
To appear in: Approximation Algorithms, D. Hochbaum, ed.C H A P T E R4THE PRIMAL-DUAL METHODFOR APPROXIMATIONALGORITHMS AND ITSAPPLICATION TO NETWORKDESIGN PROBLEMSMichel X. Goemans David P. WilliamsonDedicated to the memory of Albert W. TuckerThe primal-dual method is a standard tool in the designof algorithms for combinatorial optimization problems. Thischapter shows how the primal-dual method can be modi�edto provide good approximation algorithms for a wide variety ofNP-hard problems. We concentrate on results from recent re-search applying the primal-dual method to problems in networkdesign.INTRODUCTION4.1In the last four decades, combinatorial optimization has been strongly in
uencedby linear programming. With the mathematical and algorithmic understandingof linear programs came a whole host of ideas and tools that were then applied tocombinatorial optimization. Many of these ideas and tools are still in use today,1



2 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONand form the bedrock of our understanding of combinatorial optimization.One of these tools is the primal-dual method. It was proposed by Dantzig,Ford, and Fulkerson [DFF56] as another means of solving linear programs. Ironi-cally, their inspiration came from combinatorial optimization. In the early 1930s,Egerv�ary [Ege31] proved a min-max relation for the assignment problem (or theminimum-cost bipartite perfect matching problem) by reducing it to a knownmin-max result for maximum cardinality matchings. This lead Kuhn to pro-pose his primal-dual \Hungarian Method" for solving the assignment problem[Kuh55], which then inspired Dantzig, Ford, and Fulkerson. Although the primal-dual method in its original form has not survived as an algorithm for linearprogramming, it has found widespread use as a means of devising algorithmsfor problems in combinatorial optimization. The main feature of the primal-dualmethod is that it allows a weighted optimization problem to be reduced to apurely combinatorial, unweighted problem. Most of the fundamental algorithmsin combinatorial optimization either use the method or can be understood interms of it, including Dijkstra's shortest path algorithm [Dij59], Ford and Fulk-erson's network 
ow algorithm [FF56], Edmonds' non-bipartite matching algo-rithm [Edm65] and, of course, Kuhn's assignment algorithm.The primal-dual method as described above has been used to solve problemsthat can be modelled as linear programs; the method simply leads to e�cientpolynomial-time algorithms for solving these problems. Since NP-hard problemscannot be modelled as polynomially-sized linear programs unless P = NP, theprimal-dual method does not generalize straightforwardly to generate algorithmsfor the NP-hard optimization problems that are the interest of this book. Nev-ertheless, with modi�cations the primal-dual method leads to approximationalgorithms for a wide variety of NP-hard problems. In this chapter we will ex-plain the current state of knowledge about how the primal-dual method can beused to devise approximation algorithms.One of the bene�ts of the primal-dualmethod is that it leads to a very generalmethodology for the design of approximation algorithms for NP-hard problems.Until quite recently, whenever one wanted to design an approximation algorithm,one usually had to tailor-make an algorithm using the particular structure of theproblem at hand. However, in the past few years, several general methods fordesigning approximation algorithms have arisen. The primal-dual method is oneof these, and we will see in this chapter that it leads to approximation algorithmsfor a large number of problems.Linear programminghas long been used to design and analyze approximationalgorithms for NP-hard problems, particularly for problems which can be nat-urally formulated as integer programs. Several approximation algorithms fromthe seventies use linear programming (LP) in their analysis (see [Chv79, Lov75,CFN77], for example). A 1980 paper by Wolsey [Wol80] highlighted the use oflinear programming, and showed that several previously known approximationalgorithms could be analyzed using linear programming, including Christo�des'algorithm for the TSP [Chr76] and Johnson et al.'s bin packing algorithms[JDU+74]. In the eighties, several papers appeared which used the optimumsolution of a linear program to derive an integer solution; the most commontechnique given rounds fractional solutions to integer solutions. The reader can



4.1 INTRODUCTION 3�nd examples of deterministic rounding and other techniques (as in [Hoc82]) inChapter 3 of this book, while randomized rounding [RT87] is presented in Chap-ter 11. In the primal-dual method for approximation algorithms, an approximatesolution to the problem and a feasible solution to the dual of an LP relaxationare constructed simultaneously; the performance guarantee is proved by compar-ing the values of both solutions. Many of the approximation algorithms with anLP-based analysis can be viewed as primal-dual, but the �rst truly primal-dualapproximation algorithm in which the integer primal and the dual solutions areconstructed at the same time is the algorithm of Bar-Yehuda and Even [BYE81]for the vertex cover problem. In the past few years, the power of the primal-dualmethod has become apparent through a sequence of papers developing this tech-nique for network design problems [AKR95, GW95a, SVY92, KR93, WGMV95,GGW93, AG94, GGP+94, GW94a, RW95]. This line of research started with apaper by Agrawal, Klein, and Ravi [AKR95], who introduced a powerful modi�-cation of the basic method. Our survey will focus mostly on these problems andresults.In basic versions of network design problems we are given a graph G= (V;E)(undirected or directed) and a cost ce for each edge e 2E (or for each arc in thedirected case), and we would like to �nd a minimum-cost subset E0 of the edges Ethat meets some design criteria. For example, we may wish to �nd the minimum-cost set of arcs in a directed graph such that every vertex can reach every othervertex; that is, we wish to �nd the minimum-cost strongly connected subgraph.Network design problems arise frommany sources, including the design of varioustransportation systems (such as highways and mass-transit systems), as well astelephone and computer networks. We direct the reader to the book edited byBall et al. [BMMN94] for a broad overview of network design problems, models,and algorithms. For the most part, our survey will concentrate on network designproblems on undirected graphs G= (V;E) with nonnegative edge costs ce.We will present the primal-dual method as developed for network designproblems in a somewhat di�erent fashion than in the original references. Weisolate the essential ideas or design rules present in all these approximation re-sults and develop generic primal-dual algorithms together with generic proofsof their performance guarantees. Once this is in place, it becomes quite sim-ple to apply these algorithms and proofs to a variety of problems, such asthe vertex cover problem [BYE81], the edge covering problem [GW94a], theminimum-weight perfect matching problem [GW95a], the survivable network de-sign problem [AKR95, WGMV95], the prize-collecting traveling salesman prob-lem [GW95a], and the minimummulticut problem in trees [GVY93b]. We showthat each of these design rules is implicit in several long-known primal-dual algo-rithms that solve network design problems exactly, namely Dijkstra's shortest s-tpath algorithm [Dij59], Edmonds' minimum-cost branching algorithm [Edm67],and Kruskal's minimumspanning tree algorithm [Kru56]. The generic algorithmsreduce to these exact algorithms for these problems.The survey is structured as follows. In the next section, we review the clas-sical primal-dual method for solving linear programs and optimization problemsthat can be modelled as linear programs. In Section 4.3, we gradually developa primal-dual method for the design of approximation algorithm by modifying



4 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONthe classical method and introducing a sequence of design rules. This yields ourgeneric primal-dual algorithm and generic theorems for proving good perfor-mance guarantees of the algorithm. We then apply the algorithm and theoremsto a number network design problems in following sections. The general model ofnetwork design problems that we consider is given in Section 4.4. We introducea number of network design problems in Sections 4.5 through 4.7, and show thatthe generic algorithm yields near optimal results. In Section 4.8 we show thatthe primal-dual method can even be applied to other problems that do not �t inour model, and we conclude in Section 4.9.THE CLASSICAL PRIMAL-DUAL METHOD4.2Before we begin to outline the primal-dualmethod for approximation algorithms,we �rst review the classical primal-dualmethod as applied to linear programs andpolynomial-time solvable optimization problems. We refer the reader unfamiliarwith the basic theorems and terminology of linear programming to introductionsin Chv�atal [Chv83] or Strang [Str88, Ch. 8]. For a more detailed description of theprimal-dual method for polynomial-time combinatorial optimization problems,see Papadimitriou and Steiglitz [PS82].Consider the linear programMin cTxsubject to: Ax� bx� 0and its dual Max bTysubject to: AT y � cy � 0;where A 2Qm�n, c;x 2Qn, b;y 2Qm, and T denotes the transpose. For easeof presentation we assume that c � 0. In the primal-dual method of Dantzig,Ford, and Fulkerson, we assume that we have a feasible solution y to the dual;initially we can set y = 0. In the primal-dual method, either we will be able to�nd a primal solution x that obeys the complementary slackness conditions withrespect to y, thus proving that both x and y are optimal, or we will be able to�nd a new feasible dual solution with a greater objective function value.First consider what it means for x to be complementary slack to y. Let Aidenote the ith row of A and Aj the jth column of A (written as a row vectorto avoid the use of transpose). For the linear program and dual given above,



4.2 THE CLASSICAL PRIMAL-DUAL METHOD 5there are two types of complementary slackness conditions. First, there are pri-mal complementary slackness conditions, corresponding to the primal variables,namely xj > 0)Ajy = cj:Let J = fjjAjy = cjg. Second, there are dual complementary slackness condi-tions, corresponding to the dual variables, namelyyi > 0)Aix= bi:Let I = fijyi = 0g:Given a feasible dual solution y we can state the problem of �nding a pri-mal feasible x that obeys the complementary slackness conditions as anotheroptimization problem: �nd a solution x which minimizes the \violation" of theprimal constraints and of the complementary slackness conditions. The notion ofviolation can be formalized in several ways leading to di�erent restricted primalproblems. For example, the following restricted linear program performs therequired role:zINF = Min Xi=2I si+Xj =2J xjsubject to: Aix� bi i 2 IAix� si = bi i =2 Ix� 0s � 0:(To ensure feasibility of the restricted primal, we are implicitly assuming theexistence of an x � 0 satisfying Ax � b.) If this linear program has a solution(x;s) such that the objective function value zINF is 0 then we will have founda primal solution x that obeys the complementary slackness conditions for ourdual solution y. Thus x and y are optimal primal and dual solutions, respectively.However, suppose that the optimal solution to the restricted primal has zINF > 0.Consider now the dual of the restricted primal:Max bTy0subject to: Ajy0 � 0 j 2 JAjy0 � 1 j =2 Jy0i � �1 i =2 Iy0i � 0 i 2 I:Since the optimal solution to its primal has value greater than 0, we know thatthis program has a solution y0 such that bTy0 > 0. We will now show that wecan �nd an � > 0 such that y00 = y+ �y0 is a feasible dual solution. Thus if wecannot �nd an x that obeys the complementary slackness conditions, we can �nda feasible y00 such that bTy00 = bTy+�bTy0 > bTy; that is, we can �nd a new dual



6 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONsolution with greater objective function value. Observe that, by de�nition of I,y00 � 0 provided that ��mini=2I:y0i<0(�yi=y0i) while, by de�nition of J , ATy00 � cprovided that � � minj =2J :Ajy0>0 cj�AjyAjy0 . Choosing the smaller upper bound on�, we obtain a new dual feasible solution of greater value, and we can reapplythe procedure. Whenever no primal feasible solution obeys the complementaryslackness conditions with y, the above restricted primal outputs the least infeasi-ble solution, and this can be used to trace the progress of the algorithm towards�nding a primal feasible solution.Since the method outlined above reduces the solution of a linear program tothe solution of a series of linear programs, it does not seem that we have mademuch progress. Notice, however, that the vector c has disappeared in the re-stricted primal and its dual. In network design problems, this vector correspondsto the edge-costs. The classical primal-dual method thus reduces weighted prob-lems to their unweighted counterparts, which are often much easier to solve.Furthermore, for combinatorial optimization problems (such as network designproblems), these unweighted problems can usually be solved combinatorially,rather than with linear programming. That is, we can use combinatorial algo-rithms to �nd an x that obeys the complementary slackness conditions, or failingthat, to �nd a new feasible dual with greater dual objective value. In this way,the method leads to e�cient algorithms for these optimization problems.As an example, we quickly sketch the primal-dual method as it is applies tothe assignment problem, also known as the minimum-weight perfect matchingproblem in bipartite graphs. Suppose we have a bipartite graph G = (A;B;E),with jAj= jBj= n, and each edge e= (a;b) has a 2A, b 2B. We assume that aperfect matching exists in E. Let ce� 0 denote the cost of edge e; throughout thissection we will use ce and cab interchangeably for an edge e = (a;b). We wouldlike to �nd the minimum-cost set of edges such that each vertex is adjacentto exactly one edge. This problem can be formulated as the following integerprogram: Min Xe2E cexesubject to: Xb:(a;b)2Exab = 1 a 2AXa:(a;b)2Exab = 1 b 2Bxe 2 f0;1g e 2E:It is well-known that the LP relaxation of this integer program has integer solu-tions as extreme points (Birkho� [Bir46], von Neumann [vN53]), so we can dropthe integrality constraints and replace them with xe � 0. The dual of this LPrelaxation is Max Xa2Aua+Xb2Bvbsubject to:



4.2 THE CLASSICAL PRIMAL-DUAL METHOD 7ua+vb � cab (a;b) 2E:The primal-dual method speci�es that we start with a dual feasible solution,in this case u = v = 0. Given our current feasible dual solution, we look for aprimal feasible solution that obeys the complementary slackness conditions. Inthis case, we only have primal complementary slackness conditions. Let J =f(a;b)2E : ua+vb = cabg. Then the restricted primal isMin Xa2Asa+Xb2B sbsubject to: Xb:(a;b)2Exab+ sa = 1 a 2AXa:(a;b)2Exab+ sb = 1 b 2Bxe = 0 e 2 (E�J)xe � 0 e 2 Js � 0:As with the original primal, every basic feasible solution to the restricted primalhas every component equal to 0 or 1. This implies that solving the restrictedprimal reduces to the problem of �nding the largest cardinality matching inthe bipartite graph G0 = (A;B;J). E�cient algorithms are known for �ndingmaximum matchings in bipartite graphs. If we �nd a perfect matching in G0,then we have found an x that obeys the complementary slackness conditionswith respect to (u;v), and x and (u;v) must be optimal solutions. Initially, J islikely to be empty and, as a result, our initial primal infeasible solution is x= 0.One can show that the infeasibility of x gradually decreases during the course ofthe algorithm.The dual of the restricted primal isMax Xa2Au0a+Xb2Bv0bsubject to: u0a+ v0b � 0 (a;b) 2 Ju0a � 1 a 2Av0b � 1 b 2B:It can easily be seen that every basic solution (u0; v0) has all its components equalto �1. Given the maximum matching, there is a straightforward combinatorialalgorithm to �nd an optimum solution to this dual. If the optimum value of therestricted primal is not zero then an improved dual solution can be obtained byconsidering u00= u+�u0 and v00 = v+�v0, for �=min(a;b)2E�J (cab�ua�vb). It isnot hard to see that this choice of �maintains dual feasibility, and it can be shownthat only O(n2) dual updates are necessary before a perfect matching is found inG0. At this point we will have found a feasible x that obeys the complementaryslackness conditions with a feasible dual u;v, and thus these solutions must be



8 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONoptimal.EXERCISE 4.1 Show how to formulate a restricted primal by using only onenew variable. Make sure that your restricted primal is always feasible.THE PRIMAL-DUAL METHOD FOR APPROXIMATIONALGORITHMS4.3Most combinatorial optimization problems have natural integer programmingformulations. However, unlike the case of the assignment problem, the LP re-laxations typically have extreme points which do not correspond to solutionsof the combinatorial optimization problem. Therefore, we cannot use the clas-sical primal-dual method to �nd an optimum integer solution. In this section,however, we will show that a suitable modi�cation of the method is very usefulfor �nding approximate integer solutions. In addition, we will show a sequenceof design rules that leads to good approximation algorithms for network designproblems.The central modi�cation made to the primal-dual method is to relax thecomplementary slackness conditions. In the classical setting described in theprevious section, we imposed both primal and dual complementary slacknessconditions, and we used the dual of the restricted primal problem to �nd adirection to improve the dual solution if the complementary conditions were notsatis�ed. For the design of approximation algorithms, we will impose the primalcomplementary slackness conditions, but relax the dual complementary slacknessconditions. Furthermore, given these conditions, if the current primal solution isnot feasible, we will be able to increase the value of the dual.To illustrate this modi�cation of the method, we will examine a speci�c com-binatorial optimization problem, the hitting set problem. The hitting set problemis de�ned as follows: Given subsets T1; : : :;Tp of a ground set E and given a non-negative cost ce for every element e 2 E, �nd a minimum-cost subset A � Esuch that A\Ti 6= ; for every i= 1; : : :; p (i.e. A \hits" every Ti). The problem isequivalent to the more well-known set cover problem in which the goal is to coverthe entire ground set with the minimum-cost collection of sets (see Chapter 3).As we proceed to construct piece by piece a powerful version of the primal-dual method for approximation algorithms, we will along the way \rediscover"many classical (exact or approximation) algorithms for problems that are spe-cial cases of the hitting set problem. From these classical algorithms, we willinfer design rules for approximation algorithms which we will later show lead togood approximation algorithms for other problems. The particular special casesof the hitting set problem we study are as follows. The undirected s� t shortestpath problem with nonnegative lengths can be formulated as a hitting set prob-lem by noticing that any s� t path must intersect every s� t cut �(S), where



4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 9�(S) = fe = (i; j) 2 E : i 2 S;j =2 Sg and s 2 S and t =2 S. Thus, we can let Ebe the edge set of the undirected graph G= (V;E), ce be the length of the edgee, and T1; : : :;Tp be the collection of all s� t cuts, i.e. Ti = �(Si) where Si runsover all sets containing s but not t. Observe that the feasible solutions consist ofsubgraphs in which s and t are connected; only minimal solutions (i.e. solutionsfor which no edge can be removed without destroying feasibility) will correspondto s� t paths. The directed s� t path problem can be similarly formulated. Theminimum spanning tree problem is also a special case of the hitting set problem;here we would like to cover all cuts �(S) with no restriction on S. The vertexcover problem (see Chapter 3) is the problem of �nding a minimum (cardinalityor cost) set of vertices in an undirected graph such that every edge has at leastone endpoint in the set. The vertex cover is a hitting set problem in which theground set E is now the set of vertices and Ti corresponds to the endpoints ofedge i. In the minimum-cost arborescence problem, we are given a directed graphG= (V;E) with nonnegative arc costs and a special root vertex r and we wouldlike to �nd a spanning tree directed out of r of minimumcost. Here the sets to hitare all r-directed cuts, i.e. sets of arcs of the form ��(S) = f(i; j)2E : i =2S;j 2Sgwhere S � V �frg. All these special cases, except for the vertex cover problem,are known to be polynomially solvable. Dijkstra's algorithm [Dij59] solves theshortest path problem, Edmonds' algorithm [Edm67] solves the minimum-costarborescence problem, while Kruskal's greedy algorithm [Kru56] solves the mini-mum spanning tree problem. For many special cases (again excluding the vertexcover problem), the number of sets to hit is exponential in the size of the instance;we will see shortly that this does not lead to any di�culties.The hitting set problem can be formulated as an integer program as follows:Min Xe2E cexesubject to: Xe2Tixe � 1 i = 1; : : :; pxe 2 f0;1g e 2E;where x represents the incidence (or characteristic) vector of the selected set A,i.e. xe = 1 if e2A and 0 otherwise. Its LP relaxation and the corresponding dualare the following:Min Xe2E cexesubject to: Xe2Tixe � 1 i = 1; : : :; pxe � 0 e 2E;and Max pXi=1 yi



10 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION1 y 02 A ;3 While 9k :A\Tk = ;4 Increase yk until 9e 2 Tk :Pi:e2Ti yi = ce5 A A[feg6 Output A (and y) FIGURE 4.1The basic primal-dual algorithm.subject to: Xi:e2Ti yi � ce e 2Eyi � 0 i= 1; : : :; p:For the incidence vector x of a set A and a dual feasible solution y, the primalcomplementary slackness conditions aree 2A) Xi:e2Ti yi = ce (4.1)while the dual complementary slackness conditions areyi > 0) jA\Tij= 1: (4.2)As we said earlier, the central modi�cation made to the primal-dual methodis to enforce the primal complementary slackness conditions and relax the dualconditions. Given a dual feasible solution y, consider the set A= fe :Pi:e2Ti yi =ceg. Clearly, if A is infeasible then no feasible set can satisfy the primal com-plementary slackness conditions (4.1) corresponding to the dual solution y. Asin the classical primal-dual method, if we cannot �nd a feasible primal solutiongiven the complementary slackness conditions, then there is a way to increasethe dual solution. Here, the infeasibility of A means that there exists k such thatA\Tk = ;. The set Tk is said to be violated. By increasing yk, the value of thedual solution will improve; the maximum value yk can take without violatingdual feasibility is yk = mine2Tk8<:ce� Xi6=k:e2Tiyi9=; : (4.3)Observe that yk > 0 since no element e in Tk is also in A. For this value ofyk, at least one element e (the argmin in (4.3)) will be added to A since nowPi:e2Ti yi = ce. We can repeat the procedure until A is a feasible primal solution.This basic version of the primal-dual method is formalized in Figure 4.1. Inthe description of the algorithm in the �gure, we are adding only one element e ata time to A, although other elements f could satisfyPi:f2Ti yi = cf . This meansthat in a later stage such an element f could be added while the correspondingincrease of yl for some Tl 3 f would be 0. This does not a�ect the algorithm.



4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 11The primal-dual method as described is also referred to as a dual-ascentalgorithm. See for example the work of Erlenkotter [Erl78] for the facility locationproblem, Wong [Won84] for the Steiner tree problem, Balakrishnan, Magnantiand Wong [BMW89] for the �xed-charge network design problem, or the recentPh.D. thesis of Raghavan [Rag94].The main question now is whether the simple primal-dual algorithm de-scribed in Figure 4.1 produces a solution of small cost. The cost of the solutionis c(A) =Pe2A ce and since e was added to A only if the corresponding dualconstraint was tight, we can rewrite the cost asPe2APi:e2Ti yi. By exchangingthe two summations, we get c(A) = pXi=1 jA\Tijyi:Since y is a dual feasible solution, its value Ppi=1yi is a lower bound on theoptimum value zOPT of the hitting set problem. If we can guarantee thatjA\Tij � � whenever yi > 0 (4.4)then this would immediately imply that c(A) � �zOPT , i.e. the algorithm is an�-approximation algorithm. In particular, if � can be guaranteed to be 1, thenthe solution given by the algorithm must certainly be optimal, and equation(4.4) together with primal feasibility imply the dual complementary slacknessconditions (4.2). Conditions (4.4) certainly hold if we choose � to be the largestcardinality of any set Ti: �=maxpi=1 jTij. This �-approximation algorithm for thegeneral hitting set problem was discovered by Bar-Yehuda and Even [BYE81];the analysis appeared previously in a paper of Hochbaum [Hoc82], who gavean �-approximation algorithm using an optimal dual solution. In the specialcase of the vertex cover problem, every Ti has cardinality two and therefore thealgorithm is a 2-approximation algorithm. We refer the reader to the Chapter 3for the history of these results, as well as additional results on the vertex coverproblem and the general set cover problem. The algorithm above is functionallyequivalent to the \dual feasible" algorithm of Chapter 3.Before re�ning the basic algorithm, we discuss some implementation and ef-�ciency issues. First, since A has at most jEj elements, the algorithm performsat most jEj iterations and outputs a dual feasible solution y with at most jEjnonzero values. This observation is particularly important when there are expo-nentially many sets Ti (and these sets are given implicitly) as in the case of thes� t shortest path problem or the minimum-cost arborescence problem. In suchcases, the algorithm does not keep track of every yi but only of the nonzero com-ponents of y. Also, the algorithm must be able to �nd a set Tk not intersectingA. If there are many sets to hit, we must have a violation oracle: given A theoracle must be able to decide if A\Ti 6= ; for all i and, if not, must output a setTk for which A\Tk = ;.For the shortest path problem, the minimum-cost arborescence problem orthe network design problems we will be considering, the sets Ti to be hit arenaturally associated to vertex sets Si (Ti = �(Si), or for the minimum-cost ar-borescence problem, Ti = ��(Si)). For simplicity, we shall often refer to these



12 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONvertex sets instead of the corresponding cuts; for example, we will say that theset Si is violated, rather than Ti = �(Si) is violated. Also, we shall denote thedual variable corresponding to the cut induced by S as yS .We obtain our �rst design rule by considering a violation oracle for the s� tshortest path problem. For this problem, the oracle simply computes the con-nected components of (V;A) and check if s and t belong to the same component;if not, the component containing s (or the one containing t, or the union ofcomponents containing s or t) is a violated set. This comment raises the issue ofwhich violated set to select in the basic primal-dual algorithm, when there areseveral sets which are not hit by A. For network design problems in which theTi's naturally correspond to vertex sets, a good selection rule is to take among allviolated edge sets T one for which the corresponding vertex set S is (inclusion-wise) minimal, i.e. there is no violated S0 with S0 � S. We refer to this rule as theminimal violated set rule. In the case of the undirected shortest path problem,this rule consists of selecting the connected component containing s, providedthat this component does not contain t. Here there is a unique minimal violatedset, although this is not always the case.Let us consider the resulting primal-dual algorithm for the shortest pathproblem in greater detail. Initially, all yS are 0, A= ;, and the minimal violatedset is simplyS = fsg. As yS is increased, the shortest edge (s; i) out of s is selectedand added to A. In a later stage, if S denotes the current minimal violated set,an edge (i; j) with i 2 S and j =2 S is added to A and the minimal violated setbecomes S [fjg (unless j = t in which case there are no more violated sets).Thus, A is a forest consisting of a single non-trivial component containing s.To see which edges get added to A, it is useful to keep track of a notion oftime. Initially, time is 0 and is incremented by � whenever a dual variable isincreased by �. For every edge e, let a(e) denote the time at which e would beadded to A if the minimal violated sets were not to change. We refer to a(e) asthe addition time of edge e. Similarly, let l(j) be the time at which a vertex jwould be added to S. Clearly, l(j) is simply the smallest a(e) over all edges eincident to j. The next vertex to be added to S is thus the vertex attaining theminimum in minj =2S l(j). As j is added to S, we need to update the a(:) and l(:)values. Only the a(:) values of the edges incident to j will be a�ected; this makestheir update easy. Also, for k =2 S, l(k) simply becomes min(l(k); l(j)+ cjk). Bynow, the reader must have realized that the l(:) values are simply the labelsin Dijkstra's algorithm [Dij59] for the shortest path problem. Keeping track ofthe a(:) values is thus not necessary in this case, but will be useful in moresophisticated uses of the primal-dual method.The primal-dual algorithm with minimal violated set rule thus reduces toDijkstra's algorithm in the case of the shortest path. Or not quite, since the setA output by the algorithm is not simply an s� t path but is a shortest pathforest out of s. The cost of this forest is likely to be higher than the cost of theshortest s� t path. In fact, if we try to evaluate the parameter � as de�ned in(4.4), we observe that � could be as high as jV j � 1, if all edges incident to shave been selected. We should therefore eliminate all the unnecessary edges fromthe solution. More precisely, we add a delete step at the end of the primal-dualalgorithm which discards as many elements as possible from A without losing



4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 131 y 02 A ;3 l 04 While 9k :A\Tk = ;5 l l+16 Increase yk until 9el 2 Tk :Pi:el2Ti yi = cel7 A A[felg8 For j l downto 19 if A�fejg is feasible then A A�fejg10 Output A (and y) FIGURE 4.2Primal-dual algorithm with reverse delete step.feasibility. Observe that, in general, di�erent sets could be output dependingon the order in which edges are deleted; in this case, we simply keep only thepath from s to t in the shortest path forest. It is not di�cult to show (thisfollows trivially from the forthcoming Theorem 4.1) that the resulting s� t pathP satis�es jP \ �(S)j= 1 whenever yS > 0, implying that the algorithm �nds anoptimal solution to the problem.In some cases, however, the order of deletion of elements is crucial to theproof of a good performance guarantee; this leads to our next design rule. Weadopt a reverse delete step in which elements are considered for removal in thereverse order they were added to A. This version of the primal-dual algorithmwith the reverse delete step is formalized in Figure 4.2. We �rst analyze theperformance guarantee of this algorithm in general, then show that it leads toEdmonds' algorithm for the minimum-cost arborescence problem.To evaluate the performance guarantee of the algorithm,we need to computean upper bound on � as given in (4.4). To avoid any confusion, let Af be the setoutput by the algorithm of Figure 4.2. Fix an index i such that yi > 0, and let ejbe the edge added when yi was increased. Because of the reverse delete step, weknow that when ej is considered for removal, no element ep with p < j has beenalready removed. Let B denote the set of elements right after ej is consideredin the reverse delete step. This means that B = Af [fe1; : : :; ej�1g, and that Bis a minimal augmentation of fe1; : : :; ej�1g, i.e. B is feasible, B � fe1; : : :; ej�1gand for all e 2 B�fe1; : : :ej�1g we have that B�feg is not feasible. Moreover,jAf \Tij � jB \Tij and this continues to hold if we maximize over all minimalaugmentations B of fe1; : : :; ej�1g. Thus, as an upper bound on �, we can choose� = max� infeasibleA �E � max� minimalaugmentations B of A � jB\T (A)j; (4.5)where T (A) is the violated set selected by the primal-dual algorithm when con-fronted with the set A. We have therefore proved the following theorem:THEOREM 4.1 The primal-dual algorithm described in Figure 4.2 delivers a



14 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONfeasible solution of cost at most �Ppi=1 yi � �zOPT , where � is given in (4.5).The reverse delete step has thus allowed us to give a bound on the performanceof the algorithm without looking at the entire run of the algorithm, but simplyby considering any minimal augmentation of a set. As an exercise, the readeris invited to derive the optimality of the primal-dual algorithm for the shortestpath problem from Theorem 4.1.Consider now the minimum-cost arborescence problem. For any subset Aof arcs, the violation oracle with minimal violated set rule can be implementedby �rst computing the strongly connected components and then checking if anysuch component not containing the root, say S, has no arc incoming to it (i.e.��(S) \A = ;). If no such component exists then one can easily derive thatA contains an arborescence. Otherwise, the algorithm would increase the dualvariable corresponding to such a strongly connected component (observe thatwe have the choice of which component to select if there are several of them).Any minimal augmentation of A must have only one arc incoming to a stronglyconnected component S, since one such arc is su�cient to reach all vertices inS. Thus the parameter � is equal to 1, and the primal-dual algorithm deliversan optimum solution. This elegant algorithm is due to Edmonds [Edm67]. Weshould point out that in the case of the arborescence problem, deleting theedges in reverse is crucial (while this was not the case for the shortest pathproblem). The use of the reverse delete step will also be crucial in the design ofapproximation algorithms for network design problems described in the followingsections; in this context, this idea was �rst used by Klein and Ravi [KR93] andSaran, Vazirani, and Young [SVY92].Several variants of the primal-dual algorithm described in Figure 4.2 can bedesigned, without a�ecting the proof technique for the performance guarantee.One useful variant is to allow the algorithm to increase the dual variable of a setwhich does not need to be hit. More precisely, suppose we also add to the linearprogramming relaxation the constraintsXe2Tixe � 1i= p+1; : : :; q, for a collection fTp+1; : : :;Tqg of sets. This clearly may a�ect thevalue of the relaxation. Assume we now use the primal-dual algorithm by in-creasing the dual variable corresponding to any set Ti, where i now runs from1 to q. Thus, in step 4 of Figure 4.2, a solution A is considered feasible if ithits every set Ti for i = 1; : : :; q. However, in the reverse delete step 9, A onlyneeds to hit every Ti for i= 1; : : :; p. Although the addition of sets Ti's has madethe relaxation invalid, we can still use the dual solution we have constructed.Indeed, Ppi=1 yi is still a lower bound on the optimum value, and, as before,it can be compared to the cost Pqi=1 jA\Tijyi of the output solution A. Theproof technique we have developed for Theorem 4.1 still applies, provided wecan guarantee that A\Ti = ; for i = p+1; : : :; q. In this case, the performanceguarantee will again be � as given by (4.5). As an application, assume that inthe minimum-cost arborescence problem, we also include the constraints corre-sponding to sets S containing the root (this would constitute a formulation for



4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 15the strongly connected subgraph problem). Then, as long as A does not inducea strongly connected graph, we increase the dual variable corresponding to anystrongly connected component with no arc incoming to it (whether or not itcontains r). This step is thus independent of the root. It is only in the reversedelete step that we use knowledge of the root. This algorithm still outputs theoptimum arborescence (for any speci�c root r) since it is easy to see that anyarc incoming to a strongly connected component containing r and selected bythe algorithm will be deleted in the reverse delete step. The algorithm thereforeconstructs a single dual solution proving optimality for any root. This observa-tion was made by Edmonds [Edm67]. Another application of this variant of theprimal-dual algorithm will be discussed in Section 4.5.Our �nal design rule comes from considering the minimum spanning treeproblem and the associated greedy algorithm due to Kruskal [Kru56]. In thecase of the minimum spanning tree problem, the violation oracle with minimalviolated set rule can be implemented by �rst computing the connected compo-nents of (V;A) and, if there are k components where k > 1, by selecting any suchcomponent, say S. It is easy to see that any minimal augmentation of A mustinduce a spanning tree if we separately shrink every connected component of(V;A) to a supervertex. The resulting algorithm has a bad performance guaran-tee since a minimal augmentation of A could therefore have as many as k� 1edges incident to S. Recall that Kruskal's greedy algorithm repeatedly choosesthe minimum-cost edge spanning two distinct connected components. This choiceof edge is equivalent to simultaneously increasing the dual variables correspond-ing to all connected components of (V;A), until the dual constraint for an edgebecomes tight.To see this, consider the notion of time as introduced for the shortest pathproblem. As in that context, we let the addition time a(e) of an edge e to bethe time at which this edge would be added to A if the collection of minimalviolated sets were not to change. Initially, the addition time of e is ce=2 (sincethe duals are increased on both endpoints of e), and it will remain so as long asboth ends are in di�erent connected components of (V;A). The next edge to beadded to A is the one with smallest addition time and is thus the minimum-costedge between two components of (V;A). Thus, the algorithm mimics Kruskal'salgorithm.This suggests that we should revise our primal-dual algorithm and increasesimultaneously and at the same speed the dual variables corresponding to sev-eral violated sets. We refer to this rule as the uniform increase rule. This isformalized in Figure 4.3, in which the oracle Violation returns a collectionof violated sets whose dual variables will be increased. In the case of networkdesign problems, the study of the minimum spanning tree problem further sug-gests that the oracle Violation should return all minimal violated sets. In thecontext of approximation algorithms for network design problems, this uniformincrease rule on minimal violated sets was �rst used by Agrawal, Klein, and Ravi[AKR95] without reference to linear programming; its use was broadened andthe linear programming made explicit in a paper of the authors [GW95a]. Thealgorithm of Agrawal et al. can be considered the �rst highly sophisticated useof the primal-dual method in the design of approximation algorithms.



16 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION1 y 02 A ;3 l 04 While A is not feasible5 l l+16 V  Violation(A)7 Increase yk uniformly for all Tk 2 V until 9el =2A :Pi:el2Ti yi = cel8 A A[felg9 For j l downto 110 if A�fejg is feasible then A A�fejg11 Output A (and y) FIGURE 4.3Primal-dual algorithm with uniform increase rule andreverse delete step.The analysis of the performance guarantee can be done in a similar way as forthe primal-dual algorithm of Figure 4.2. Remember we compared the cost of thesolution outputAf , which can be written asPpi=1 jAf \Tijyi, to the valuePpi=1 yiof the dual solution. However, instead of comparing the two summations termby term, we may take advantage of the fact that several dual variables are beingincreased at the same time. Let Vj denote the collection of violated sets returnedby the oracle Violation in the jth iteration of our primal-dual algorithm ofFigure 4.3 and let �j denote the increase of the dual variables corresponding toVj in iteration j. Thus, yi =Pj:Ti2Vj �j . We can rewrite the value of the dualsolution as pXi=1 yi = lXj=1 jVjj�j;and the cost of Af as:pXi=1 jAf \Tijyi = pXi=1 jAf \Tij Xj:Ti2Vj �j = lXj=10@ XTi2Vj jAf \Tij1A�j :From these expressions (comparing them term by term), it is clear that the costof Af is at most the value of the dual solution times 
 if, for all j = 1; : : :; l,XTi2Vj jAf \Tij � 
jVj j:Again using the reverse delete step, we can replace Af , which depends on theentire algorithm in an intricate fashion, by any minimal augmentation B of theinfeasible solution at the start of iteration j. We have thus proved the followingtheorem.THEOREM 4.2 The primal-dual algorithm described in Figure 4.3 delivers afeasible solution of cost at most 
Ppi=1 yi � 
zOPT , if 
 satis�es that for any



4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 17infeasible set A and any minimal augmentation B of AXTi2V(A) jB\Tij � 
jV(A)j;where V(A) denotes the collection of violated sets output byViolation on inputA. Let us consider again the minimum spanning tree problem. For any set A,V(A) denotes the set of connected components of A and we know that anyminimal augmentation B of A must induce a spanning tree when shrinking allconnected components. Therefore, PTi2V(A) jB\Tij corresponds to the sum ofthe degrees of a spanning tree on a graph with k = jV(A)j supervertices, and isthus equal to 2k�2, independently of the spanning tree. The upper bound 
 onthe performance guarantee can thus be set to 2. Theorem 4.2 will be used repeat-edly in the next sections to prove the performance guarantee of approximationalgorithms for many network design problems.The reader may be surprised that we did not prove optimality of the span-ning tree produced since the algorithm reduces to Kruskal's greedy algorithm.The reason is simply that our linear programming formulation of the minimumspanning tree problem is not strong enough to prove optimality. Instead of in-creasing the dual variables corresponding to all sets S 2 V, we could also view thealgorithm as increasing a single dual variable corresponding to the aggregation ofthe inequalities for every S 2 V. The resulting inequalityPS2VPe2�(S)xe � jVjcan in fact be strengthened toXS2V Xe2�(S)xe � 2jVj�2since any connected graph on k vertices has at least k�1 edges. The value of thedual solution constructed this way is therefore greater, and with this strongerformulation, it is easy to see that the proof technique developed earlier willprove the optimality of the tree produced. The use of valid inequalities in thisprimal-dual framework is also considered in Bertsimas and Teo [BT95].We would like to point out that the bound given in Theorem 4.2 is tight inthe following sense. If there exists a set A and a minimal augmentation B of Afor which PTi2V(A) jB\Tij = 
jV(A)j, then the algorithm can return solutionsof value equal to 
 times the value Ppi=1 yi of the dual solution constructed bythe algorithm. For this, one simply needs to set the cost of all elements of A to0 and to set appropriately the cost of the elements in B�A so that they wouldall be added to A at the same time during the execution of the algorithm.As a �nal remark, we could also allow the oracle Violation to return setswhich do not need to be hit, as we did in the case of the minimum-cost arbores-cence problem. The performance guarantee is given in the following theorem. Itsproof is similar to the proof of Theorem 4.2 and is therefore omitted.THEOREM 4.3 If the oracle Violation may return sets which do not needto be hit then the performance guarantee of the primal-dual algorithm describedin Figure 4.3 is 
, provided that for any infeasible set A and any minimal aug-



18 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONmentation B of A XTi2V(A) jB\Tij � 
c;where V(A) denotes the collection of sets output by Violation, and c denotesthe number of sets in V(A) which need to be hit.EXERCISE 4.2 Prove the correctness of Dijkstra's algorithmby using Theorem4.1.EXERCISE 4.3 Find an instance of the minimum-cost arborescence problemwhere the use of a non-reverse delete step leads to a non-optimal solution.EXERCISE 4.4 Consider the minimum spanning tree problem on a completegraph with all edge costs equal to 1. Given a set A of edges, write a restrictedprimal in the spirit of Section 4.2. Show that the unique optimum solution to itsdual is to set the dual variables corresponding to all connected components of(V;A) to 0:5 and all other dual variables to 0.EXERCISE 4.5 Prove Theorem 4.3.A MODEL OF NETWORK DESIGN PROBLEMS4.4With a primal-dual method for approximation algorithms in place, we showhow to apply it to various other network design problems. In this and followingsections, we will discuss various problems and prove that the design principleslisted above lead to good approximation algorithms for these problems.Most of the network design problems we will discuss have as input an undi-rected graph G= (V;E) with nonnegative edge costs ce, and can be modelled bythe following integer program:Min Xe2E cexesubject to:(IP ) Xe2�(S)xe � f(S) ; 6= S � Vxe 2 f0;1g e 2E:This integer program is a variation on some of the hitting set problems discussedabove, parametrized by the function f : 2V !N: here, our ground set is the setof edges E and a feasible solution must contain at least f(S) edges of any cut�(S). We will sometimes consider further variations of the problem in which the



4.4 A MODEL OF NETWORK DESIGN PROBLEMS 19constraint xe 2 f0;1g is replaced by xe 2N; that is, we are allowed to take anynumber of copies of an edge e in order to satisfy the constraints. If the functionf has range f0;1g, then the integer program (IP ) is a special case of the hittingset problem in which we must hit the sets �(S) for which f(S) = 1.We have already seen that (IP ) can be used to model two classical networkdesign problems. If we have two vertices s and t, and set f(S) = 1 when Scontains s but not t, then edge-minimal solutions to (IP ) model the undirecteds� t shortest path problem. If f(S) = 1 for all ; 6= S � V , then (IP ) models theminimum spanning tree problem.The integer program (IP ) can also be used to model many other problems,which we will discuss in subsequent sections. As an example, (IP ) can be usedto model the survivable network design problem, sometimes also called the gen-eralized Steiner problem. In this problem we are given nonnegative integers rijfor each pair of vertices i and j, and must �nd a minimum-cost subset of edgesE0 � E such that there are at least rij edge-disjoint paths for each i; j pair inthe graph (V;E0). This problem can be modelled by (IP ) with the functionf(S) = maxi2S;j =2S rij; a min-cut/max-
ow argument shows that it is necessaryand su�cient to select f(S) edges from �(S) in order for the subgraph to have atleast rij paths between i and j. The survivable network design problem is used tomodel a problem in the design of �ber-optic telephone networks [GMS94, Sto92].It �nds the minimum-cost network such that nodes i and j will still be connectedeven if rij�1 edges of the network fail.The reader may notice that the two network design problems mentionedabove are special cases of the survivable network design problem: the undirecteds� t shortest path problem corresponds to the case in which rst = 1 and rij = 0for all other i; j, while the minimum spanning tree problem corresponds to thecase rij = 1 for all pairs i; j. Other well-known problems are also special cases.In the Steiner tree problem, we are given a set of terminals T � V and must �nda minimum-cost set of edges such that all terminals are connected. This problemcorresponds to the case in which rij = 1 if i; j 2 T and rij = 0 otherwise. Inthe generalized Steiner tree problem, we are given p sets of terminals T1; : : :;Tp,where Ti � V . We must �nd a minimum-cost set of edges such that for each i,all the vertices in Ti are connected. This problem corresponds to the survivablenetwork design problem in which rij = 1 if there exists some k such that i; j 2 Tk,and rij = 0 otherwise. We will show how the primal-dual method can be appliedto these two special cases (and many others) in Section 4.6, and show how themethod can be applied to the survivable network design problem in general inSection 4.7.It is not known how to derive good approximation algorithms for (IP ) forany given function f . Nevertheless, the primal-dualmethod can be used to derivegood approximation algorithms for particular classes of functions that modelinteresting network design problems, such as those given above. In the followingsections, we consider various classes of functions f , and prove that the primal-dual method with the design rules of the previous section gives good performanceguarantees.



20 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION4.4.1 0-1 FUNCTIONSWe will �rst focus our attention on the case in which the function f has rangef0;1g. We often refer to such functions as 0-1 functions. The shortest path,minimum spanning tree and (generalized) Steiner tree problems all �t in thiscase, as well as many other problems to be discussed in the coming sections. Forfunctions with range f0;1g, the integer program (IP ) reduces toMin Xe2E cexesubject to:(IP ) Xe2�(S)xe � 1 S : f(S) = 1xe 2 f0;1g e 2E;and the dual of its LP relaxation is:Max XS:f(S)=1ySsubject to: XS:e2�(S)yS � ce e 2EyS � 0 S : f(S) = 1:Observe that the edge-minimal solutions of (IP ) are forests since one canremove arbitrarily any edge from a cycle without destroying feasibility. In Figure4.4, we have specialized the algorithm of Figure 4.3 to this case, assuming theoracle Violation returns the minimal violated sets. As already mentioned inthe previous section, we will often stretch our terminology to say that a vertexset S is violated, instead of saying that the associated cut T = �(S) is violated.Let �A(S) = �(S)\A. Then a set S � V is violated when �A(S) = ; and f(S) = 1.We can restate Theorem 4.2 as follows.THEOREM 4.4 The primal-dual algorithm described in Figure 4.4 delivers afeasible solution of cost at most 
PS:f(S)=1 yS � 
zOPT , if 
 satis�es that forany infeasible set A and any minimal augmentation B of AXS2V(A) j�B(S)j � 
jV(A)j;where V(A) denotes the collection of minimal violated sets.For general functions f with range f0;1g, there could be exponentially manysets S for which f(S) = 1. As a result, we assume that f is implicitly giventhrough an oracle taking a set S as input and outputting its value f(S). But, forarbitrary 0-1 functions , it might not be easy to check whether an edge set A isfeasible, i.e. whether it hits all cuts �(S) for which f(S) = 1. Also, the minimalviolated sets might not have any nice structure as they do for the shortest path



4.4 A MODEL OF NETWORK DESIGN PROBLEMS 211 y 02 A ;3 l 04 While A is not feasible5 l l+16 V  fminimal violated sets Sg7 Increase yS uniformly for all S 2V until 9el 2 �(T );T 2V :PS:el2�(S) yS = cel8 A A[felg9 For j l downto 110 if A�fejg is feasible then A A�fejg11 Output A (and y) FIGURE 4.4Primal-dual algorithm for (IP ) with uniform increaserule on minimal violated sets and reverse delete step.or minimum spanning tree problems. However, consider the class of functionssatisfying the maximality property:� [Maximality] If A and B are disjoint, then f(A[B) �max(f(A); f(B)).For functions with range f0;1g, this can also be expressed as:� [Maximality] If A and B are disjoint, then f(A) = f(B) = 0 implies f(A[B) = 0.This is equivalent to requiring that if f(S) = 1 then for any partition of S atleast one member of the partition has an f(:) value equal to 1. For this classof functions, the following lemma shows how to check whether an edge set isfeasible and, if it is not, how to �nd the minimal violated sets.LEMMA 4.1 Let f be a function with range f0;1g satisfying the maximalityproperty. Let A be any edge set. Then1. A is feasible for f if and only if every connected component C of (V;A)satis�es f(C) = 0,2. the minimal violated sets of A are the connected components C of (V;A)for which f(C) = 1.Proof. Consider a violated set S, i.e. a set S for which f(S) = 1 but �A(S) = ;.Clearly, S must consist of the union of connected components of (V;A). But,by maximality, one of these components, say C, must satisfy f(C) = 1, and isthus a violated set. Thus, only connected components can correspond to minimalviolated sets, and A is feasible only if no such component has f(C) = 1.In the case of functions satisfying the maximality property, the collectionV(A) of minimal violated sets can thus easily be updated by maintaining the



22 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONcollection C(A) of connected components of (V;A). This is exploited in Fig-ure 4.5, where we present a more detailed implementation of the primal-dualalgorithm of Figure 4.4 in the case of functions satisfying maximality. When im-plementing the algorithm, there is no need to keep track of the dual variablesyS . Instead, in order to be able to decide which edge to select next, we computefor every vertex i 2 V the quantity d(i) de�ned by PS:i2S yS . Initially, d(i) is0 (lines 5-6) and it increases by � whenever the dual variable corresponding tothe connected component containing i increases by � (line 12). As long as i andj are in di�erent connected components Cp and Cq (respectively), the quantity(ce�d(i)�d(j))=(f(Cp)+f(Cq )) being minimized in line 10 represents the dif-ference between the addition time of edge e = (i; j) and the current time. Thisexplains why the edge with the smallest such value is being added to A. Whenan edge is added to A, the collection C of connected components of (V;A) isupdated in line 15. We are also maintaining and outputting the value LB ofthe dual solution, since this allows us to estimate the quality of the solution onany instance. The algorithm can be implemented quite easily. The connectedcomponents can be maintained as a union-�nd structure of vertices. Then allmerging take at most O(n�(n;n)) time overall, where � is the inverse Acker-mann function and n is the number of vertices [Tar75]. To determine which edgeto add to A, we can maintain a priority queue of edges, where the key of anedge is its addition time a(e). If two components Cp and Cq merge, we only needto update the keys of the edges incident to Cp[Cq. Keeping only the smallestedge between two components, one derives a running time of O(n2 logn) for allqueue operations and this is the overall running time of the algorithm. This isthe original implementation as proposed by the authors in [GW95a]. Faster im-plementations have been proposed by Klein [Kle94] and Gabow, Goemans andWilliamson [GGW93].Even for 0-1 functions obeying maximality, the parameter 
 of Theorem 4.4can be arbitrarily large. For example, consider the problem of �nding a tree ofminimum cost containing a given vertex s and having at least k vertices. Thisproblem corresponds to the function f(S) = 1 if s 2 S and jSj<k, which satis�esmaximality. However, selecting A= ; and B a star rooted at s with k vertices, weobserve that 
 � k�1. As a result, for this problem, the primal-dual algorithmcan output a solution of cost at least k�1 times the value of the dual solutionproduced.In the following two sections, we apply the primal-dual algorithm to somesubclasses of 0-1 functions satisfying maximality. We show that, for these sub-classes, the primal-dual algorithm of Figures 4.4 and 4.5 is a 2-approximationalgorithm by proving that 
 can be set to 2. Before de�ning these subclasses offunctions, we reformulate 
 in terms of the average degree of a forest. This ex-plains why a performance guarantee of 2 naturally arises. To prove that 
 = 2, weneed to show that, for any infeasible set A and any minimal augmentation B ofA, we have PS2V(A) j�B(S)j � 2jV(A)j. For functions satisfying the maximalityproperty, the collection V(A) of minimal violated sets consists of the connectedcomponents of (V;A) whose f(:) value is 1 (Lemma 4.1). Now, construct a graphH formed by taking the graph (V;B) and shrinking the connected components



4.4 A MODEL OF NETWORK DESIGN PROBLEMS 231 A ;2 Comment: Implicitly set yS 0 for all S � V3 LB 04 C  ffvg : v 2 V g5 For each i 2 V6 d(i) 07 l 08 While 9C 2 C : f(C) = 19 l l+110 Find edge el = (i;j) with i 2 Cp 2 C, j 2 Cq 2 C, Cp 6= Cq that minimizes�= cel�d(i)�d(j)f(Cp)+f(Cq)11 A A[felg12 For all k 2 Cr 2 C do d(k) d(k)+ � �f(Cr)13 Comment: Implicitly set yC  yC + � �f(C) for all C 2 C.14 LB LB+ �PC2C f(C)15 C  C[fCp [Cqg�fCpg�fCqg16 For j l downto 117 If all components C of A�fejg satisfy f(C) = 0 then A A�fejg18 Output A and LB FIGURE 4.5Primal-dual algorithm for (IP ) for functions satisfyingthe maximality property.of (V;A) to vertices. For simplicity, we refer to both the graph and its vertex setas H. Because B is an edge-minimal augmentation, there will be a one-to-onecorrespondence between the edges of B�A and the edges inH, and H is a forest.Each vertex v of H corresponds to a connected component Sv � V of (V;A); letdv denote the degree of v in H, so that dv = j�B(Sv)j. LetW be the set of verticesof H such that for w 2W , f(Sw ) = 1. Then each of these vertices correspondsto a minimal violated set; that is, V(A) = fSwjw 2Wg. Thus in order to provethe inequalityPS2V(A) j�B(S)j � 2jV(A)j; we simply need to show thatXv2W dv � 2jW j: (4.6)In other words, the average degree of the vertices in H corresponding to theviolated sets is at most 2. In the next two sections, we show that equation (4.6)holds for two subclasses of functions satisfying the maximality property.EXERCISE 4.6 Show that the function f corresponding to the generalizedSteiner tree problem satis�es the maximality property.



24 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION1 A Minimum-Spanning-Tree2 Sort edges of A= fe1; : : : ;en�1g so that ce1 � ��� � cen�13 For j n�1 downto 14 If A�fejg is feasible then A A�fejg.FIGURE 4.6Another 2-approximation algorithm for downwardsmonotone functions f .DOWNWARDS MONOTONE FUNCTIONS4.5In this section, we consider the network design problems that can be modelledby the integer program (IP ) with functions f that are downwards monotone.We say that a function is downwards monotone if f(S) � f(T ) for all S � T 6= ;.Notice that any downwards monotone function satis�es maximality and, as aresult, the discussion of the previous section applies. Later in the section, we willprove the following theorem.THEOREM 4.5 The primal-dual algorithm described in Figure 4.5 gives a2-approximation algorithm for the integer program (IP ) with any downwardsmonotone function f : 2V !f0;1g.In fact, we will also show that applying the reverse delete procedure to theedges of a minimum spanning tree is also a 2-approximation algorithm for theproblem; see Figure 4.6 for the algorithm. The advantage of the algorithm inFigure 6 is that its running time is that of computing the minimum spanningtree and sorting its edges, rather than O(n2 logn) time. Thus the algorithm takesO(m+n logn) time in general graphs, and O(n logn) time in Euclidean graphs.THEOREM 4.6 The primal-dual algorithm described in Figure 4.6 gives a2-approximation algorithm for the integer program (IP ) with any downwardsmonotone function f : 2V !f0;1g.Before we get to the proofs of these theorems, we consider the kinds of net-work design problems that can be modelled by (IP ) with a downwards monotonefunction f : 2V !f0;1g.4.5.1 THE EDGE-COVERING PROBLEMThe edge-covering problem is that of selecting a minimum-cost set of edges suchthat each vertex is adjacent to at least one edge. The problem can be solvedin polynomial time via a reduction to the minimum-weight perfect matching



4.5 DOWNWARDS MONOTONE FUNCTIONS 25problem (see Gr�otschel, Lov�asz, and Schrijver [GLS88, p. 259]). The problemcan be modelled by the downwards monotone function f(S) = 1 i� jSj= 1. Thusthe primal-dual algorithm yields a 2-approximation algorithm for this problem.It is interesting to observe that another primal-dual algorithm for the hitting setproblem (or the set cover problem) due to Chv�atal [Chv79] (see Chapter 3) givesa performance guarantee of 32 for the edge-covering problem.4.5.2 LOWER-CAPACITATED PARTITIONING PROBLEMSIn the lower-capacitated partitioning problems, we wish to �nd a minimum-costset of edges that partitions the vertices into trees, paths, or cycles such thateach tree, path, or cycle has at least k vertices, for some parameter k. Whenk = 3, the lower-capacitated cycle partitioning problem is also known as thebinary two-matching problem; when k = 4, it is also known as the triangle-freebinary two-matching problem. The lower-capacitated cycle partitioning problemis NP-complete for k � 5 (Papadimitriou in Cornu�ejols and Pulleyblank [CP80]for k � 6 and Vornberger [Vor79] for k = 5), polynomially solvable for k = 2 or 3(Edmonds and Johnson [EJ70]), while its complexity for k=4 is open. Imieli�nska,Kalantari, and Khachiyan [IKK93] have shown that the lower-capacitated treepartitioning problem is NP-complete for k � 4, even if the edge costs obey thetriangle inequality.The lower-capacitated tree partitioning problem can be modelled by (IP )with the downwards monotone function f(S) = 1 if 0< jSj< k and 0 otherwise.If the edge costs obey the triangle inequality, we can also obtain an approxima-tion algorithm for the lower-capacitated path partitioning problem. Obviouslythe cost of the optimal tree partition is a lower bound on the cost of the optimallower-capacitated path partition. Given the tree partition produced by our algo-rithm, we duplicate each edge and �nd a tour of each component by shortcuttingthe resulting Eulerian graph on each component; this gives a cycle partition ofno more than twice the cost of the original solution. Removing an edge fromeach cycle gives a path partition; thus we have a 4-approximation algorithm forthe lower-capacitated path partitioning problem.If the edge costs obey the triangle inequality, then we can obtain a 2-approximation algorithm for the lower-capacitated cycle problem. The algorithmconstructs a cycle partition as above. To show that the cost of solution is no morethan twice optimal, notice that the following linear program is a relaxation ofthe lower-capacitated cycle problem:Min Xe2E cexesubject to: Xe2�(S)xe � 2f(S) ; 6= S � Vxe � 0:



26 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONThe dual of this relaxation isMax 2XS�V f(S)ySsubject to: XS:e2�(S)yS � ce 8e 2EyS � 0:The dual solution generated by the primal-dual algorithmfor the lower-capacitatedtree problem is feasible for this dual, but has twice the objective function value.Let y denote the dual solution given by the primal-dual algorithm, let T denotethe set of tree edges produced by the algorithm for the lower-capacitated treeproblem, let C denote the set of cycle edges produced by doubling and shortcut-ting the tree edges, and let Z�C denote the cost of the optimal cycle partition. Weknow c(T ) � 2PS f(S)yS and c(C) � 2c(T ), so that c(C) � 2(2PS f(S)yS ) �2Z�C , proving that the algorithm is a 2-approximation algorithm for the cycle par-titioning problem. This illustrates one of the bene�ts of the primal-dual method:the dual lower bound can be used to prove stronger results.A paper of the authors [GW95a] provided the �rst 2-approximation algo-rithms for these problems. Imieli�nska, Kalantari, and Khachiyan [IKK93] showedhow to select a subset of the edges of a minimum spanning tree to get a 2-approximationalgorithm for the tree partitioning problem and a 4-approximationalgorithm for the cycle partitioning problem. A subsequent paper of the authors[GW94b] showed how spanning tree edges could be used for any downwardsmonotone function.4.5.3 LOCATION-DESIGN AND LOCATION-ROUTING PROBLEMSThe primal-dual method can be used to solve a problem in network design andvehicle routing. Many problems of this type require two levels of decisions. Inthe �rst level, the location of special vertices, such as concentrators or switchesin the design of communication networks, or depots in the routing of vehicles,needs to be decided. There is typically a set of possible locations and a �xed costis associated with each of them. Once the locations of the depots are decided, thesecond level deals with the design or routing per se. These problems are calledlocation-design or location-routing problems (Laporte [Lap88]).The algorithm can be applied to one of the simplest location-routing prob-lems. In this problem (Laporte et al. [LNP83, Lap88]), we need to select depotsamong a subset D of vertices of a graph G = (V;E) and cover all vertices in Vwith a set of cycles, each containing a selected depot. The goal is to minimize thesum of the �xed costs of opening our depots and the sum of the costs of the edgesof our cycles. In order to approximate this NP-complete problem, we consideran augmented graph G0 = (V [D0;E0), which we obtain from G by adding a newcopy u0 of every vertex u 2D and adding edges of the form (u;u0) for all u 2D.Edge (u;u0) has a cost equal to half the value of the �xed cost of opening a depot



4.5 DOWNWARDS MONOTONE FUNCTIONS 27at u. Consider the downwards monotone function f(S) = 1 if ; 6= S � V and 0otherwise. We apply the 2-approximation algorithm for this function f . As in thecase of the lower-capacitated cycle partitioning problem, doubling the edges andshortcutting the solution obtained can be shown to result in a 2-approximationalgorithm for the original location-design problem.4.5.4 PROOF OF THEOREMS 4.5 AND 4.6We now turn to the proof of Theorems 4.5 and 4.6.Proof of Theorem 4.5. Using the arguments developed in Section 4.4.1, wesimply need to show that, for downwards monotone functions, equation (4.6)holds.Recall that we construct a graphH by taking the graph (V;B) and shrinkingthe connected components of (V;A) to vertices. Each vertex v of H correspondsto a connected component Sv of (V;A), and has degree dv. The set W is the setof vertices fv 2H : f(Sv) = 1g. We �rst claim that each connected component ofH has at most one vertex v such that f(Sv) = 0. Suppose this is false, and someconnected component of H has two vertices, v and w, such that f(Sv) = f(Sw) =0. Let e be an edge of B corresponding to an edge on the path between v and win H. By minimality of B, B�feg is not feasible. Thus, there is a set S � V suchthat e 2 �(S) and f(S) = 1, but (B�feg)\�(S) = ;. The removal of e must splita connected component of H. In order that e 2 �(S) and (B�feg)\ �(S) = ;,it must be the case that S contains the vertices of one of the two parts of thiscomponent. Thus either Sv � S or Sw � S. By the downwards monotonicity off , f(S) = 0, a contradiction.Let c be the number of components of H. ThenXv2W dv �Xv2H dv = 2(jHj� c)� 2jW j;as desired, since H is a forest, and jH�W j � c by the claim above.Proof of Theorem 4.6. If we increase the dual variables on all connected com-ponents C(A) of (V;A), rather than the minimal violated sets V(A), then, aswas argued in Section 4.3, the �rst part of the algorithm reduces to Kruskal'salgorithm for the minimum spanning tree. We can therefore use Theorem 4.3to prove a performance guarantee of 2 for the algorithm of Figure 4.6 if we canshow that XS2C(A) j�B(S)j � 2jfS 2 V(A)gj;where B is any minimal augmentation of A, C(A) is the set of connected com-ponents of (V;A) and V(A) = fC 2 C(A) : f(C) = 1g is the set of minimal vi-olated sets. Using the notation developed in the previous section, this reducesto Pv2H dv � 2jW j, which was proved above. This proves that the algorithm of



28 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONFigure 4.6 is also a 2-approximation algorithm.Further variations on the algorithm also yield 2-approximation algorithms.Imieli�nska et al. [IKK93] give a 2-approximation algorithm for the lower capaci-tated tree problem that selects appropriate edges of a minimum spanning tree inorder of increasing cost, rather than deleting edges in order of decreasing cost.The authors have generalized this algorithm to a 2-approximation algorithm fordownwards monotone functions f : 2V !N for the integer program (IP ) withthe constraint xe 2N [GW94b].EXERCISE 4.7 Show that the performance guarantee in the statement of The-orem 4.5 can be improved to 2�1=l where l = jfv : f(fvg) = 1gj.EXERCISE 4.8 Give a very simple proof of the fact that the algorithmof Figure4.6 is a 2-approximation algorithm for the edge covering problem.0-1 PROPER FUNCTIONS4.6In this section, we consider the network design problems which can be modelledby the integer program (IP ) with a proper function f with range f0;1g. Afunction f : 2V !N is proper if� f(V ) = 0,� f satis�es the maximality property and� f is symmetric, i.e. f(S) = f(V �S) for all S � V .Under symmetry, it can be shown that, for 0-1 functions, the maximalitypropertyis equivalent to requiring that if f(S) = f(A) = 0 for A � S then f(S �A) =0. We will refer to this property as complementarity. The class of 0-1 properfunctions is incomparable to the class of downwards monotone functions; neitherclass is contained in the other. The class of network design problems whichcan be formulated by proper functions is particularly rich. It encompasses verydiverse problems such as the shortest path problem, the minimum-weight T -joinproblem, the generalized Steiner tree problem, or the point-to-point connectionproblem. Later in this section, we elaborate on some of these applications. Thework described in this section appeared in [GW95a], the �rst paper of the authorson the use of the primal-dual method for network design problems.As with downwards monotone functions, the primal-dual algorithmdescribedin Figure 4.5 is a 2-approximation algorithm.THEOREM 4.7 The primal-dual algorithm described in Figure 4.5 gives a 2-approximation algorithm for the integer program (IP ) with any 0-1 proper func-
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A-RFIGURE 4.7Illustration for the proof of Lemma 4.2.tion f : 2V !f0;1g.The proof of this theorem is given below. With regard to the (reverse) deletestep, proper functions behave very much as in case of the shortest path problem.No matter how the delete step is implemented, the same subgraph is outputsince, as is shown in the next lemma, there is a unique minimally feasible subsetof any feasible solution.LEMMA 4.2 Let f be any 0-1 proper function and let A be any feasible solu-tion. Let R = fe :A�feg is feasibleg. Then A�R is feasible.Notice that R represents the set of all edges that can possibly be removed withoutlosing feasibility. The lemma shows that all these edges can be simultaneouslyremoved without losing feasibility. For 0-1 proper functions, we can thus replacethe reverse delete step (lines 16-17) in Figure 4.5 by the following command.16 A fe 2A : For some connected component N of (V;A�feg); f(N ) = 1g.Proof of Lemma 4.2. Let N be any connected component of (V;A�R). We�rst claim that f(N ) = 0. Clearly, N � C for some connected component Cof (V;A). Now let e1; : : :; ek be the edges of A such that ei 2 �(N ) (possiblyk = 0). Let Ni and C�Ni be the two components created by removing ei fromthe edges of component C, with N � C�Ni (see Figure 4.7). Since ei 2 R, itmust be the case that f(Ni) = 0. Note also that the sets N;N1; : : :;Nk forma partition of C. Therefore, by maximality, f(C �N ) = f([ki=1Ni) = 0. Sincef(C) = 0, complementarity now implies that f(N ) = 0. Since every connectedcomponent of (V;A�R) has f(:) value equal to 0, Lemma 4.1 implies that A�Ris feasible.Proof of Theorem 4.7. As discussed at the end of Section 4.4.1, the proof ofthe theorem can be reduced to the proof of inequality (4.6), as was the case fordownwards monotone functions.



30 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONIn order to prove (4.6) for 0-1 proper functions, we �rst claim that no leafv of H satis�es f(Sv) = 0. Suppose otherwise. Let e be the edge incident to vand let C be the connected component of (V;B) that contains Sv. By feasibilityof B, f(C) = 0. The assumption that f(Sv) = 0 together with complementaritynow implies that f(C�Sv) = 0. But by minimality of B, B�feg is not feasiblewhich implies that either Sv or C�Sv has an f(:) value equal to 1, which is acontradiction. Thus every leaf v of H belongs to W .Showing that the average degree over the vertices in W is at most 2 is noweasy. First discard all isolated vertices from H (they do not contribute in anyway). Now,Xv2W dv = Xv2H dv�Xv=2W dv � (2jHj�2)�2(jHj� jW j)= 2jW j�2;since H is a forest of at most jHj�1 edges, and since all vertices not in W havedegree at least two. This proves inequality (4.6), and completes the proof of thetheorem.Since the inequality proved is a bit stronger than what was claimed, theproof can be re�ned to show that the performance guarantee is in fact equal to2� 2l , where l = jfv : f(fvg) = 1gj. Also, observe the similarities and di�erencesbetween the proofs of the performance guarantee for downwards monotone func-tions and proper functions. In both cases, the argument hinges on the fact thatthe average degree of a forest remains at most 2 if we discard certain vertices.In the former, we discard at most one vertex per component and in the latterwe discard only inner vertices (i.e. non-leaves). The result would still hold if wediscard any number of inner vertices but at most one leaf (or even two leaves)per component. By using the same arguments as in the proofs of Theorems 4.5and 4.7, this for example shows that the algorithm of Figure 4.5 is still a 2-approximation algorithm for the class of functions satisfying maximality and thefollowing condition: there do not exist a set S and two disjoint subsets A;B ofS such that f(S) = f(A) = f(B) = 0 and f(S�A) = f(S �B) = 1. This class offunctions contains both the downwards monotone functions and the proper func-tions, but we are not aware of any interesting application of this generalizationnot covered by the previous two classes.We now discuss network design problems which can be modelled as integerprograms (IP ) with a proper function f .4.6.1 THE GENERALIZED STEINER TREE PROBLEMThe generalized Steiner tree problem is the problem of �nding a minimum-costforest that connects all vertices in Ti for i = 1; : : :; p. The generalized Steinertree problem corresponds to the proper function f with f(S) = 1 if there existsi 2 f1; : : :; pg with ; 6= S \Ti 6= Ti and 0 otherwise. In this case, the primal-dualalgorithm we have presented simulates an algorithm of Agrawal, Klein, and Ravi[AKR95]. Their algorithmwas the �rst approximation algorithm for this problem



4.6 0-1 PROPER FUNCTIONS 31and has motivated much of the authors' research in this area.When p= 1, the problem reduces to the classical Steiner tree problem. For along time, the best approximation algorithm for this problem had a performanceguarantee of (2� 2k ) (for a survey, see Winter [Win87]) but, recently, Zelikovsky[Zel93] obtained an 116 �approximation algorithm. Further improvements havebeen obtained; we refer the reader to Chapter 8.4.6.2 THE T -JOIN PROBLEMGiven an even subset T of vertices, the T -join problem consists of �nding aminimum-cost set of edges that has odd degree at vertices in T and even degreeat vertices not in T . Edmonds and Johnson [EJ73] have shown that the T -joinproblem can be solved in polynomial time. The problem corresponds to theproper function f with f(S) = 1 if jS\T j is odd and 0 otherwise. When jT j =2, the T -join problem reduces to the shortest path problem. The primal-dualalgorithm for 0-1 proper functions in this case reduces to a variant of Dijkstra'salgorithm that uses bidirectional search (Nicholson [Nic66]).4.6.3 THE MINIMUM-WEIGHT PERFECT MATCHING PROBLEMThe minimum-weight perfect matching problem is the problem of �nding aminimum-cost set of non-adjacent edges that cover all vertices. This problemcan be solved in polynomial time by a primal-dual algorithm discovered by Ed-monds [Edm65]. The fastest strongly polynomial time implementation of Ed-monds' algorithm is due to Gabow [Gab90]. Its running time is O(n(m+n logn)).For integral costs bounded by C, the best weakly polynomial algorithm runs inO(mpn�(m;n) logn lognC) time and is due to Gabow and Tarjan [GT91].These algorithms are fairly complicated and, in fact, time-consuming forlarge instances that arise in practice. This motivated the search for faster ap-proximation algorithms. Reingold and Tarjan [RT81] have shown that the greedyprocedure has a tight performance guarantee of 43n0:585 for general nonnegativecost functions. Supowit, Plaisted and Reingold [SPR80] and Plaisted [Pla84]have proposed an O(min(n2 logn;m log2n)) time approximation algorithm forinstances that obey the triangle inequality. Their algorithm has a tight perfor-mance guarantee of 2 log3(1:5n).As shown by Gabow and Tarjan [GT91], an exact scaling algorithm forthe maximum-weight matching problem can be used to obtain an (1+1=na)-approximation algorithm (a� 0) for the minimum-weight perfect matching prob-lem. Moreover, if the original exact algorithm runs in O(f(m;n) logC) time, theresulting approximation algorithm runs in O(mpn logn+(1+ a)f(m;n) logn).Vaidya [Vai91] obtains a (3+2�)-approximation algorithm for minimum-weightperfect matching instances satisfying the triangle inequality. His algorithm runsin O(n2 log2:5n log(1=�)) time.The primal-dual algorithm for problems modelled with a proper function can



32 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONbe used to approximate the minimum-weight perfect matching problem when theedge costs obey the triangle inequality. We use the algorithm with the properfunction f(S) being the parity of jSj, i.e. f(S) = 1 if jSj is odd and 0 if jSj is even.This function is the same as the one used for the V -join problem. The algorithmreturns a forest whose components have even size. More precisely, the forest isa V -join, and each vertex has odd degree: if a vertex has even degree, then, bya parity argument, some edge adjacent to the vertex could have been deleted sothat the resulting components have even size. Thus this edge would have beendeleted in the delete step of the algorithm. The forest can be transformed into aperfect matching with no increase of cost by repeatedly taking two edges (u;v)and (v;w) from a vertex v of degree three or more and replacing these edges withthe edge (u;w). This procedure maintains the property that the vertices haveodd degree. This algorithm has a performance guarantee of 2� 2n .Often the vertices of matching instances are given as points in the plane;the cost of an edge is then the Euclidean distance between its endpoints. J�ungerand Pulleyblank [JP91] have observed that the dual variables of matching prob-lems in this case correspond nicely to "moats" around sets of points. That is,a dual variable yS corresponds to a region of the plane of width yS surround-ing the vertices of S. The dual program for these instances attempts to �nd apacking of non-overlapping moats that maximizes the sum of the width of themoats around odd-sized sets of vertices. The algorithm of Figure 4.5 applied toEuclidean matching instances can thus be interpreted as growing odd moats atthe same speed until two moats collide, therefore adding the corresponding edge,and repeating the process until all components have even size. The reverse deletestep then removes unnecessary edges. See Figure 4.8 for an example.The notion of moats is not particular to matching problems: one can alsoconsider moat packings for Euclidean instances of other problems modelled by(IP ). The moats for a feasible dual solution y can be drawn in the plane wheneverthe non-zero dual variables yS form a laminar family (any two sets in the familyare either disjoint or one is contained in the other). One can show that wheneverf is a 0-1 proper function, there exists an optimal dual solution y such that fS :yS > 0g is laminar (this even holds when f is an uncrossable function; see Section4.7 for a de�nition). This is also clearly true for the dual solutions constructedby our primal-dual algorithms.4.6.4 POINT-TO-POINT CONNECTION PROBLEMSIn the point-to-point connection problem, we are given a set C = fc1; : : :; cpg ofsources and a set D = fd1; : : :;dpg of destinations in a graph G= (V;E) and weneed to �nd a minimum-cost set F of edges such that each source-destinationpair is connected in F [LMSL92]. This problem arises in the context of circuitswitching and VLSI design. The �xed destination case in which ci is required tobe connected to di is a special case of the generalized Steiner tree problem whereTi = fci;dig. In the non-�xed destination case, each component of the forest Fis only required to contain the same number of sources and destinations. This
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8(c) (d)FIGURE 4.8(a) A Euclidean matching instance. (b) Anintermediate stage of the primal-dual algorithm ofFigure 4.5 with a partial moat packing. The oddconnected components are f1g, f2g, f3;4;5g and f6g.(c) When growing odd moats uniformly, the edge (5;6)becomes tight and is added to A. (d) The �nalsolution. The edges removed in the reverse delete stepare dashed, the others belong to the matching (or theV -join) output by the algorithm. Observe that everymoat is intersected by exactly one edge of thematching, implying that the matching and the dualsolution (or moat packing) are both optimal.



34 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONproblem is NP-complete [LMSL92]. The non-�xed case can be modelled by theproper function f with f(S) = 1 if jS\Cj 6= jS\Dj and 0 otherwise.4.6.5 EXACT PARTITIONING PROBLEMSIn the exact tree (cycle, path) partitioning problem, for a given k we must �nda minimum-cost collection of vertex-disjoint trees (cycles, paths) of size k thatcover all vertices. These problems generalize the minimum-weight perfect match-ing problem (in which each component must have size exactly 2), the travelingsalesman problem, the Hamiltonian path problem and the minimum-cost span-ning tree problem.We can approximate the exact tree, cycle and path partitioning problems forinstances that satisfy the triangle inequality. For this purpose, we consider theproper function f(S) = 1 if S 6� 0(mod k) and 0 otherwise. Our algorithm �ndsa forest in which each component has a number of vertices which is a multiple ofk, and such that the cost of the forest is within 2� 2n of the optimal such forest.Obviously the cost of the optimal such forest is a lower bound on the optimalexact tree and path partitions. Given the forest, we duplicate each edge and �nda tour of each component by shortcutting the resulting Eulerian graph on eachcomponent. If we remove every kth edge of the tour, starting at some edge, thetour is partitioned into paths of k nodes each. Some choice of edges to be removed(i.e., some choice of starting edge) accounts for at least 1k of the cost of thetour, and so we remove these edges. Thus this algorithm is a �4(1� 1k )(1� 1n )�-approximation algorithm for the exact tree and path partitioning problems.To produce a solution for the exact cycle partitioning problem, we add theedge joining the endpoints of each path; given the triangle inequality, this at mostdoubles the cost of the solution produced. However, the resulting algorithm isstill a �4(1� 1k )(1� 1n)�-approximation algorithm for the cycle problem by thesame argument as was used in Section 4.5.2.The proper functions corresponding to the non-�xed point-to-point connec-tion problem, the T -join problem and the exact partitioning problems are all ofthe form f(S) = 1 if Pi2S ai 6� 0(mod p) and 0 otherwise, for some integers ai,i 2 V , and some integer p.EXERCISE 4.9 Prove that, for symmetric functions f , the maximality prop-erty is equivalent to complementarity.EXERCISE 4.10 Consider a (non necessarily symmetric) function f satisfyingmaximality and complementarity. Consider the symmetrization of f de�ned byfsym(S) =max(f(S); f(V �S)). Observe that the integer programs correspond-ing to f and fsym are equivalent. Show that fsym is a proper function.EXERCISE 4.11 Prove that the performance guarantee of Theorem 4.7 is infact 2� 2=l, where l = jfv : f(fvg) = 1gj. What is the resulting performance



4.7 GENERAL PROPER FUNCTIONS 35guarantee for the shortest path problem (i.e. for f(S) = 1 i� jS\fs; tgj= 1)?EXERCISE 4.12 Prove that the algorithm of Figure 4.5 is a 2-approximationalgorithm for the class of functions f satisfying maximality and the propertythat there do not exist a set S and two disjoint subsets A;B of S such thatf(S) = f(A) = f(B) = 0 and f(S�A) = f(S �B) = 1.GENERAL PROPER FUNCTIONS4.7We now turn from 0-1 proper functions to the case of general proper functionsin which the function f can range over the nonnegative integers. In the previoustwo sections we have discussed special cases of the hitting set problem in whichwe considered the integer program (IP ) with a 0-1 function f . We now wishto consider the case in which we must hit a set �(S) at least f(S) times. Wewill give a 2H(fmax)-approximation algorithm for any proper function f , wherefmax =maxS f(S) and H(k) = 1+ 12+ � � �+ 1k � lnk. The results presented in thissection were initially given in [WGMV95, GGW93, GGP+94].The main application of an algorithm for general proper functions is thesurvivable network design problem, as discussed in Section 4.4. As we previ-ously observed, this problem can be modelled by (IP ) with the function f(S) =maxi2S;j =2S rij. It is not hard to show that this function is proper: �rst, it is ob-viously symmetric. To see that it obeys maximality, let A and B be disjoint sets,and pick i 2 A[B, j =2 A[B that attain the maximum maxi2A[B;j =2A[B rij =f(A[B). If i 2 A, then f(A) � f(A[B), else f(B) � f(A[B), ensuring thatf(A[B) �max(f(A); f(B)).In order to apply the primal-dualmethod to this class of problems, we reducethe overall problem to a sequence of hitting set problems, and apply the primal-dual approximation algorithm to each subproblem. Thus we build a solution tothe original problem in a series of phases. We start with an empty set of edgesF0 = ;. In each phase p, we consider a hitting set problem with the ground setof elements Ep = E�Fp�1. Let �p(S) = f(S)�j�Fp�1 (S)j be the de�ciency ofthe set S; that is, the number of edges we must still choose from �(S) since afeasible solution to the overall problem must contain f(S) edges, but our currentsolution Fp�1 contains only j�Fp�1 (S)j edges. Let �p;max denote the maximumde�ciency, �p;max =maxS�p(S). In the hitting set problem for phase p, the setsto be hit are de�ned as the sets �(S) for which �p(S) = �p;max. If A is a feasiblesolution to this problem, then the maximum de�ciency of A[Fp�1 can be nogreater than �p;max�1. Thus we apply the algorithm of Figure 4.4 to this hittingset problem; given the resulting set of edges A, we set Fp to A[Fp�1 and weproceed to phase p+1. Since the maximum de�ciency in the �rst phase is fmax,where fmax =maxS f(S), at most fmax phases are necessary before we have a



36 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION1 F0 ;2 for p 1 to fmax3 Comment: Phase p.4 �p(S) f(S)�j�Fp�1 (S)j for all S � V5 hp(S) � 1 if �p(S) =maxS�p(S) = fmax�p+10 otherwise6 Ep E�Fp�17 Let A be the edge set returned by the algorithm of Figure 4.4 applied to thehitting set problem associated with the the graph (V;Ep) and the function hp8 Fp Fp�1[A9 Output Ffmax FIGURE 4.9Primal-dual algorithm for proper functions f .feasible solution to the overall problem. It is possible to show that given thisscheme all fmax phases are necessary, and the maximumde�ciency in phase p isexactly fmax�p+1. The algorithm for general proper functions is formalized inFigure 4.9. The idea of augmenting a graph in phases has been previously usedin many graph algorithms; in terms of primal-dual approximation algorithms itwas �rst used by Klein and Ravi [KR93] and Saran et al. [SVY92].The central di�culties of obtaining an algorithm for general proper functionsbecome applying the algorithm of Figure 4.4 to the hitting set problems gener-ated by the algorithm above, and showing that a good performance guaranteefor the solution of each hitting set problem leads to the performance guaranteeof 2H(fmax) for the overall problem. We postpone the second di�culty for amoment in order to deal with the �rst. Given a hitting set problem from phasep, let hp(S) = 1 if we must hit �(S) and hp(S) = 0 otherwise. Unfortunately, it iseasy to come up with examples such that hp does not obey maximality, and sowe cannot straightforwardly apply the discussion of the previous two sections.Fortunately, the functions hp arising from the hitting set problems of the phaseshave a particularly nice structure. We will prove below that the functions belongto the class of uncrossable functions. A function h : 2V !f0;1g is uncrossable if� h(V ) = 0; and� if h(A) = h(B) = 1 for any sets of vertices A;B, then either h(A[B) =h(A\B) = 1 or h(A�B) = h(B�A) = 1.The class of uncrossable functions contains all functions satisfying the maximal-ity property. We will show below that the minimal violated sets of uncrossablefunctions are disjoint.LEMMA 4.3 Let f be a proper function, F � E, �(S) = f(S)�j�F (S)j, and�max = maxS�(S). Then the function h(S) = 1 if �(S) = �max and h(S) = 0otherwise is uncrossable.Proof. Since f(V ) = j�F (V )j = 0, we have h(V ) = 0. By the maximality of f ,



4.7 GENERAL PROPER FUNCTIONS 37we have the following four inequalities for any two sets X and Y :� maxff(X �Y ); f(X \Y )g � f(X).� maxff(Y �X); f(X [Y )g � f(X).� maxff(Y �X); f(X \Y )g � f(Y ).� maxff(X �Y ); f(X [Y )g � f(Y ).Summing the two inequalities involving the minimum of f(X �Y ), f(Y �X),f(X [ Y ), and f(X \ Y ) shows that f(X) + f(Y ) � maxff(X � Y ) + f(Y �X); f(X \Y ) + f(X [Y )g. To prove the lemma, we use the well-known factthat �F (S) is submodular; that is, for any sets of vertices X and Yj�F (X)j+ j�F (Y )j � j�F (X \Y )j+ j�F (X [Y )j;and j�F (X)j+ j�F (Y )j � j�F (X �Y )j+ j�F (Y �X)j:Then we can see that �(X)+�(Y ) �maxf�(X�Y )+�(Y �X);�(X \Y )+�(X [Y )g. From this inequality it is easy to see that h is uncrossable.LEMMA 4.4 Let h be any uncrossable function. Then the minimal violatedsets of any subset A are disjoint.Proof. Note that a set S is violated if h(S) = 1 and �A(S) = ;. Suppose thereexist two minimal violated sets X and Y that are not disjoint. Then we know thath(X) = h(Y ) = 1 and �A(X) = �A(Y ) = ;. Since the sets are minimal, Y �X 6= ;and X � Y 6= ;; since they are not disjoint, X \ Y 6= ;. By the de�nition ofuncrossable functions, either h(X � Y ) = h(Y �X) = 1 or h(X \Y ) = h(X [Y ) = 1. Suppose the latter is true. Then by submodularity, �A(X [Y ) = �A(X \Y ) = ;, implying that X [Y and X \Y are also violated, and contradicting theminimality of X and Y . The other case is similar.Despite Lemma 4.4, it is still di�cult to �nd the minimal violated sets (oreven just check feasibility, see Exercise 4.17) for an arbitrary uncrossable functionif the function is given only as an oracle. Consider a function taking the value1 for only one arbitrary set S; this function is uncrossable but the oracle wouldnot allow us to �nd S without testing all sets in the worst case. Nevertheless, forthe uncrossable functions generated by our algorithm, it is possible to �nd theseminimal violated sets in polynomial time by using minimum cut computations.We refer the reader to Williamson et al. [WGMV95], Gabow et al. [GGW93],Williamson [Wil93] and to Exercise 4.19 for details.Williamson et al. [WGMV95] have shown that the algorithm of Figure 4.4 isa 2-approximation algorithm for any uncrossable function; it runs in polynomialtime given a polynomial-time algorithm to compute h and the minimal violatedsets.THEOREM 4.8 The primal-dual algorithm of Figure 4.4 is a 2-approximationalgorithm for any uncrossable function f .



38 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONThis theorem can again be proved using the proof technique developed inSection 4.3 (see Theorem 4.4). However, the proof that 
 can be set to 2 is morecomplicated than in the previous cases, and is therefore omitted.We must now tackle the second di�culty and show that the performanceguarantee of 2 for the uncrossable functions arising in each phase leads to aperformance guarantee of 2H(fmax) for the overall algorithm of Figure 4.9.THEOREM 4.9 The primal-dual algorithm described in Figure 4.9 gives a2H(fmax)-approximationalgorithm for the integer program (IP ) with any properfunction f , where H(k) = 1+ 12 + 13 + : : :+ 1k .In order to prove Theorem 4.9 from Theorem 4.8, we �rst show that the dualsolution y constructed in phase p by the algorithm can be mapped to a feasiblesolution to the dual of the LP relaxation of (IP ). This dual is:Max XS�V f(S)yS �Xe2E zesubject to:(D) XS:e2�(S)yS � ce+ ze e 2E;yS � 0 ; 6= S � V;ze � 0 e 2E:Given the dual variables y constructed by the algorithm in phase p, de�ne ze =PS:e2�(S) yS for all e 2Fp�1, and ze = 0 otherwise. It is easy to verify that (y;z)is a feasible solution for (D). We now provide a proof of Theorem 4.9.Proof. Observe thatXe2E ze = Xe2Fp�1 XS:e2�(S)yS =XS j�Fp�1 (S)jyS :Comparing the value of the dual solution produced by the algorithm in phase pto the optimum value Z�D of the dual (D), we deduceZ�D �XS f(S)yS �Xe2E ze=XS (f(S)�j�Fp�1 (S)j)yS= (fmax�p+1)XS yS ;where we have used the fact that in phase p the dual variable yS > 0 only ifthe de�ciency of S (f(S) � j�Fp�1 (S)j) is fmax � p+1: Using the proof of theperformance guarantee for uncrossable functions and summing over all phases,we obtain that Xe2Ffmax ce � 2 fmaxXp=1 1fmax�p+1 Z�D = 2H(fmax) Z�D ;



4.7 GENERAL PROPER FUNCTIONS 39proving the desired result.Notice that the fact that the algorithm for uncrossable functions constructs adual feasible solution is crucial for the proof of the above theorem. An improvedapproximation algorithm for uncrossable functions would be useless for provingany performance guarantee for proper functions if it only compared the solutionproduced to the optimum value rather than to a dual feasible solution.It is an interesting open question whether the primal-dual method can beused to design approximation algorithms for general proper functions or thesurvivable network design problem with a performance guarantee independent offmax.EXERCISE 4.13 Prove that, for a proper function f , fmax =maxff(fvg) : v 2V g.EXERCISE 4.14 Show that any 0-1 function satisfying the maximality prop-erty is uncrossable.EXERCISE 4.15 Dijkstra's algorithm corresponds to the algorithm of Figure4.4 with f(S) = 1 if s 2 S and t =2 S, and f(S) = 0 otherwise. Show that thisfunction does not satisfy the maximality property but is uncrossable.EXERCISE 4.16 Show that Lemma 4.3 also holds for the more general classof skew supermodular functions. A function f is skew supermodular if f(V ) = 0and f(A)+ f(B) �max(f(A�B)+ f(B �A); f(A[B)+ f(A\B)) for all setsA and B.EXERCISE 4.17 Let h be an uncrossable function and assume we have anoracle for deciding the feasibility of a set A of edges. First prove that if S � Vis a maximal set such that A[f(i; j) : i; j 2 Sg is not feasible then V �S is aminimal violated set for A. Then deduce that the set of minimal violated setscan be obtained by less than jV j2 calls to the feasibility oracle. Given a generalproper function f , consider the problem of checking the feasibility of a set Fof edges. Prove that F is feasible if and only if the jV j�1 cuts induced by theGomory-Hu cut equivalent tree [GH61] of F have the required number of edges[GGW93].EXERCISE 4.18 Consider the uncrossable function hp de�ned in phase p ofthe algorithm of Figure 4.9. Show that A is feasible for hp if and only if A[Fp�1is feasible for the function gp(S) =max(f(S)�fmax+p;0). Moreover, show thatthis function gp is proper.EXERCISE 4.19 Using Exercises 4.17{4.18, show how to �nd the minimalviolated sets for the uncrossable function hp of the algorithm of Figure 4.9



40 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONin polynomial time. More e�cient solutions to this exercise can be found in[WGMV95, GGW93, Wil93].EXERCISE 4.20 Prove Theorem 4.8. Can you improve the performance guar-antee to 2�2=l where l denotes the maximum number of disjoint sets C1; : : :;Clsuch that f(Ci) = 1 for all i?EXTENSIONS4.8Up to this point, we have concentrated on showing how the primal-dual methodcan be applied to various network design problems that can be modelled by theinteger program (IP ) with di�erent classes of functions f . In this section, weshow that the method can be applied to other problems as well.4.8.1 MINIMUM MULTICUT IN TREESThe primal-dual method can be applied to problems that are not network designproblems. For example, Garg, Vazirani, and Yannakakis [GVY93a] have given aprimal-dual 2-approximation algorithm for the problem of �nding a minimummulticut in a tree. In the general minimum multicut problem, we are given anundirected graph G = (V;E) with nonnegative capacities ue on the edges, andpairs si; ti 2 V , for i = 1; : : :;k. We must remove a minimum-capacity subset ofedges E0 so that no si; ti pair is in the same connected component of (V;E�E0).In the minimum multicut problem in trees, the set of edges E is a tree on V .In this case, we can formulate the problem as a hitting set problem: E is theground set of elements, the cost of each element is ue, and for each i we musthit a set Ti, where Ti contains the edges on the unique path from si to ti in thetree.The minimum multicut problem in trees generalizes the vertex cover prob-lem. Indeed, consider a star graph G with center vertex r, with leaves v1; � � �; vn,and with terminal pairs (si; ti) for i= 1; � � �;k. Construct a graph H with vertexset fv1; � � �; vng, edge set f(si; ti) : i= 1; � � �;kg and assign a weight of urv to anyvertex v. Then f(r;vi) : i 2 Cg is a multicut of G of capacity U if and only iffvi : i 2 Cg is a vertex cover of H of weight U .We can get a 2-approximation algorithm for this problem by applying thealgorithm in Figure 4.2. In order to do this, we must specify how to select aviolated set. At the beginning of the algorithm, we root the tree at an arbitraryvertex r. De�ne the depth of a vertex v to be the number of edges in the pathfrom v to r, and de�ne the least common ancestor of vertices u and v to bethe vertex x of smallest depth that lies on the path from u to v. For each i, we



4.8 EXTENSIONS 41compute the depth di of the least common ancestor of si and ti. Then, amongthe violated sets Ti, we choose a set that maximizes di. The resulting algorithmis the algorithm proposed by Garg et al. [GVY93a].THEOREM 4.10 The algorithm given in Figure 4.2 is a 2-approximation al-gorithm for the minimum multicut problem in trees.Proof. We will apply Theorem 4.1. For this purpose, let A be any infeasiblesolution, let T be the violated set selected by the algorithm (i.e. the one thatmaximizes the depth of the least common ancestor), and let B be any minimalaugmentation of A. We only need to prove that jT \Bj � 2. Recall that T corre-sponds to a path from si to ti in the tree, and let ai be the least common ancestorof si and ti. Let T1 denote the path from si to ai and T2 denote the path from aito ti. Then the theorem will follow by showing that jB\T1j � 1 (the proof thatjB\T2j � 1 is identical). Suppose that jB\T1j � 2. We claim that removing alledges in B\T1 from B except the edge closest to ai is still a feasible solution,contradicting the minimality of B. To see this, notice that by the choice of T ,for any other violated sets Tj such that T1\Tj 6= ;, the set T1\Tj is a path fromsome vertex in T1 to ai; if not, Tj would have a least common ancestor of depthdj > di, a contradiction. Therefore, if Tj contains any edge in B\T1, it containsthe edge in B\T1 closest to ai.The algorithm of Figure 4.2 not only constructs an approximate primal solu-tion but also constructs an approximate dual solution. Moreover, if the capacitiesare integral, so is the dual solution constructed. In the case of the multicut prob-lem, the (integral) dual is referred to as the maximum (integral) multicommodity
ow problem: one needs to pack a maximum number of paths between terminalpairs without using any edge e more than ue times. By Theorem 4.1, the algo-rithm of Figure 4.2 constructs a multicut and an integral multicommodity 
owwhose values are within a factor of 2 of each other.4.8.2 THE PRIZE-COLLECTING PROBLEMSWe next show how we can derive 2-approximationalgorithms for extensions of thetraveling salesman problem and the Steiner tree problem. These extensions areknown as the prize-collecting traveling salesman problem and the prize-collectingSteiner tree problem. In the prize-collecting traveling salesman problem, the in-put is an undirected graph G = (V;E), nonnegative edge costs ce, and nonneg-ative penalties on the vertices �i. The goal is to �nd a tour on a subset of thevertices that minimizes the sum of the cost of the edges in the tour and thepenalties on the vertices not in the tour. We will consider a variant in whicha prespeci�ed root vertex r must be in the tour; this is without loss of gener-ality, since we can repeat the algorithm n = jV j times, setting each vertex tobe the root. The version of the prize-collecting TSP is a special case of a moregeneral problem introduced by Balas [Bal89]. The prize-collecting Steiner tree



42 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONproblem is de�ned analogously; one needs to �nd a tree containing the root rwhich minimizes the sum of the cost of the edges of the tree plus the penalties ofthe vertices not spanned. The �rst approximation algorithms for these problemswere given by Bienstock, Goemans, Simchi-Levi, and Williamson [BGSLW93]:they gave a 5/2-approximation algorithm for the TSP version (assuming the tri-angle inequality) and a 3-approximation algorithm for the Steiner tree version.The 2-approximation algorithms that we describe here are due to the authors[GW95a].We �rst concentrate on deriving a 2-approximation algorithm for the prize-collecting Steiner tree problem; we will then show how a 2-approximation algo-rithm for the prize-collecting TSP can be derived from it. The 2-approximationalgorithm is simply going to be the algorithm of Figure 4.3 for an appropriateformulation of the hitting set problem. Given the input graph (V;E) and rootvertex r, the set of ground elements for the hitting set problem is the set of alledges E together with the set of all subsets of V not containing r; that is, the setof ground elements is E[fS : S � V �frgg. The cost of a ground element e 2Eis ce, while the cost of a ground element S � V is Pv2S �v. The sets that mustbe hit are the sets Ti = �(Si)[fS : S � Sig ranging over all ; 6= Si � V �frg.Throughout the section, we assume that A denotes a subset of the ground set,so A contains vertex sets as well as edges; we will denote the collection of edgesof A by Ae and the collection of vertex sets by As.We now argue that this hitting set problem exactly models the prize-collectingSteiner tree problem. First, any feasible solution A to this hitting set problem isa feasible solution of no greater cost to the prize-collecting Steiner tree problem.Let S be the set of vertices not connected to the root r by the edges in Ae. Theset T = �(S)[fS0 � Sg must be hit, so some S0 � S must be in A. Thus the costof A includes the penalty Pv2S �v. Furthermore, given any feasible solution tothe prize-collecting Steiner tree problem, we get a feasible solution to the hittingset problem of no greater cost by taking the set of all edges in the Steiner treeplus the set S of the vertices not connected to the root.Since the ground set contains two types of elements, the dual of the LPrelaxation will contain two types of constraints; the one corresponding to anedge e is as usual XS:e2�(S)yS � ce;while the one corresponding to a set C isXS:S�C yS �Xv2C�v:If a dual feasible solution y satis�es the dual constraints for C1 and C2 at equalitythen it can easily be seen that it also satis�es the dual constraint for C1[C2at equality. This means that, given a solution A and a dual feasible solution ysatisfying the primal complementary slackness conditions, the solution obtainedby replacing the sets in As by their union still satis�es the primal complementaryslackness conditions with y. Although it will be important to keep track of thedi�erent sets in As, we will always assume that the union of the sets in As



4.8 EXTENSIONS 431 y 02 A ;3 C  ffvg : v 2 V g4 l 05 While A is not feasible6 l l+17 V  fS 2 C : r =2 S and S =2Asg8 Increase yS uniformly for all S 2 V until9 either (i) 9el 2 �(T );T 2 V such that PS:el2�(S) yS = cel10 or (ii) 9Sl 2 V such that PS:S�Sl yS =Pv2Sl �v11 If (i) then12 al el13 merge the two components of C spanned by el14 else al Sl15 A A[falg16 For j l downto 117 if A�fajg is feasible then A A�fajg18 Output Ae (and the union of the sets in As and y)FIGURE 4.10Primal-dual algorithm for the prize-collecting Steinertree problem.is implicitly taken before checking feasibility of A. Thus, we will regard A asfeasible if the set of vertices not connected to the root r by edges in Ae can becovered by subsets of As.Since the sets to be hit naturally correspond to vertex sets, we will againrefer to the vertex sets Si instead of referring to the associated subsets Ti of theground set. In particular, we can use the algorithm of Figure 4.4 rather than theone of Figure 4.3. But, for this, we �rst need to understand what sets are violatedand which ones are minimal. Given the de�nition of Ti, a violated set for thecurrent solution A will be a union of connected components of (V;Ae) providedthe union (i) does not contain the root and (ii) cannot be covered by sets ofAs. Thus the minimal violated sets V are the connected components C of (V;Ae)which do not contain the root and which cannot be covered by sets in As. We givethe specialization of the algorithm of Figure 4.4 to the prize-collecting Steinertree problem in Figure 4.10. In the �gure, C denotes the connected components of(V;Ae) and V denotes the collection of minimal violated sets. Also, for simplicity,we have allowed a set S =2 As to be violated even though it can be covered bysets of As. The algorithm would then simply add S to As without increasing anydual variable.THEOREM 4.11 The primal-dual algorithm described in Figure 4.10 gives a2-approximation algorithm for the prize-collecting Steiner tree problem.Before we present the proof of this theorem, it is useful to understand what



44 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONthe reverse delete step really achieves in this case. First, observe that at any pointduring the execution of the algorithm the sets in As form a laminar family; i.e.,any two sets in As are either disjoint or one is contained in the other. Moreover,if S1 � S2 are two sets of As then S2 was added after S1 and will be consideredfor removal before S1 is. Because of the reverse delete step, in any solution Boutput by the algorithm, the sets in Bs will be disjoint. Furthermore, a set S inAs will be considered for removal after all the edges in �(S), but before all theedges with both endpoints within S. This implies that S must be kept in thereverse delete step only if all the edges in �(S) have been removed.Proof. Since the algorithm is equivalent to the algorithm of Figure 4.3, we canuse Theorem 4.2. We must therefore show that for any infeasible solution A andany minimal augmentation B of A,Xi:Si2V(A) jB\Tij � 2jV(A)j;where V(A) is the the collection of violated sets. In fact, looking back at theproof of Theorem 4.2, we don't need to show the inequality for any minimalaugmentation B, but only for those which could be produced by the algorithm.Given the above discussion, we can thus assume that the sets in Bs are disjoint,that they all consist of unions of connected components of (V;Ae), and that noedge e 2Be belongs to �(S) for some set S 2Bs.Consider now the graph H formed by shrinking the connected components of(V;Ae). LetW denote the vertices ofH corresponding to the sets in V(A), and letW 0�W denote the subset of these vertices corresponding to the union of the setsin Bs. Then Pi:Si2V(A) jB\Tij=PSi2V(A)(jBe\ �(Si)j+ jBs\fS : S � Sigj) =Pv2W dv+ jW 0j, and we must show that this quantity is no more than 2jW j. Bythe observations about Bs above, if v 2W 0, then dv = 0, so that we must provethatPv2W�W 0 dv+ jW 0j � 2jW j. The fact that the reverse delete step producesa minimal solution implies that any leaf of H must be a vertex of W ; if a leaf ofH is not in W , we could delete the corresponding edge of Be without a�ectingthe feasibility of B. Then, as before, we derive that Pv2W�W 0 dv � 2jW �W 0jsince we are only discarding vertices of degree at least 2. ThusXv2W�W 0 dv+ jW 0j � 2jW �W 0j+ jW 0j= 2jW j� jW 0j � 2jW j;which is the desired inequality.Given that edge costs obey the triangle inequality, a 2-approximation algo-rithm for the prize-collecting TSP can be obtained as follows: given the inputgraph G, edge costs ce, penalties �i, and root vertex r, we apply the abovealgorithm for the prize-collecting Steiner tree to the graph G, edge costs ce,penalties �0i = �i=2, and root vertex r. The resulting tree is converted to a tourby the usual technique of doubling the edges and shortcutting the resultant Eu-lerian tour. The proof that this algorithm is a 2-approximation algorithm for theprize-collecting TSP is similar to the proof used in Section 4.5.2 for the lowercapacitated cycle problem, and we leave it as an exercise for the reader. This



4.8 EXTENSIONS 452-approximation algorithm has been used for deriving approximation algorithmsfor more complex problems; see [BCC+94, GK96, AABV95, BRV95].4.8.3 VERTEX CONNECTIVITY PROBLEMSSo far all network design problems discussed have involved �nding minimum-costsubgraphs with certain edge-connectivity properties. However, the primal-dualmethod can also be applied to some vertex-connectivity problems. Ravi andWilliamson [RW95] have shown that the primal-dual method gives a 2H(k)-approximation algorithm for the minimum-cost k-vertex-connected subgraphproblem, in which one must �nd a minimum-cost set of edges such that there areat least k vertex-disjoint paths between any pair of vertices. They also presenta 3-approximation algorithm for the survivable network design problem whenthere must be rij vertex-disjoint paths between i and j, and rij 2 f0;1;2g forall i; j. No approximation algorithms were previously known for either of theseproblems.We brie
y sketch how the primal-dual algorithm is used in the case of theminimum-cost k-vertex-connected subgraph problem. As in the case of generalproper functions (Section 4.6), the solution is constructed in a sequence of kphases. In phase p, the current solution is augmented to a p-vertex-connectedgraph. By Menger's Theorem, a graph is p-vertex-connected if there does notexist any set of p�1 or fewer vertices such that removing the set divides the graphinto two non-empty pieces. Let (V;E) be the input graph, and let Fp�1 denotethe set of edges selected at the end of phase p�1. To augment a (p�1)-vertex-connected graph (V;Fp�1) to a p-vertex-connected graph, we apply the algorithmof Figure 4.4 to the hitting set problem in which the ground elements are theedges of E�Fp�1. For any set of p�1 vertices whose removal separates (V;Fp�1)into two pieces Si and S0i, we must hit the set Ti = �(Si : S0i)\ (E�Fp�1), where�(S : S0) denotes the set of edges with one endpoint in S and one in S0. If Ais any feasible solution to this hitting set problem, then A[Fp�1 is a p-vertex-connected graph by Menger's Theorem. We correspond the smaller of Si and S0ito each violated set Ti; one can then show for this problem that the minimalviolated sets S are disjoint. The algorithm of Figure 4.4 can then be applied ina straightforward way to �nd a low-cost augmentation A of Fp�1; we set Fp toA[Fp�1. As with Theorem 4.8, it is possible to show that the algorithm yieldsa 2-approximation algorithm for this hitting set problem, and using a proofsimilar to that of Theorem 4.9, it can be proven that the overall algorithm givesa 2H(k)-approximation algorithm for the k-vertex-connected subgraph problem.Other results known for vertex-connectivity problems can be found in Chap-ter 6.EXERCISE 4.21 Show that for star graphs and unit capacities, �nding themaximum integral multicommodity 
ow is equivalent to a maximum matchingproblem.



46 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATIONEXERCISE 4.22 Prove that the primal-dual algorithm for the prize-collectingTSP is a 2-approximation algorithm.EXERCISE 4.23 Show that the algorithm of Figure 4.10 returns a tree suchthat the sum of the cost of the edges plus twice the sum of the penalties of thevertices not visited is at most twice the cost of the optimum solution. For anapplication, see [GK96, BRV95].EXERCISE 4.24 Does the fact that the elements are deleted in reverse matterfor the algorithm of Figure 4.10?CONCLUSIONS4.9To this point, we have concentrated mainly on showing how the primal-dualmethod allows the proof of good performance guarantees, and have mostly setaside the issues of running time and performance in practice. A common criticismof approximation algorithms is that they might not generate \nearly-optimal"solutions in practice. A practitioner will seldom be satis�ed with a solution guar-anteed to be of cost less than twice the optimum cost, as guaranteed by mostof the algorithms of this chapter, and would prefer an algorithm that �nds so-lutions within a few percent of optimal. The good news is that the studies ofthe primal-dual method performed thus far show that it seems to perform verywell in practice, at least on some problems. The authors [WG94] report com-putational results with the 2-approximation algorithm for the minimum-weightperfect matching problem under the triangle inequality. They consider both ran-dom and real-world instances having between 1;000 and 131;072 vertices. Theresults indicate that the algorithm generates a matching within 2% of optimalin most cases. In over 1,400 experiments, the algorithm was never more than 4%from optimal. Hu and Wein [Wei94] implemented the algorithm for the general-ized Steiner tree problem, and found that the algorithm was usually within 5%of optimal. Because of the di�culty of �nding the optimal solution in this case,their instances had at most 64 vertices. Finally, Mihail and Shallcross imple-mented a modi�cation of the algorithm given for the survivable network designproblem for inclusion in a network design software package. Although they didno rigorous testing, they report that the algorithm does well in practice, comingwithin a few percent of the expected optimal solution [MSDM96].In this chapter, we have shown the power of the primal-dual method fordesigning approximation algorithms for a wide variety of problems. Most ofthe problems considered in this chapter were network design problems, but themethod is so general that it is likely to have interesting applications for many
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