CO759: Algorithmic Game Theory — Spring 2015

Instructor: Chaitanya Swamy

Assignment 1
Due: By Jun 25, 2015

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and any external sources of help or reference. All
questions carry equal weightage.

Quick Primer on Linear Programming: A linear program (LP) is a problem of the following
form(s)

max clx (P) min  b'y (D)
st. Az <b s.t. ATy >c
x>0 y=>0

where we seek to optimize a linear function of a finite number of variables subject to a finite
number of linear constraints. Any such LP may either be infeasible, or have an optimal solution,
or be unbounded. Given a maximization primal linear program of the form (P) above, one can
construct a dual linear program (D) that provides a tight upper bound on the optimal value of the
primal LP. The rationale behind the construction of the dual is as follows. Let A = (a;;) above
be an m x n matrix, with a! denoting the i-th row of A and A; denoting the j-th column of A.
Fach primal constraint is associated with a nonnegative dual variable y;. Now if we multiply each
primal constraint with its corresponding dual variable y; and sum the resulting inequalities, we
obtain the compound inequality 2?21 (Zﬁl yiaij)xj < bTy. Thus, if we enforce the constraints
Z;’;l y;a;; > c; for each variable x;, then since z > 0, we obtain that e < yTAx < bTy. Notice
that these constraints are precisely the constraints of the dual LP, and so we have proved that the
value of any feasible solution y to (D) provides an upper bound on the optimal value of the primal LP.
This statement is often known as weak duality. (Also, observe that the primal LP (P) corresponds
to the dual of the minimization problem (D).) The central theorem of linear programming is a much
stronger theorem, often called strong duality.

(Strong Duality): Let (P) be a pair of primal and dual LPs, with (P) being a maximization LP
(as above). Then, the following hold.

(i) (P) has an optimal solution iff (D) has an optimal solution;
(ii) The optimal values of (P) and (D) (if they exist) are equal;
(iii) If * and y* are respectively optimal solutions to (P) and (D) respectively, then (part (ii)
implies that) they must satisfy the following complementary slackness conditions: (a) ;1:}k >
0 = AJTy* =c¢j; and (b) yf >0 = al

QO0: (Do Not HanD THis IN) Consider a (simultaneous-move) two-person game described by two
m x n matrices R and C that specify respectively, the payoffs to the row player and the column
player. That is, (R, C) describes a two-person game where the row and column players have m and
n strategies respectively, and R;; and Cj; are the payoffs to the row and column players respectively
when the row player plays strategy ¢ and the column player plays strategy j. Given a mixed-strategy



profile (x,y) where x € A,, and y € A,, are respectively the distributions of the row and column
players, the expected payoff to the row and column players can thus be conveniently expressed as
T Ry and 27 Cy respectively.

Prove that (z,y) is a mized Nash equilibrium (NE) iff for every i and j,

;>0 = (Ry)i = e }(Ry)ifszRy; and
i'e{l,...m

yj >0 = (@7C);= max (a7C)y=aTCy.
j'e{1,...,n}

(This says that in a mixed equilibrium a player’s distribution is supported on the set of pure strategies
that constitute a best response to the other player’s mixed strategy.)

Q1: A symmetric game is a game where all players are identical in the sense that all players have
the same strategy-set S, and each player i’s payoff under a strategy profile (s;,s_;) is a function
of her strategy s; and only the number of other players who play a given strategy in S, where this
function is the same for all players. For a two-person symmetric game (R, C'), this amounts to saying
that C = RT.

Show that the problem of finding a Nash equilibrium in an arbitrary two-person game can be
reduced to that of finding a Nash equilibrium in a symmetric two-person game. That is, given an
arbitrary game (R,C') construct a symmetric game such that given any mixed equilibrium of the
symmetric game, one can obtain (efficiently) a mixed equilibrium of the original game. You may
assume that R;;, C;; > 0 for all 4, j if necessary.

(Hint: Construct a game that encodes the following. Each player chooses whether she wants to be
the row player or column player and a corresponding strategy; if both decide to be the same (i.e.,
row, or column) player then they both get 0 payoff, otherwise each player gets the payoff that she
would get in the game (R, C) according to her chosen role of a row or column player.)

Q2: In this question, we will show that in the cost setting (i.e., where players incur costs and are
compensated by payments made by the mechanism), under certain settings, there need not exist
any payments that yield both truthfulness and individual rationality. Let A,V CRA, ..., V,, CRA
be a mechanism-design setup.

(a) Let M = ( 7/, {pl}) be a truthful mechanism. (At this point, we are not assuming anything about
the valuation functions or the prices; v;(a) and p;(v) could be positive or negative.) Consider
any player i and any v_; € V_;. Show that if f(v;,v_;) = f(v},v_;) for some v;,v] € V;, then
pi(vi,v—;) = pi(v},v_;). Thus, this means that we can view p; as a function p; : A x V_; — R.

(b) We now focus on the cost setting. So player i’s valuation function is given by v;(a) = —¢;(a),
where ¢;(a) > 0. To keep notation intuitive, we will view ¢; as the private type of player i,
which lies in the set C; = —V;. Let M = (f, {pz}) be a mechanism, where p; now denotes the
payment made to player ¢; so the utility utili(éi; (i, c_,-)) of player ¢ when his true input is ¢;,
he reports ¢;, and the other player’s report c_; is p;(¢;,c—;) — & (f(ci, c,i)). Recall that we say
that M is individually rational (IR) if every player earns a nonnegative utility by reporting his
true value, i.e., utili(éi; (ci, c_i)) >0 for all i,¢; € Cj,c—; € C_;.

Say that a player ¢ is an unbounded monopolist if for every K € R, there exists ¢; € C; such
that ¢;(a) > K for every a € A. Show that in the presence of an unbounded monopolist, no
mechanism can be both truthful and IR.



Remark. Recall that in the MST example discussed in class, A is the set of all spanning trees of
G, and each player i owns a disjoint set E; of edges and may have arbitrary (private) nonnegative
costs for his edges. Thus, player i is an unbounded monopolist iff G\ F; is disconnected and, as
remarked in class, in this case, there are no payments that ensure both truthfulness and IR. This
is also the issue that comes up in the payment-specification rule for single-dimensional domains:
the payments computed by this rule, if finite, ensure IR by definition; however, if there is an
unbounded monopolist i, then for any K, there exists c¢x such that a(?) (g(c, c_i)) > K/ck for
all ¢, so the payments become undefined.

Q3: Recall the set-cover problem discussed in class in a mechanism-design setting. We have a
collection & of m subsets of a ground-set (or universe) U of n elements. Each set S € S is a
player whose private value is the weight of the set (which is nonnegative), and the goal is to find
a minimum-weight collection of sets (according to the true weights) that covers U (the set-system
(U,S8) is common knowledge). So A = {8’ C § : & is a set cover for U}, and for each player S,
Vs = {—wsa® : wg > 0} is a single-dimensional domain, where a(5)(8') = 1 if § € & and 0
otherwise. The target function g : V — A which maps a weight-vector to a minimum-weight set-
cover is NP-hard to compute, so we consider the implementation of an approximation algorithm for
the set-cover problem. Let B = max, |[{S € S:e € S}|.

In class, we showed that “the greedy” algorithm for set cover is an O(logn)-approximation
algorithm that is implementable. One widely-used paradigm in approximation-algorithm design is
to consider a linear-programming (LP) relazation of the problem whose optimum provides a bound
on the value of an optimal solution to the problem, and use this LP to guide the design and analysis
of the algorithm. Here we investigate the implementability of some approximation algorithms for
set cover designed using this approach. Let OPT(w) denote the optimal value of the following LP:

min ngxs subject to Z g >1 Ve zg >0 V6. (P)
S S:e€eS

(Throughout S indexes the sets in S, and e the elements in U.) Clearly, OPT (w) is a lower bound
on the weight of a minimum-weight set cover since any set cover S’ yields a {0, 1} solution to (P),
where xg = 1 if S € &’ and 0 otherwise.

(a) Consider any algorithm of the following form: fix a threshold ¢ > 0 that does not depend on
the input w. We solve the LP to obtain an optimal solution z*, and set &' = {S : 2% > t}. We
call this algorithm the LP-rounding algorithm with threshold t. Since there may be multiple
optimal solutions, to be precise, fix a w-independent ordering S, ..., .S,, of the sets in S, and
let * be a lexicographically mazrimal optimal solution, that is, x* is such that for any other
optimal solution & 7# z*, there is some set 5; such that g, > &g, and l‘*sj = g, for all j <.
(Such an optimal solution can be computed in polynomial time.) Assuming that this algorithm
always returns a set cover, prove that the algorithm is implementable.

(b) Prove that for any weight-vector w, the LP-rounding algorithm with threshold % returns a set
cover of weight at most B - OPT(w).

(c) Prove that for any weight-vector w, the LP-rounding algorithm with threshold 0* (i.e., &’ =
{8 : 2% > 0}) also returns a set cover of weight at most B - OPT(w).



(d) Thus, in both parts (b) and (c) we obtain a B-approximation algorithm that is implementable.
It is not clear however that prices (or rather payments) implementing the algorithm can be
computed efficiently. Consider the the LP-rounding algorithm with threshold ¢, and assume
that the algorithm always returns a set cover. Let {ps(.)}s be the payment scheme that
implements this algorithm. (Recall that the pg(w) is the maximum value v such that the
algorithm selects S when run on the input (v,w_g).) To avoid infinite payments or problems
with individual rationality, assume that S\ {S} is a set cover, for all S € S. Prove that
for any € > 0, and any (rational) input w, one can compute random payments {gs(w)}s in
time polynomial in the input size and log(1/e) such that gs(w) € [ps(w) — €, ps(w) + €] and
E [qs(w)] = ps(w). You may assume that you are provided an oracle that can solve LPs of the
form (P) (of size poly(input size)); each call to this oracle counts as one operation.

So M = (LP—rounding algo. with threshold ¢, {qg(.)}g) is a truthful-in-expectation mechanism.

(e) Consider the greedy algorithm for set cover discussed in class (which can also be viewed as an
LP-based algorithm; see the remark below). Prove that payments implementing the algorithm
can be computed in polynomial time.

Remark. The greedy algorithm discussed in class can be interpreted as constructing simultaneously
a {0,1} solution to (P) and a dual solution y = (y.). with the same objective value, where y. =
&S with S, being the first set chosen that covers e. One can then argue

|uncovered elementes covered by Se|’
that (ye /O(log n))e is a feasible dual solution, thus showing that the algorithm returns a set cover

of weight at most O(logn) - OPT(w), which is a stronger statement than what we proved in class.

Q4: In this question, we will derive a characterization of implementability for social choice functions
over multidimensional domains, and see some applications. You may use the following fact:

Let D = (N, A) be a directed graph with node-set N, arc-set A, and weights {wg }4ca on the
arcs, such that there is a directed path from u to v for any two nodes u,v € N. Say that
{é(u) }uen are feasible node potentials for (D, w) if ¢p(v) — d(u) < wyy for every arc (u,v) of A.
It is known that (D, w) has fesaible node potentials iff (D, w) has no negative-weight cycles.

(a) Let A, Vi CRA,...,V, C R” be a mechanism-design setup, and f : V — A be a given function.
Fix a player i, and v_; € V_;, and assume (for notational simplicity) that {f(v;,v_;) : v; €
Vi} = A. For any a,b € A, define 64, = inf{v;(b)—v;(a) : v; € Vi, f(v;,v—;) = b}. Prove that f is
implementable iff for every subset {a1,...,ar} C A, we have 04,45 +0agas+- - -+0ay_ a, +0ara; >
0. Specify how prices implementing f can be computed from the d-values.

Remark. The condition 0g,ay + dagaz + - - - + a)_ya, + 0apa; > 0 is sometimes called cycle mono-
tonicity. Notice that if we restrict this condition to 2-cycles (i.e., two alternatives), then we
obtain weak-monotonicity (which is thus, necessary, but not, in general, sufficient, for imple-
mentability).

(b) Consider the SWM problem for combinatorial auctions (CAs) with unknown single-minded
players. Recall that we have a set U of m non-identical indivisible items, and n players. Each
player ¢’s private information is a tuple (w;, S;) specifying the set he is interested in, and his
value for obtaining that set (or any superset) of items. We say that an algorithm f (which is
required to output an allocation) is ezact if on every input bid {(wj, S;)}I_;, the set of items



allotted to each player i is either () or S;; equivalently, every winning player (according to the
input bids) is allotted exactly his set (and not any superset).

Show that if f is an exact algorithm, then f is implementable iff for every player ¢ and every
v_; € V_;, we have: (i) For every set S C U, there is a threshold ¢ = ¢(S) such that for all
w < t, the allocation f((w,S),v_i) assigns the set () to ¢, and for all w > t, f((w,S),v_i)
assigns the set S to i. Define ¢(S) = 0 if f((w,S),v_;) assigns S to i for all w > 0; for S # 0,
define ¢(S) = oo if f((w,S),v—;) assigns 0 to i for all w > 0. (Note that ¢(d) = 0.) (ii) If
S C T, then t(S) < t(T).

(c) Prove that the ordering algorithm discussed in class (where we order sets in decreasing order
of \/w‘;f') is exact and satisfies properties (i) and (ii) above, and hence is implementable.

(d) Recall the makespan-minimization problem on unrelated machines: there are m machines and
n jobs. Each machine i is a player whose private information is a vector (t;;); specifying
the time taken to process each job j. We consider the restricted setting where each t;; €
{L;,H;}, L;j < Hj (that is, each job j has either “low” (L;) or “high” (H;) processing time on
each machine), and the fractional scheduling problem, where we seek to compute a fractional
allocation of jobs to machines with (near-) optimum makespan. So A = {x € R™" : ) " 2;; =
1 for all j, x;; > 0 for all 4,5}, and a vector t; = (t;; € {L;j, H;}); of processing times yields
the function t; : A — R, where t;(z) = Zj tijzi; for x € A. Let V; C R4 denote the set of all

such functions. Consider a social choice function f : V — A where, letting x = f(t1,...,tm),
we have x;; > % if t;; = L; and x;; < % otherwise. Prove that any such function f is
implementable.

(e) (Bonus part) Let A be a p-approximation algorithm for the makespan-minimization problem
on unrelated machines in the above restricted setting. Show that A can be used to obtain an
implementable 2p-approximation algorithm for the fractional scheduling problem.

Q5: In the context of truthfulness, prices are used as a means to an end, namely, to incentivize
players to declare their true valuations. But in various situations, one can assign a natural meaning to
“money” and prices, and we may require that the prices charged (or payments made) satisfy certain
additional properties (beyond ensuring truthfulness). One such setting is where the mechanism-
designer incurs a certain cost in constructing a solution for the players, and we would like the prices
charged to recover (approximately) the cost incurred. This property is called budget balance.

We abstract and formalize this as follows. Let A be an alternative-set, and Vi,...,V, C R4
be the valuation domains of n players. We also have a cost function ¢ € R?, where c(a) gives the
cost incurred by the mechanism in executing alternative a € A. We assume that c¢(a) > 0 for all
a. The cost function ¢ is common knowledge. In this setting, social-welfare maximization (SWM),
which is also termed (economic) efficiency, translates to computing the alternative that maximizes
> ;vi(a) — c(a). (Observe that this is precisely the SWM-objective if one treats the mechanism
designer also as a player whose valuation set consists of the single valuation —c.) Ideally, we would
like to implement the function ¢ that computes an optimal solution to the SWM problem, using
prices p; such that >, p;(v) is “roughly” equal to c(g(v)) for every v € V. But the above SWM
problem is notoriously intractable for many problems, and even obtaining good approximations is
intractable (the difficulty arises due to the —c(a) term in the objective function). To remedy this,
we change the form of the objective function. For simplicity, we restrict ourselves to the setting



where each Vj is single-dimensional and of the form V; = {v;a® : v; > 0}, with o € {0,1}4 (recall
that the o(¥s are common knowledge). An alternative a can then equivalently be viewed as a set
of players, namely, the set {i : «(¥)(a) = 1} of winners; o(?) is then simply the indicator set-function
aW(S) = 1if i € S, 0 otherwise. So A is now a subset of 2V, where N = {1,...,n}. For an
alternative a = S C N, we can write >, vi(a) — c(a) = >, v; — (Zigs v; + ¢(S)). We consider
the goal of minimizing SC(S) = ¢(S) + 3 ;¢gvi over all S € A, which is called the social-cost
minimization problem. Minimizing the social cost is also often an NP-hard problem, so we seek an
approximation algorithm for this problem that is implementable using prices, where the total price
charged “roughly” recovers the cost incurred by the mechanism. More precisely, we want to design
a computationally efficient mechanism M = ( 1, {pz}) such that

(i) f is a B-approximation algorithm for the social-cost objective: i.e., for every input v =
(v1,...,vp), f(v) is efficiently computable, and f(v) = S* such that SC(S*) < - (mingea SC(S5)).

(ii) M is truthful and individually rational, i.e., p;(v) < v;a?(f(v)) for every v, player i.

(iii) The prices recover at least a 7-fraction of the mechanism-designer’s cost: i.e., for every input
v, we have > p;i(v) > c(f(v))/~.

We call such a mechanism a §-approzimation, y-budget-balanced, truthful mechanism. Suppose that
we have a g-approximation algorithm f for the social-cost objective such that f has the monotonicity
property that for every i, and every v_;, a(?) ( f (v, U,i)) is a nondecreasing function of v. Notice
that this means that there exist prices that implement f, but these prices need not necessarily
satisfy the budget-balance condition (iii). Suppose also that f has the following “no-bossiness”
property: for every i, every v_;, every v;, v, € V;, if a® (f(visv—y)) =1 = a(i)(f(vé,v_i)) then
f(vi,v_;) = f(v},v_;). This says that if ¢ is a winner, and fixing the others’ inputs and changing
only i’s input leaves ¢ unaffected, then the alternative computed must also be unaffected. Suppose
also that A is downwards closed: if T'€ A and S C T then S € A; and c is an increasing function:
c(S) < ¢(T) if S CT. We will show that under these conditions, one can use f (in a black-box
fashion) to devise an O(f logn)-approximation, 1-budget-balanced truthful mechanism.

Given an input v, the set of winners is computed as folloxzvs.) Fix an ordering of the players. We
c(S1

compute S; = f(v). If for every player i € S1, we have v; > Si) 0 we return S7. Otherwise, we drop
the first player (according to the ordering) in S; for which v; < c|(51 1‘). Let S5 C 57 be the remaining

set of winners. We now check if there is some i € Sy such that v; < C|(§g22|); if so, we drop the first

such player in Sy and if not, we return Ss. We repeat this process, each time dropping the first
player in the current set whose value is less than the average cost of the current set if such a player
exists. Note that the process must terminate since we will eventually reach the empty set.

(a) Prove that the above algorithm satisfies the monotonicity property.

(b) Prove that the above algorithm is an O(flogn)-approximation algorithm for the social-cost
problem.

(c) Prove that if T" is the set returned by the algorithm (which could be empty), then for every

1 € T, the price that ¢ pays is at least Cl(%). Recall that the price that ¢ pays is his threshold

value, i.e., the value at which i ceases to be a winner given the others’ current bids. (Also,
every non-winner pays 0, so we get individual rationality.)



Parts (a), (b) and (c) show that the above algorithm along with the prices that implement it, give
an O(flogn)-approximation, 1-budget-balanced, truthful mechanism.

(d) Consider the setting of the set-cover problem and the LP (P) described earlier, but now suppose
that the set-system (U, S), and the (nonnegative) weights (or costs) of the sets in S are common
knowledge. Each element e of the universe U is now a player, whose private value v, is the
value that e obtains if he is covered by some set. Thus, the social-cost minimization problem
is to find a collection of sets S’ C S that minimizes Y g Ws + D¢ yot covered by 57 Ve

Suppose you are given an LP-based p-approximation algorithm A for the set-cover problem;
that is, A returns a set cover of weight at most p - OPT(w) for any input w = (wg)s. Show
that A can be used to obtain a monotone, (p + 1)-approximation algorithm for the social-cost
problem that satisfies the no-bossiness property.

Remark. Thus, parts (a)—(d) show that an LP-based p-approximation algorithm for the min-cost
problem, yields an O((p +1)log n)—approximation, 1-budget balanced, truthful mechanism. In fact,
the above reduction is quite generic and applies to a variety of problems including the vertex cover,
facility-location, and Steiner-tree (or forest) problems.



