CO759: Algorithmic Game Theory — Spring 2015

Instructor: Chaitanya Swamy

Assignment 2
Due: By Aug 14, 2015

You may use anything proved in class directly. I will maintain a FAQ about the assignment on the
course webpage. Acknowledge all collaborators and any external sources of help or reference.

There are currently 7 questions in the assignment; 2 more will be added next week. You may
answer any 5 questions. All questions carry equal weightage.

Q1: In this problem, we consider multi-unit combinatorial auctions (MUCAs), which recall are CAs
where the m items are all identical. Thus, each player ¢’s valuation function v; can be represented
as a nondecreasing function v; : {0,1,...,m} — Ry where v;(z) specifies the value that i receives
when he is allotted  items. The SWM problem of finding x;’s in {0,1...,m} with ) . 2; < m
that maximize ), v;(x;) is solvable in time polynomial in m and n. So if the input is specified
by listing v;(x) for each z separately, then the running time is polynomial in the input-size, and
one can implement the VCG mechanism efficiently. We are interested in settings where the v;’s are
specified more succinctly and the input-length is polynomial in logm; for example, if each v;(.) is
piecewise linear with a constant number of breakpoints then one only needs to list (x, v;(x)) for each
breakpoint . The SWM problem is often NP-hard in such settings.

Let A= {(z1,...,2p) : x; € {0,...,m}, >, x; < m} denote the set of all allocations, and let
A ={(x1,...,xn) 2 €{0,...,m}, ;2 <m, x; =m or x; is a multiple of [73]}. Consider the
function f that returns the allocation in A’ that maximizes the social welfare among all allocations
in A’

(a) Prove that f is a 0.5-approximation algorithm, i.e., show that max(,, . ..)ea > ;vi(®i) >
0.5 max(y, . z.)cA > vilx).

(b) Briefly argue why f is implementable.

(c) Assuming that for every i and every integer x € [0, m] one can compute v;(z) efficiently, show
that f can be computed efficiently.

(Hint: Use dynamic-programming.)

Q2: Recall the load balancing game from class: there are m machines and n jobs. Each job j is a
player: it has a certain processing time p; and its strategy is to choose a machine to get assigned
to. Given an assignment of jobs to machines, the load L; of machine 7 is the total processing time
of the jobs assigned to it, and the cost incurred by a job j is the load of the machine to which it
is assigned. In this question, we address the issue of how quickly the natural heuristic of letting
players make improving-moves converges to a Nash equilibrium. (You might want to read the proof
of Theorem 20.6 in the book before attempting this question.)

Given an assignment {i(j)}, we say that a job j is unsatisfied if it can move to some machine
(other than i(j)) and reduce its cost. A best-response move of job j is a move that minimizes its
cost (given the current assignment).



(a) Consider the round-robin policy, where jobs are considered in some arbitrary order and if a
job is unsatisfied it makes a best-response move. Prove that this policy leads to a (pure) Nash
equilibrium in at most n? steps. (Each iteration counts as a step regardless of whether the job
considered is unsatisfied or not.)

(b) Now consider the following randomized policy: in each step, pick one of the n jobs at random
and if it is unsatisfied make a best-response move. Prove that with probability at least 1 — %,
this policy leads to a Nash equilibrium in O(n?logn) steps.

Q3: Consider a nonatomic routing game instance Z = (G, {€c(.)}, {(s, t;,7i)}F_1) where G is the
underlying directed graph, the /.(.)’s are the continuous nondecreasing latency functions on the
edges, and r; units of flow have to be routed from the source s; to sink ¢; for each i = 1,... k. Let
Pi denote the set of all s;-t; paths. Recall that C(f) = >_. fele(fe) = 22, > pep, frlp(f) denotes
the total cost of a feasible flow f. In class, we proved that C(fV¥) < C(f*), where f¥¥ is a Nash
flow for Z and f* is an optimal flow for the instance 2Z = (G, {€c(.)}, {(si, ti, 2r4)}).

Given a class L of latency functions, recall that a(L) = supe, a(¢) and a(f) = sup, ;> Wéb)@f(b)‘
Define p = p(L£) =2 — (L:)
above bound can be improved to C(fV¥) < C(f), where f is an optimal flow for the instance

= (G, {Le()} {(sisti, pri)}).

Q4: In this question, we explore applications and generalizations of the notion of smooth games.

< 2. Show that if all the latency functions belong to class £, then the

(a) Prove that for atomic routing games with latency functions that are polynomials of degree p

with nonnegative coefficients, the PoA with respect to coarse-correlated equilibria is at most
O(p)
p=P)

(Hint: Show that (8 + 1)P < (h(p) - oP*1 + gP*1) /2, where h(p) = p°®) is an increasing
function of p, and use the framework of smooth games.)

(b) Let G = (n;Sl,...,Sn;{Ci 0 S = R+}) be a game on n players, where each player 7 has
strategy-set S;, and incurs cost Cj(s) under each strategy profile s € S := [[,S;. Define
C(s) == >, Ci(s), and let OPT = minges C(s). Recall that in class, we defined G to be
weakly (A, u)-smooth if there exists s* € S with C(s*) = OPT such that

ZC Si,5-i) < A-C(s")+p-C(s) for all s € S. (1)

Notice that in (1), the strategy profile s*, and hence, the deviation s of each player i, may
not depend on s. We now consider a relaxation where the deviation s} may partly depend on
s and explore the consequences of this relaxation. Define G to be adaptively (A, p)-smooth if
there exists a function f; : S; — 5; for every player ¢ such that

Zc ) <X OPT + - C(s) for all s € S. (2)

Prove that if G is adaptively (A, u)-smooth, then the PoA with respect to correlated equilibria
is at most ﬁ (This PoA bound need not however hold for coarse-correlated equilibria.)



Q5: In this question, we consider the PoA (of pure NE) of atomic and nonatomic routing games
with respect to the mazimum player-cost objective that we looked into in the load balancing game.
We are given a directed graph G with nondecreasing latency functions {f.(.)} on the edges. We
will restrict our attention to instances where all traffic has to be routed from a common source s
to a common sink t. Given an s-t flow f = (fp) that sends flow fp > 0 on the s-t path P, let
L(f) = maxp. >0 Lp(f) (where £p(f) = > . cple(fe)) denote the cost of the flow according to the
maximum-cost objective.

(a) Consider the atomic routing game where there are k players, each having source s and sink .
Let {P;}*_, be a (arbitrary) Nash equilibrium with associated flow-vector f, so that L(f) =
max; {p,(f). Show that the PoA for the maximum-cost objective L(.) with linear latency
functions is at most %

(b) Now consider the nonatomic game where k units of flow have to be sent from s to ¢ and any
fractional amount of flow can be routed along any s-t path. Let o be the PoA for the total-cost
objective C(f) = > p frlp(f) = >, fele(fe) with the given latency functions. Show that the
PoA for the maximum-cost objective L(.) is at most «.

Q6: We explore a notion of fairness for flows in this question (which is related to the maximum
player-cost objective). Let Z = (G, {€c(.)},{(s:, ti,mi)}) be a nonatomic routing instance, where the
latency functions ¢¢(.) are continuous, nondecreasing, and further assume that the function z/.(z)
is convex for all e. Consider the total-cost objective C(f) = >, fele(fe) = > p frlp(f).

(a) Let fOFT be an optimal flow for Z. Show that if all the latency functions are linear, then
2fOFT is a Nash flow for the instance 2Z = (G, {€c(.)}, {(si, i, 2r3)}).

(Hint: Recall the fact stated in class that "7 may be viewed as the Nash flow with respect
to a modified set of latency functions.)

(b) Notice that a Nash flow, by definition, has a fairness property associated with it, namely, that
any two players routing flow between the same s;-t; pair experience the same total delay. (That
is, for every s;-t; pair, every flow-carrying path P has the same total delay ¢p(f).) An optimal
flow need not (and most likely, will not) be fair in this sense. Here we quantify the unfairness of
optimal flows. Given an arbitrary feasible flow f for Z along with a path-decomposition (fp),
we define the unfairness of the flow f to be max; [(maxPepi:wa Ep(f))/(minpe'pi:fp>() Ep(f))] )
where P; is the set of all s;-t; paths. (This definition assumes that only paths carrying flow
have a bearing on the discontent of users, which is plausible if one assumes that users “learn”
about the existence of a better path only by seeing other users on that path.) Prove that with
linear latency functions, the unfairness of any optimal flow under any path-decomposition is at
most 2. (As mentioned earlier, the unfairness of any Nash flow is 1.)

Q7: Recall that for the atomic routing game, we used the (exact) potential function, ®(f) =
Y e Z£;1 le() to prove the existence of a pure NE. Here we show how the potential function can
also be useful in finding an approximate Nash equilibrium quickly.

Consider the atomic routing game on a directed graph G with nondecreasing latency functions
{€c(.)}, and k players, all having a common source s and common sink ¢. Consider the total-cost



objective C(f) = >, fele(fe) = > ;Lp,(f), so ® satisfies ®(f) < C(f) for all f. Also, let a > 1
be such that fc(x + 1) < a - l.(x) for all e and all x € {1,...,k — 1}. Let P denote the set of all
s-t paths. Given a flow-vector f corresponding to a path-selection {Pi}le, where each P; is an s-t
path, define the neighborhood of f to be

N(f) = {g :Jdie{l,...,k} and Q € P s.t. g is the flow-vector associated with (@, P_i)}.

Say that ({R},f) is an e-approzimate local optimum of ®, if for all g € N(f), we have ®(f) —
®(g9) < € ®(f). Define ({P}, f) to be an e-Nash equilibrium if for all i, for all Q € P, we have
Cp,(f) —Lo(g) < e-Lp(f), where g € N(f) is the flow-vector that results when i deviates from P
to Q.

(a) Show that if ({P;}, f) is an e-approximate local optimum of ®, then ({P;}, f) is a -NE, where

_ eka
0= 1—ke”

(Hint: Try to lower bound /p,(f) in terms of ®(f) for every i =1,...,k.)

(b) Prove the following “contrapositive” of part (a). Given ({B}, f), let player i* and Q* € P be
such that among all the possible moves where a single player switches to an alternative strategy,
the move where ¢* switches over to @* yields the maximum reduction in the deviating player’s
cost. In other words, letting ¢* denote the flow-vector in N(f) obtained when i* switches over
to Q*, we have (p. (f) — lq-(g*) = ®(f) — ®(9%) = maxgen(s) (®(f) — ®(g)). Show that if
0 (1) = Lo-(9") = ¢~ £p. (F) then B(f) ~ B(g") > 115y - Of).

Part (a) shows that any algorithm for computing an approximate local-optimum of ® can be used
to compute an approximate Nash equilibrium. Using part (b), one can argue that an approximate
local optimum may be computed by choosing improving moves suitably. Together, parts (a) and (b)
yield a simple, efficient, “improving-moves” algorithm for computing a 6-NE. Suppose that ®(f) > 1
for all flow-vectors f resulting from a valid path-selection. Let C' be some trivial upper bound on the
maximum cost incurred by a player in a NE. For example, one can take C' = minpep ) p le().
Assume that 6 < 1 without loss of generality. We set ¢ = %, SO ffgﬁ <9, and € = m
We start from any state with ®(.) value at most kC. At each step, given the current flow-vector
f, letting i*, Q*, g* be as defined in part (b), we make the improving move where i* switches to
path Q* if the reduction ¢p. (f) — £g+(g*) is at least € - £p. (f). We terminate when this no longer
holds. Part (b) shows that each such improving move decreases the potential by at least a (1 — ¢)-
factor. So since the final potential is at least 1, the number of steps to termination is at most
In(kC)/In((1—¢)™') < % -In(kC). At termination, we have

max (2(F)  0(0)) = Lr. (1) ~ o (9") < e+ Lp. () < - 2()).

So f is an e-approximate local optimum of ®, and part (a) shows that hence, f is a §-NE.

Q8: In this question, we devise algorithms for computing e-NE for bimatrix games. Let (R,C) be
a bimatrix game, where R, C' € [0, 1]™*"™ denote as usual the payoff matrices of the row and column
players respectively. Recall that for an integer k, [k] denotes the set {1,...,k}.

(a) Recall the following algorithm mentioned in class for computing a 0.5-NE. Pick some pure
strategy x for the row player. Let y be the best response of the column player to = (which we
may assume is a pure strategy), and z’ be the row-player’s best response to y. Prove that the
mixed-strategy profile (O.5(x + '), y) is a 0.5-NE of (R,C).

4



(b)

We now devise an improved algorithm that returns an a-NE, where o = 372\/5 ~ 0.382. (Note
that « is the unique value in [0, 1] satisfying o = ;:—g) The idea is to consider the zero-sum
game (A, B), where A= R — C and B = C' — R denote the row- and column- player’s payoffs.
Zero-sum games enjoy various nice properties, one of them being that a Nash equilibrium for

such a game can be computed efficiently. Consider the following algorithm.

Al. Compute a NE (z*, y*) of the zero-sum game (A, B).

A2. Compute gr = maX;g[m)(RYy*)i — z*T Ry* and let s be a row-player (pure) strategy that
attains gg, that is, gr = (Ry*)s, — 2*T Ry*. Similarly, compute go = maxc ] (z*TC); —
2*TCy* and let s¢ be a column-player (pure) strategy that attains go. (Observe that sg
and s¢ are best responses of the row- and column- player’s to y* and z* respectively.)

A3. If gr, g9c < a, return (z*,y*).

A4. Otherwise, do the following.

(i) If gr > gc (and so gr > «), let b be the column-player’s best response to sg; return
(SR, (1 —-0R)y*+ 5Rbc), where 0 = 1=9r

2—gr’
(i) If go > gr, let br be the row-player’s best response to s¢; return ((1—5C)x*+(5(;bR, sc),
where ¢ = %.

Prove that the above algorithm returns an a-NE.

(Hint: Consider for instance the strategy profile (x,y) returned in step 3(i) (the other case is
symmetric). It is easy to see that the maximum gain, max;c/,, (Ry); — xT Ry, of the row player
is at most dg. Observe that (z*,y*) being a NE of (A, B) implies that, fixing the column-
player’s strategy to be y*, the row-player’s change in payoff when he deviates to a strategy 2’
is at most the column-player’s change in payoff under this deviation. Use this to show that the
column-player’s maximum gain is at most (1 — dg)(1 — gr) = dg.)

We now use the zero-sum game in part (b) to compute a 0.5-well-supported NE (WSNE) when
R;;,C;j € {0,1} for all i € [m], j € [n]; such games are sometimes called win-lose games. Prove
that the following algorithm returns a 0.5-WSNE: if there exists ¢ € [m],j € [n] such that
R;; = 1 = Cjj, then return the (pure-) strategy profile (7, j); otherwise return a NE (z*,y*) of
the zero-sum game (R — C,C — R).



