
CO759: Approximation and Randomized Algorithms, Spring 2013

Instructor: Chaitanya Swamy

Assignment 2

Due: By July 23, 2013

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and any external sources of help or reference. To get
full credit for the bonus problems, you should not refer to non-course literature (i.e., papers, books,
external sources on the Internet etc.), but you may consult the reference books (Williamson-Shmoys,
Vazirani, Motwani-Raghavan) listed on the course webpage. All questions carry equal weightage.

Let f : 2V 7→ Z be a (not-necessarily {0, 1}) cut-requirement function with f(∅) = f(V ) = 0.

(i) f is symmetric if f(A) = f(V \A) for all A ⊆ V .

(ii) f satisfies maximality if f(A ∪B) ≤ max
{
f(A), f(B)

}
for all disjoint A,B ⊆ V

(iii) f is downwards monotone if f(A) ≥ f(B) for all ∅ 6= A ⊆ B.

(iv) f is proper if f is symmetric and satisfies maximality.

A function f : 2V 7→ R is supermodular if f(A) + f(B) ≤ f(A ∩B) + f(A ∪B) for all A,B ⊆ V ; f
is weakly supermodular if f(A) + f(B) ≤ max

{
f(A ∩ B) + f(A ∪ B), f(A \ B) + f(B \ A)

}
for all

A,B ⊆ V .

The cut-covering LP defined by a cut-requirement function f is as follows.

min
∑
e

cexe s.t. x
(
δ(S)

)
≥ f(S) ∀S ⊆ V, x ≥ 0. (P)

Q1: Primal-dual schema for network design

(a) (Do not hand this in) Let f be a {0, 1} cut-requirement function satisfying maximality.
Show that a set F of edges is feasible for the corresponding cut-covering problem iff we have
f(C) = 0 for every connected component C of (V,A).

(b) (Do not hand this in) Recall that in the generalized Steiner tree problem, we are given
terminal sets T1, . . . , Tp ⊆ V , and we seek a min-cost set F of edges such that each Ti is contained
in a component of (V, F ). This can be modeled by the following {0, 1} cut-requirement function:
fGST(S) = 1 if there is some Ti such that S ∩ Ti 6= ∅, Ti \ S 6= ∅. Prove that fGST is proper.

Show that the following {0, 1} cut-requirement function is proper. We are given sets C,D ⊆ V
with |C| = |D|, and we define f(S) = 1 if |S ∩ C| 6= |S ∩D|.

(c) Prove the following generalization of a claim stated in class. Let f be a proper function. Then,
f(C) = 0 implies that f(A) = f(C \A) for all A ⊆ C.

(d) Let f be a {0, 1} downwards-monotone cut-requirement function. Prove that the primal-dual
algorithm described in class yields a

(
2 − 1

|{v:f({v})=1}|
)
-approximation algorithm for the cor-

responding cut-covering problem. Let F be the solution returned, y be the dual solution
constructed, and τ be the “time” when the dual-ascent phase of the algorithm stops. Prove
that c(F ) ≤ 2

∑
S:f(S)=1 yS − τ .
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(e) (Bonus part) Does the 2 − 1
|{v:f({v})=1}| guarantee proved in part (d) match the integrality

gap of the cut-covering LP for {0, 1} downwards monotone functions?

Remark 1. The guarantee of the primal-dual algorithm for a {0, 1} proper function f can be
improved to 2− 2

{v:f({v})=1}| , and this does match the integrality gap of the LP for {0, 1} proper
functions; the simplest example is the spanning-tree problem on a cycle.

(f) Given a subset T ⊆ V with |T | even, the T -join problem seeks to find a min-cost set F of edges
F such that |δF (v)| is odd if v ∈ T , and even if v /∈ T . Such a set F is called a T -join. For
example, when T = {s, t}, a T -join is is simply an s-t path.

Give a 2-approximation algorithm for this problem.

Q2: LP rounding for network design

(a) (Do not hand this in) Prove that the cut-requirement function fSNDP(S) = maxi∈S,j /∈S rij ,
where rij = rji ∈ Z+ for all i, j, modeling the survivable network design problem (SNDP) is
weakly supermodular.

(b) Prove that if f is a proper function then f is weakly supermodular.

(c) Let f : 2V 7→ R be weakly supermodular, and F be a set of edges. Prove that the function f ′

defined by f ′(S) = f(S)− |δF (S)| is also weakly supermodular.

(d) The tree augmentation problem is defined as follows. We are given a complete undirected graph
G = (V,E) with edge costs {ce ≥ 0}e∈E and a spanning tree T = (V,E′) of G. The goal is to
augment T with a min-cost set F of edges so that the graph (V,E′ ∪ F ) is 2-edge connected,
that is, there are at least 2 edge disjoint paths in E′ ∪ F between every pair of nodes.

Devise a 2-approximation algorithm for this problem.

Q3: Extreme points
Given a family S of sets on a ground set V , we say that a function f : S 7→ R is supermodular on S
if for any two sets A,B ∈ S where A∩B,A∪B ∈ S, we have f(A) + f(B) ≤ f(A∩B) + f(A∪B).
Similarly, we say that f is submodular on S if for any two sets A,B ∈ S such that A∩B,A∪B ∈ S,
we have f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

(a) Let G = (V,E) be an undirected graph. We call a collection S of subsets of V a strong crossing
family if whenever A,B ∈ S, we also have that A∩B,A∪B ∈ S. Consider the following variant
of the cut-covering LP, where S is a strong crossing family and f : S 7→ Z+ is supermodular on
S.

min
∑
e

cexe s.t. x
(
δ(S)

)
≥ f(S) ∀S ∈ S, x ≥ 0. (C-P)

Prove that every extreme-point solution to (C-P) is integral.

(b) Let L1 and L2 be two laminar families on a ground set V . Let a, b ∈ ZL1 and `, u ∈ ZL2

be integer (but not necessarily nonnegative) vectors. Show that all extreme points of the
polyhedron defined by the following inequalities is integral.

aS ≤
∑
v∈S

xv ≤ bS ∀S ∈ L1, `S ≤
∑
v∈S

xv ≤ uS ∀S ∈ L2.
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(c) Let D = (N,A) be a directed graph. We say that a family C of subsets of N is a crossing family
if for every A,B ∈ C such that A ∩ B 6= ∅, A ∪ B 6= N , we have that A ∩ B,A ∪ B ∈ C. Let
C ⊆ 2N be a crossing family, and f : C 7→ Z be submodular on C. Note that f(S) could be
negative. Consider the following LP, where a indexes the arcs in A.

min
∑
a

caxa s.t. x
(
δout(S)

)
− x
(
δinto(S)

)
≤ f(S) ∀S ∈ C, x ≥ 0. (SF-P)

Feasible solutions to (SF-P) are called submodular flows for C. Prove that every extreme point
of (SF-P) is integral.

(Hint: Given a subfamily F ⊆ C of non-crossing tight sets, construct an equivalent laminar
family L with |L| = |F|.)
Remark 2. A variety of results in combinatorial optimization fall out as special cases of the
above result, including integrality of the intersection of two matroid polyhedra and the Lucchesi-
Younger theorem.

Q4: Multiway cut and multicut

(a) Given an undirected graph G = (V,E) with edge costs {ce ≥ 0}, a Gomory-Hu tree of G is a
tree H = (V, F ), where F may contain edges not in E, with weights {we ≥ 0}e∈F , with the
following property: for any two nodes s, t ∈ V , if e is a minimum-weight edge on the unique
s-t path in H, then we is the value of the min s-t cut in G and the partition (Se, V \ Se) of V
induced by deleting e from H is a minimum s-t cut. A Gomory-Hu tree can be computed in
polynomial time.

Consider the following algorithm for finding a multiway cut in G for the terminal-set T . Find
a Gomory-Hu tree H = (V, F ) of G. For every pair s, t ∈ T , let es,t ∈ F be a minimum-weight
edge on the unique s-t path in H, where we break ties by imposing an arbitrary ordering on F .
Let C be the set of all such edges, and (S1, . . . , Sp) be the partition of V induced by removing
C from H. Prove that

⋃p
i=1 δG(Si) is a multiway cut of cost at most

(
2 − 2

|T |
)
· OPT , where

OPT is the cost of an optimal multiway cut.

(b) The node multiway cut problem is as follows. We are again an undirected graph G = (V,E)
and a set T ⊆ V of terminals, but now we have costs {cv ≥ 0}v∈V on the nodes. The goal
is to choose a min-cost set A ⊆ V \ T of nodes whose deletion from G disconnects every pair
of terminals. The following is a natural LP-relaxation of the problem. Let Puv denote the
collection of all u-v paths in G.

min
∑
v/∈T

cvxv s.t.
∑

v∈P\T

xv ≥ 1 ∀P ∈ Ps,t,∀s, t ∈ T, x ≥ 0. (MWC-P)

Show that extreme points of (MWC-P) are half-integral, and use this to obtain a
(
2 − 2

|T |
)
-

approximation algorithm.

Remark 3. Note that the node multiway cut problem is a generalization of the (edge) multiway
cut problem since one can create a node in the “middle” of every edge e and set its cost equal
to ce and set the costs of the other nodes, that is, the original nodes of G to be extremely
high (essentially infinity). For such an instance, the above LP reduces to the path-covering LP
stated in class.
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(c) Design a 2-approximation algorithm for the multicut problem on trees.

Remark 4. The previous version asked you to prove the potentially incorrect statement that
“every extreme point x of the natural path-covering LP described in class has the property
that there is some edge e such that xe ≥ 1

2 .” I do not know if this is correct, or if there is a
counterexample.

Q5: Random edge-contraction algorithm Contract for min-cuts and its variants

(a) (Do not hand this in) Give a minimum s-t cut instance on an undirected graph where the
number of minimum s-t cuts is exponential in n (the number of nodes).

(b) Give an example of a minimum s-t cut instance on an undirected graph with no (s, t) edges
where the probability that Contract returns some minimum s-t cut is exponentially small in n.
(Note that we are considering the probability of returning any min s-t cut, not a specific min
s-t cut.)

(c) (Motwani-Raghavan, Exercise 10.9) Consider running algorithm Contract until the number
of nodes is reduced to t, then using an O(n3)-time algorithm to find a min-cut in the reduced
graph, and repeating this process as many times as necessary to ensure success probability at
least 1

2 . Show that by choosing t suitably, this yields an O
(
n8/3

)
time algorithm, and that no

better running time is possible using this approach.

(d) The minimum k-cut problem seeks to find a partition of the node-set of a given undirected
multigraph G into k non-empty subsets (S1, . . . , Sk) so as to minimize

∣∣⋃k
i=1 δ(Si)

∣∣. Modify
algorithm Contract suitably to give a devise a randomized algorithm for this problem, and hence
obtain an upper bound on the number of distinct minimum k-cuts in an n-node multigraph.
Your bound should be polynomial in n for any fixed k.

(e) (Motwani-Raghavan, Problem 10.13, 10.14(b)) For any α ≥ 1, an α-approximate min-
cut of G = (V,E) is a cut (S, V \S), where ∅ 6= S ( V , such that |δ(S)| ≤ α ·min∅6=A(V |δ(A)|.
Adapt algorithm Contract so that it returns any fixed α-approximate min-cut with non-zero
probability. Use this to give an upper bound on the number of α-approximate min-cuts in an
n-node multigraph that is polynomial in n for any fixed α.
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