. The algorithm in Figure 9 produces a set of edges F 0 and a setof vertices X whose incidence vectors are feasible for (PC-IP ), and such thatXe2F 0 ce +Xi2X �i � (2� 1n� 1) XS�V yS � (2� 1n� 1)Z�PCIP :Hence the algorithm is a (2 � 1n�1)-approximation algorithm for the prize-collectingSteiner tree problem.Proof. It is not hard to see that the algorithm produces a feasible solution to(PC-IP ), since F 0 has no non-trivial component not containing r and the componentcontaining r is a tree.



A GENERAL APPROXIMATION TECHNIQUE 19Input: An undirected graph G = (V; E), edge costs cij � 0, vertex penalties �i � 0, and aroot vertex rOutput: A tree F 0, which includes vertex r, and a set of unspanned vertices X1 F  ;2 Comment: Implicitly set yS  0 for all S � V3 C  ffvg : v 2 V g4 For each v 2 V5 Unmark v6 d(v) 07 w(fvg) 08 If v = r then �(fvg) 0 else �(fvg) 19 While 9C 2 C : �(C) = 110 Find edge e = (i; j) with i 2 Cp 2 C, j 2 Cq 2 C, Cp 6= Cq that minimizes�1 = ce�d(i)�d(j)�(Cp)+�(Cq)11 Find ~C 2 C with �( ~C) = 1 that minimizes �2 =Pi2 ~C �i �w( ~C)12 � = min(�1; �2)13 w(C) w(C) + � � �(C) for all C 2 C14 Comment: Implicitly set yC  yC + � � �(C) for all C 2 C15 For all v 2 Cr 2 C16 d(v) d(v) + � � �(Cr)17 If � = �218 �( ~C) 019 Mark all unlabelled vertices of ~C with label ~C20 else21 F  F [ feg22 C  C [ fCi [Cjg � fCig � fCjg23 w(Cp [Cq) w(Cp) +w(Cq)24 If r 2 Cp [Cq then �(Cp [Cq) 0 else �(Cp [Cq) 125 F 0 is derived from F by removing as many edges as possible but so that the followingtwo properties hold: (1) every unlabelled vertex is connected to r; (2) if vertex vwith label C is connected to r, then so is every vertex with label C 0 � C.26 X is the set of all vertices not spanned by F 0.Fig. 9. The algorithm for the Prize-Collecting Steiner Tree Problem.By the construction of F 0, each vertex not spanned by F 0 (i.e., the vertices in X)lies in some component deactivated at some point during the algorithm. Furthermore,if the vertex was in some deactivated component C, then none of the vertices of C arespanned by F 0. Using these observations, plus the manner in which components areformed by the algorithm, we can partition the vertices of X into disjoint deactivatedcomponents C1; : : : ; Ck. These sets are the maximal labels of the vertices in X. Sinceeach Cj is a deactivated component, it follows that PS�Cj yS =Pi2Cj �i, and thusthat the inequality to be proven is implied by Pe2F 0 ce + PjPS�Cj yS � (2 �1n�1)PS�V yS . In addition, since ce =PS:e2�(S) yS for each e 2 F 0 by constructionof the algorithm, all we need to prove is thatXe2F 0 XS:e2�(S) yS +Xj XS�Cj yS � (2� 1n� 1) XS�V yS ;



20 M.X. GOEMANS AND D.P. WILLIAMSONor, rewriting terms as in Theorem 2.4,XS yS jF 0 \ �(S)j +Xj XS�Cj yS � (2� 1n� 1) XS�V yS :As in Theorem 2.4, this theorem can be proven by induction on the main loop.Pick any particular iteration, and let C be the set of active components of the iteration.Let H be the graph formed by considering active and inactive components as verticesand the edges e 2 �(C) \ F 0 for active C as the edges of H. Discard all isolatedinactive vertices. Let Na denote the set of active vertices in H, Ni the set of inactivevertices, Nd the set of active vertices corresponding to active sets contained in someCj, and dv the degree of a vertex v in H. Notice that Nd = fv 2 Na : dv = 0g. Inthis iteration, the increase in the left-hand side of the inequality is �(Pv2Na dv+ jNdj)while the increase in the right-hand side of the inequality is �(2� 1n�1)jNaj. Thus wewould like to prove that (Pv2Na dv + jNdj) � (2� 1n�1)jNaj. Note that the degree ofany vertex corresponding to an active set in some Cj is zero. Hence if we can showthat Pv2Na�Nd dv � (2� 1n�1)jNa � Ndj; then the proof will be complete.To do this, we show that all but one of the leaves of H must be active vertices.Suppose that v is an inactive leaf of H, adjacent to edge e, and let Cv be the inactivecomponent corresponding to v. Further suppose that Cv does not contain the root r.Since Cv is inactive and does not contain r, it must have been deactivated. Because Cvis deactivated, no vertex in Cv is unlabelled; furthermore, since v is a leaf, no vertex inCv can lie on the path between the root and a vertex which must be connected to theroot. By the construction of F 0, then, e 62 F 0, which is a contradiction. Therefore,there can be at most one inactive leaf, which must correspond to the componentcontaining r.Then Xv2Na�Nd dv � Xv2(Na�Nd)[Ni dv � Xv2Ni dv� 2(j(Na � Nd) [Nij � 1)� (2jNij � 1)= 2jNa �Ndj � 1� (2� 1n � 1)jNa � Ndj:The inequality holds since all but one of the spanned inactive vertices has degree atleast two, and since the number of active components is always at most n� 1.The algorithm can be implemented in O(n2 logn) time, by using the same tech-niques as were given for the main algorithm. In this case, we must also keep track ofthe time at which we expect each component to deactivate, and put this time into thepriority queue. The only other di�erence from the main algorithm is the �nal stepin which edges are deleted. This step can be implemented in O(n2) time: �rst weperform a depth-�rst search from every unmarked vertex to the root, and \lock" allthe edges and vertices on this path. We then look at all the deactivated componentscorresponding to the labels of \locked" vertices. If one of these contains an unlockedvertex, we perform a depth-�rst search from the vertex to the root and lock all theedges and vertices on the path. We continue this process until each locked vertex isin deactivated components that only contain locked vertices. We then eliminate allunlocked edges. This procedure requires at most n O(n) time depth-�rst searches.



A GENERAL APPROXIMATION TECHNIQUE 21Input: An undirected graph G = (V; E), edge costs cij � 0, vertex penalties �i � 0, and aroot vertex rOutput: A tour T 0, which includes vertex r, and a set of unspanned vertices X1 Apply the prize-collecting Steiner tree algorithm to the problem instance with graphG, edge costs c, root r, and penalties �0i = �i=2.2 Duplicate the edges F 0 of the Steiner tree returned to form an Eulerian graph T .3 Shortcut T to form a tour T 0. Let X be all vertices not in the tour.Fig. 10. The algorithm for the Prize-Collecting Traveling Salesman Problem.4.3.2. The Prize-Collecting Traveling Salesman Problem. In order tosolve the prize-collecting TSP given that edge costs obey the triangle inequality, weuse the algorithm shown in Figure 10. Note that the algorithm uses the above algo-rithm for the prize-collecting Steiner tree problem with penalties �0i = �i=2. To seethat the algorithm is a (2� 1n�1)-approximation algorithm, we need to consider thefollowing linear programming relaxation of the problem:Min Xe2E cexe + XT�V ;r 62T zT (Xi2T �i)subject to: x(�(S)) + 2XT�S zT � 2 r 62 Sxe � 0 e 2 EzT � 0 T � V ; r 62 T:This linear program is a relaxation of an integer program similar to (PC-IP ) in whichzT = 1 for the set of vertices T not visited by the tour, and zT = 0 otherwise. Werelax the constraint that each vertex in the tour be visited twice to the constraint thateach vertex be visited at least twice. The dual of the linear programming relaxationis Max 2 XS:r 62S ySsubject to: XS:e2�(S) yS � ce e 2 E2XS�T yS �Xi2T �i T � V; r 62 TyS � 0 S � V; r 62 S:Notice that this dual is very similar to (PC-D). The dual solution generated bythe algorithm for the prize-collecting Steiner tree for penalties �0 will be feasiblefor the dual program above with penalties �. By duality, 2PS�V yS � Z�PCTSP ,where Z�PCTSP is the cost of the optimal solution to the prize-collecting TSP. Given asolution F 0 and X to the prize-collecting Steiner tree problem, the cost of our solutionto the prize-collecting TSP is at most 2Pe2F 0 ce+Pi2X �i = 2(Pe2F 0 ce+Pi2X �0i).



22 M.X. GOEMANS AND D.P. WILLIAMSONTheorem 4.1 shows that Pe2F 0 ce +Pi2X �0i � (2� 1n�1)PS�V yS , so that2(Xe2F 0 ce +Xi2X �0i) � 2(2� 1n� 1) XS�V yS � (2� 1n� 1)Z�PCTSP :Thus the cost of the solution found by the algorithm is within (2� 1n�1) of optimal.5. Concluding Remarks. The approximation techniques described in the pre-vious sections have been applied to a number of related problems since the appear-ance of a preliminary version of this paper [16]. Saran, Vazirani, and Young [31]showed how to use our techniques to derive an approximation algorithm for theminimum-cost 2-edge-connected graph problem. Their algorithm has a performanceguarantee of 3, equal to the performance guarantee of an earlier algorithm of Fred-erickson and Ja'Ja' [10] for the same problem. Klein and Ravi [22] demonstrateda 3-approximation algorithm for solving (IP ) for proper functions f : 2V ! f0; 2g.Building on some ideas of Ravi and Klein, Williamson, Goemans, Mihail, and Vazirani[38] devised an approximation algorithm to solve (IP ) for general proper functionsf : 2V ! N in which the disjointness condition is replaced by the more general con-dition f(A [B) � max(f(A); f(B)) for disjoint A;B. The performance guarantee ofthe algorithm is at most 2k, where k = maxS f(S), but can be lower depending on thevalues taken on by f . The algorithm depends on showing that the techniques of thispaper can be extended to approximate uncrossable functions, as de�ned in Section4. Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [14] have shownhow to improve the performance guarantee of this algorithm to 2(1 + 12 + � � �+ 1k ).Gabow, Goemans, and Williamson [12] have shown how to e�ciently implement thealgorithm of Williamson et al. A consequence of the implementation of Gabow etal. is a O(n2 + npm log logn) implementation for our main algorithm. Finally, wehave implemented the 2-approximation algorithm for Euclidean matching problems[37]. The performance of the algorithm in this case seems to be much better thanthe theoretical bounds given here: on 1,400 random and structured instances of upto 131,072 vertices, the algorithm was never more than 4% away from optimal.Acknowledgements. The authors would like to thank David Shmoys for exten-sive comments on a draft of this paper.REFERENCES[1] A. Agrawal, P. Klein, and R. Ravi, When trees collide: An approximation algorithm forthe generalized Steiner problem on networks, in Proceedings of the 23rd Annual ACMSymposium on Theory of Computing, 1991, pp. 134{144. To appear in SIAM J. Comput.[2] E. Balas, The prize collecting traveling salesman problem, Networks, 19 (1989), pp. 621{636.[3] P. Berman and V. Ramaiyer, Improved approximations for the Steiner tree problem, in Pro-ceedings of the 3rd Annual ACM-SIAM Symposiumon Discrete Algorithms, 1992, pp. 325{334.[4] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson, A note on the prizecollecting traveling salesman problem, MathematicalProgramming, 59 (1993), pp. 413{420.[5] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of Operations Re-search, 4 (1979), pp. 233{235.[6] G. Cornu�ejols and W. Pulleyblank, A matching problem with side constraints, DiscreteMathematics, 29 (1980), pp. 135{159. Papadimitriou's result appears in this paper.[7] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, Journal of Research ofthe National Bureau of Standards B, 69B (1965), pp. 125{130.[8] J. Edmonds and E. Johnson, Matching: A well-solved class of integer linear programs, in Pro-ceedings of the Calgary International Conference on Combinatorial Structures and Their
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