
CO759: Approximation and Randomized Algorithms, Spring 2013

Instructor: Chaitanya Swamy

Assignment 1

Due: By June 20, 2013

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and any external sources of help or reference. To get
full credit for the bonus problems, you should not refer to non-course literature (i.e., papers, books,
external sources on the Internet etc.), but you may consult the reference books (Williamson-Shmoys
and Vazirani) listed on the course webpage. All questions carry equal weightage.

Quick Primer on Linear Programming: A linear program (LP) is a problem of the following
form(s)

max cTx (P)

s.t. Ax ≤ b
x ≥ 0

min bT y (D)

s.t. AT y ≥ c
y ≥ 0

where we seek to optimize a linear function of a finite number of variables subject to a finite
number of linear constraints. Any such LP may either be infeasible, or have an optimal solution,
or be unbounded. Given a maximization primal linear program of the form (P) above, one can
construct a dual linear program (D) that provides a tight upper bound on the optimal value of the
primal LP. The rationale behind the construction of the dual is as follows. Let A = (aij) above
be an m × n matrix, with aTi denoting the i-th row of A and Aj denoting the j-th column of A.
Each primal constraint is associated with a nonnegative dual variable yi. Now if we multiply each
primal constraint with its corresponding dual variable yi and sum the resulting inequalities, we
obtain the compound inequality

∑n
j=1

(∑m
i=1 yiaij

)
xj ≤ bT y. Thus, if we enforce the constraints∑m

i=1 yiaij ≥ cj for each variable xj , then since x ≥ 0, we obtain that cTx ≤ yTAx ≤ bT y. Notice
that these constraints are precisely the constraints of the dual LP, and so we have proved that the
value of any feasible solution y to (D) provides an upper bound on the optimal value of the primal LP.
This statement is often known as weak duality. (Also, observe that the primal LP (P) corresponds
to the dual of the minimization problem (D).) The central theorem of linear programming is a much
stronger theorem, often called strong duality.

(Strong Duality): Let (P) be a pair of primal and dual LPs, with (P) being a maximization LP
(as above). Then, the following hold.

(i) (P) has an optimal solution iff (D) has an optimal solution;

(ii) The optimal values of (P) and (D) (if they exist) are equal;

(iii) If x∗ and y∗ are respectively optimal solutions to (P) and (D) respectively, then (part (ii)
implies that) they must satisfy the following complementary slackness conditions: (a) x∗j >

0 =⇒ AT
j y
∗ = cj ; and (b) y∗i > 0 =⇒ aTi x

∗ = bi.
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Q1: Set-cover I

(a) (Do not hand this in) Show that the integrality gap of the set-cover LP is Ω(B), where B is
the maximum-frequency of an element. (That is, construct an instance where the ratio of the
optimum values of the integer and linear programs is Ω(B).)

(b) In class, we constructed a set-cover instance with sets having different weights showing that
the approximation ratio of the greedy algorithm is Ω(lnn). Show that the approximation ratio
of the greedy algorithm remains Ω(lnn) even on unweighted set-cover instances, i.e., where all
sets have unit weight.

(c) Show that for unweighted set-cover instances, the analysis of the greedy algorithm can be
improved slightly to show that it returns a solution with at most

(
1 + ln( n

OPT )
)
OPT sets.

(Hint: In the unweighted setting, the cost of the sets used by the greedy algorithm (or any
reasonable algorithm) to cover k currently-uncovered elements is trivially bounded by k.)

(d) (Bonus part) Show the integrality gap of the set-cover LP is Ω(lnn).

Q2: Set cover II

(a) (Vazirani, Ex. 2.14) Given a directed graph G = (V,E), a feedback vertex set is a subset
V ′ ⊆ V whose removal makes the graph acyclic. Given node costs {cv}, the feedback vertex
set problem is to find a feedback vertex set of minimum cost.

A tournament is a directed graph G = (V,E) where for every pair u, v ∈ V , exactly one of the
edges (u, v) or (v, u) is in E. In the remainder of this part, G denotes a tournament.

Show that V ′ is a feedback vertex set iff the graph G′ = (V \ V ′, E[V \ V ′]) contains no
directed triangles (cycles of length 3), where E[S] := {(u, v) ∈ E : u, v ∈ S}. Hence, give a
3-approximation algorithm for the feedback vertex set problem on tournaments.

(b) In class, we gave a randomized-rounding algorithm that returned a collection of sets that form
a set cover with high probability and have expected cost O(lnn) · OPTLP, where OPTLP is
the optimal value of the set-cover LP. We now describe how to derandomize this algorithm to
obtain a deterministic algorithm that returns a set cover of cost at most O(lnn) ·OPTLP.

Instead of the randomized algorithm described in class, it will be slightly more convenient to
consider the following randomized algorithm. Let x∗ be an optimal solution to the set cover
LP. Independently, for every set S, we pick S with probability 1− e−2 lnn·x∗S .

To derandomize this algorithm, we consider sets one by one and deterministically decide whether
or not to pick a set, in such a way that the deterministic algorithm is always “ahead” of the
randomized algorithm. Let S1, . . . , Sm be the sets in the set-cover instance. Suppose that
we have already picked the collection S ′ of sets from {S1, . . . , Si−1}, and we pick sets from
Si, . . . , Sm according to the randomized algorithm. Let R be the random collection of sets
picked from Si, . . . , Sm. Define

Φ(S ′, i) :=
∑
S∈S′

wS + E
[∑
S∈R

wS

]
+ n ·OPTLP · E

[
no. of elements not covered by S ′ ∪R

]
.

Also define Φ(S ′,m + 1) as above, where R is now taken to be the empty set. Prove that
(i) Φ(∅, 1) ≤ (2 lnn + 1) · OPTLP; and (ii) for any collection S ′ ⊆ {S1, . . . , Si−1}, we have
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Φ(S ′, i) ≥ min
{

Φ(S ′, i+ 1),Φ(S ′ ∪ {Si}, i+ 1)
}

. Deduce that when we consider each set Si, we
can deterministically decide whether or not to pick Si in our collection, so as obtain a set cover
S ′ of cost at most Φ(∅, 1) ≤ (2 lnn+ 1) ·OPTLP.

Q3: Vertex cover and set cover; see Williamson-Shmoys Ex. 1.5

(a) Consider the following set-cover style LP-relaxation for the vertex cover problem.

min
∑
v

wvxv (VC-P)

s.t. xu + xv ≥ 1 for all (u, v) ∈ E
x ≥ 0

where v indexes the nodes of the underlying graph. Show that every extreme point x̂ of (VC-P)
is half-integral, that is, x̂v ∈

{
0, 1

2 , 1
}

for all v.

(Hint: One way to show this is to show that a feasible solution x to (VC-P) with xv ≤ 1 for
all v can be expressed as a convex combination of half-integral solutions.)

(b) Devise a 3
2 -approximation algorithm for the vertex cover problem on planar graphs. You may

use the fact that every planar graph is 4-colorable: that is, its nodes can be colored using 4
colors so that the endpoints of every edge receive distinct colors. You may use the result of
part (a) even if you did not manage to solve part (a).

(c) (Bonus part) Generalize the result of part (b) to set cover as follows. Say that a set-cover
instance

(
U,S, {wS}

)
is k-colorable if the set-collection S can be partitioned into k disjoint

subcollections S1, . . . ,Sk such that every element is covered by at most one set in each Sj .
Give a B

(
1 − 1

k

)
-approximation algorithm for k-colorable set-cover instances, where B is the

maximum frequency of an element.

Q4: Facility location

(a) Say that an algorithm is an LP-relative ρ-approximation algorithm for set cover if it returns a
solution of cost at most ρOPTLP(I) for every instance I, where OPTLP(I) is the optimal value
of the set-cover LP for instance I. Similarly, an LP-relative ρ-approximation for uncapacitated
facility location (UFL) means that the solution cost is at most ρ times the optimal value of the
natural LP-relaxation for UFL described in class.

Use an LP-relative ρ-approximation algorithm for set cover to devise an LP-relative (ρ + 1)-
approximation algorithm for non-metric UFL. Conclude that non-metric UFL admits an LP-
relative O(lnn)-approximation algorithm.

In the remaining parts, we consider metric UFL, and describe and analyze a
(
1 + 2

e

)
-approximation

algorithm based on clustering and randomized rounding. Recall that we have a set F of facilities
with facility-opening costs {fi}, a set D of clients, and we incur an assignment cost cij for assigning
client j to facility i, where the cijs form a metric. Let (x∗, y∗) be an optimal solution to the facility-
location LP, and (α∗, β∗) be an optimal solution to the dual LP. Let F ∗ =

∑
i fiy

∗
i , and define

C∗j =
∑

i cijx
∗
ij and Fj = {i : x∗ij > 0} for a client j. It will be convenient to assume that if x∗ij > 0
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then x∗ij = y∗i (note that we always have x∗ij ≤ y∗i ). This can be arranged as follows. For a facility
i, let 0 < γ1 < γ2 < . . . < γk < y∗i be the distinct positive x∗ij-values that are strictly smaller than
y∗i . We replace facility i by k + 1 “clones” i1, . . . , ik+1 that are all co-located located at i (i.e.,
ci`j = cij for all j and ` = 1, . . . , k + 1). Define γ0 = 0, γk+1 = y∗i . We set y∗i` = γ` − γ`−1 for all
` = 1, . . . , k + 1. If x∗ij = γr, we set x∗i`j = y∗i` for all ` = 1, . . . , r. Clearly, any solution to the new
instance translates to a solution to the original instance with the same cost, and vice versa.

The improved rounding algorithm is as follows. We form clusters as in the algorithm described
in class, except that we now pick the client j (among the remaining candidate cluster centers)
with smallest C∗j + α∗j value. Let D′ ⊆ D denote the cluster centers. We set nbr(k) = j if client
k was removed from the list of candidate cluster centers due to client j (so Fj ∩ Fk 6= ∅ and
C∗j + α∗j ≤ C∗k + α∗k); also nbr(j) = j for j ∈ D′. In each cluster Fj , where j ∈ D′, we open exactly
one facility, choosing facility i ∈ Fj with probability y∗i = x∗ij . Also, we open every unclustered
facility i /∈

⋃
j∈D′ Fj independently with probability y∗i . We assign every client to the nearest open

facility.

(b) Consider a client j ∈ D′. LetXj be the random variable denoting the distance between j and the
facility opened from Fj . Prove that E

[
Xj

]
= C∗j , which thus uper bounds the expected assign-

ment cost of j. Consider any set S ⊆ Fj . Prove that mini∈S cij+E
[
Xj | no facility from S is open

]
≤

C∗j + α∗j .

(c) Now consider a client k ∈ D \ D′. Prove that the expected assignment cost of k is at most
C∗k + 2α∗k ·

∏
i∈Fk

(1− y∗i ). You may use the following inequality.

Let 0 ≤ d1 ≤ d2 ≤ . . . ≤ dr, and y1, y2, . . . , yr ∈ [0, 1]. Then

d1y1+d2y2(1−y1)+d3y3(1−y1)(1−y2)+. . .+dryr

r−1∏
i=1

(1−yi) ≤
∑r

i=1 diyi∑r
i=1 yi

·
(

1−
r∏

i=1

(1−yi)
)
. (1)

(Hint: Let Xk be the random variable denoting the assignment cost of k, and N be the event
that no facility in Fk is opened. Bound E

[
Xk|N

]
by an expression that looks similar to the

left-hand-side of (1); use part (b) to bound E
[
Xk|N

]
.)

(d) Deduce that the above algorithm returns a solution of expected cost at most
(
1 + 2

e

)(
F ∗ +∑

j C
∗
j

)
, and hence is a

(
1 + 2

e

)
-approximation algorithm.

(e) (Bonus part) Prove inequality (1).

Q5: Lagrangian-multiplier-preserving (LMP) algorithms

(a) Recall that in the algorithm for k-facility location (k-FL), we used an LMP ρ-approximation
algorithm for (metric) UFL to find two solutions

(
F 1, {i1(j)}

)
with |F 1| = k1 < k, and(

F 2, {i2(j)}
)

with |F 2| = k2 > k such that the fractional solution obtained by taking a convex

combination of the two with weights a = k2−k
k2−k1 and b = k−k1

k2−k1 respectively has cost at most
(ρ+ ε)OPT k-FL (where ε can be made arbitrarily small). We showed that this fractional solu-
tion can be rounded to an integer solution that opens k facilities, while blowing up the solution
cost by a factor of at most 2.

Show that if the two solutions obtained have the additional property that F 1 ⊆ F 2, then we
can round the fractional solution without losing any additional factor, thus obtaining a solution
of cost at most (ρ+ ε)OPT k-FL.
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(b) In the prize-collecting set-cover (PCSC) problem, the input is a set-cover instance, but we are
allowed to not cover an element e at the expense of incurring a nonnegative penalty πe. The goal
therefore is to choose a collection S ′ of sets so as to minimize

∑
S∈S′ wS +

∑
e not covered by S′ πe.

An LMP ρ-approximation algorithm for PCSC is an algorithm that returns a solution S ′ satis-
fying

∑
S∈S′ wS + ρ ·

∑
e not covered by S′ πe ≤ ρ ·OPTPCSC. Design an LMP H∆-approximation

for PCSC, where ∆ is the size of the largest set. Recall that Hk = 1 + 1
2 + . . .+ 1

k is the k-th
harmonic number.

(c) (Bonus part) Use the LMP H∆-approximation algorithm for PCSC to obtain an O(H∆)-
approximation algorithm for the partial set-cover problem, where we have an input parameter
k and we seek to find the minimum-cost collection of sets that cover at least k elements.
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