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Abstract. Shop scheduling problems are known to be notoriously in-
tractable, both in theory and practice. In this paper we give a randomized
approximation algorithm for flow shop scheduling where the number of
machines is part of the input problem. Our algorithm has a multiplicative
factor of 2(1 4 §) and an additive term of O(m In(m 4 n)pmaz)/5°).

1 Introduction

Shop scheduling has been studied extensively in many varieties. The basic shop
scheduling model consists of machines and jobs each of which consists of a set
of operations. Each operation has an associated machine on which it has to be
processed for a given length of time. The processing times of operations of a
job cannot overlap. Each machine can process at most one operation at a given
time. We assume that there are m machines and n jobs. The processing time(of
an operation) of job j on machine i is denoted by p;; and pmax = maxp;;. We
will use the terms job(operation) size and processing time interchangeably.

The three well-studied models are the open shop, flow shop and job shop
problems. In an open shop problem, the operations of a job can be performed
in any order; in a job shop, they must be processed in a specific, job-dependent
order. A flow shop is a special case of job shop in which each job has exactly m
operations — one per machine, and the order in which they must be processed is
same for all the jobs. The problem is to minimize the makespan, ie. the overall
length, of the schedule with the above constraints.

All the above problems are strongly NP-Hard in their most general form. For
job shops, extremely restricted versions are also strongly NP-Hard; for example
when there are two machines and the all operations have processing times of
one or two time units. For the flow shop problem, the case when there are more
than two machines is strongly NP-Hard, although the two machine version is
polynomially solvable [1]. The open shop problem is weakly NP-Hard when the



number of machines is fixed(but arbitrary) and its relation to being strongly
NP-Hard is open. For two machines there exists a polynomial algorithm for
open shops.

As far as approximability of these models is concerned, Williamson et al. [2]
proved a lower bound 5/4 for the problems in their most general form. For the
general open shop problem a greedy heuristic is a 2-approximate algorithm. In
the case of job shops and flow shops, an algorithm by Sevast’janov [3] gives an
additive approximation of m(m—1)pmas. Shmoys, Stein and Wein [4] give a ran-
domized O(log?(my)/ log log(my)) approximation algorithm where y is the max-
imum number of operations per job. This bound was slightly improved by Gold-
berg, Paterson, Srinivasan and Sweedyk [5]. Schmidt, Siegel and Srinivasan [6]
give a deterministic log? (mu)/ loglog(mu)) approximation algorithm. When m
is not fixed these are the best results known. For fixed m we have (1 4 €) poly-
nomial approximation schemes for all the three problems. An approximation
scheme for flow shop was given by Hall [7]. Recently an approximation scheme
for the open shop problem was given by Sevast’janov and Woeginger [8] while
Solis-Oba and Sviridenko [9] give one for job shops.

Our contribution

In this paper we present a randomized approximation algorithm for flow shop
scheduling when the number of machines is not fixed. Our algorithm is based on
the rounding of the solution of an LP formulation of the flow shop problem. The
LP formulation imposes some additional constraints which makes the rounding
scheme possible. The makespan returned by our algorithm is within 2(1+4) times
the optimal makespan and has an additive term of O(m In(m+n)pmax)/6?). This
shows a tradeoff between the additive and multiplicative factors; the additive
factor is better than the one in the Sevast’janov algorithm, and the multiplicative
factor is better than that in the algorithm by Shmoys et al.

The remaining part of this paper is organized as follows. In Section 2, we
discuss the new slotting constraints imposed by us. Section 3 gives a integral
multicommodity flow formulation of the problem and Section 4 deals with the
randomized algorithm and its analysis.

2 Slotting Constraints

It is no loss of generality to assume that all operations have size at least 1. Let
Pmax be the largest operation size. The machines are numbered in the order in
which the operations of each job are to be processed.

We divide time into slots of size s, § > 2ppax. For our randomized rounding
scheme to work we require that the slots be independent of each other. By this
we mean that the order in which operations are scheduled on a machine in any
time-slot is independent of the order of the operations in other time-slots and
on other machines. To ensure this we impose the restriction that no operation
straddles a slot boundary and that no job moves from one machine to another



in the middle of a slot. The second condition is equivalent to saying that the
operations of a job are performed in distinct slots. Thus a job’s operation on
the i" machine can only start if the operation on the (i-1)"" machine has been
completed by the end of the previous slot.

Consider a flow shop schedule with minimum makespan, OPT. We now
show how to modify the schedule to satisfy the slotting constraints. First di-
vide time into slots of size s — pyax. Since there could be operations straddling
slot-boundaries, we insert gaps of duration py,.x after each slot. Operations start-
ing in a slot and going over to the next now finish in these gaps. Finally we merge
each gap with the slot just before it. This yields slots of size s and each operation
now finishes in the slot in which it starts. Since O PT was the makespan of the
original schedule the makespan of this modified schedule is s - OPT/($ — pmax)-
Next we shift all operations on the second machine by s, on the third machine by
25, ..., on the m*® machine by (m—1)s. This increases the makespan by (m—1)s
and gives a schedule which satisfies the restriction that all operations of a job are
performed in distinct time-slots. Thus we have obtained a schedule which satis-
fies the slotting constraints and has makespan at most —*— OPT + (m — 1)s.

S—Pmax

3 An integral multicommodity flow formulation

In this section we obtain an approximation to the flow shop scheduling problem
with the slotting restriction. We begin by “guessing” the number of time-slots
required by the schedule. Construct a directed graph G = (V, E) which has a
vertex for each (time-slot, machine) pair. There is an edge directed from vertex
u = (a,1) to vertex v = (b,7) if j =i+ 1 and a < b. For each job j we have two
vertices s; and ¢;. s; has edges to all vertices corresponding to the first machine
and ¢; has edges from all vertices corresponding to the last machine.

With this graph we associate a multicommodity flow instance; there is one
commodity associated with each job j and s;,t; are the source and sink for this
commodity. The flow of each commodity should be conserved: the total flow of
a commodity entering a vertex (other than the source/sink of that commodity)
is equal to the flow of that commodity leaving the vertex. We wish to route one
unit of each commodity subject to the following throughput constraints on the
vertices. Consider a vertex v = (a,?) and let z, ; be the flow of commodity j

through v. Then
D wugpig <s
J

Note that an integral multicommodity flow corresponds to a flow shop sched-
ule satisfying the slotting restrictions. The feasibility of a multicommodity flow
instance can be determined in polynomial time by formulating it as a linear
program [10]. Infeasibilty of the multicommodity flow instance implies that our
guess on the makespan is too small. Let £ be the smallest number of time slots
for which the multicommodity flow instance is feasible and let F' be the cor-
responding flow. If T' denotes the minimum makespan of a flow shop schedule
satisfying the slotting constraints then 7' > (k — 1)s.



4 The Algorithm and its Analysis

F is a (fractional) multicommodity flow which routes one unit of each commodity
while respecting the throughput constraints on the vertices. Flow-theory says
that the flow of any commodity can be viewed as a collection of at most |E|
paths. With each path we associate a weight which is just the flow along that
path. Hence the total weight of all paths corresponding to commodity j is one.

The randomized algorithm picks exactly one path for each commodity with
the probability of picking a path equal to its weight. This collection of paths,
one for each commodity, gives an integral multicommodity flow which (possibly)
violates the throughput constraints. The integral multicommodity flow in turn
defines a flow shop schedule which satisfies the slotting constraints but which
might be infeasible as the total processing time of operations schedule on a
machine in a specific time-slot might exceed s.

Consider vertex v = (a, ). Let X; be a random variable which is 1 if job j is
scheduled on machine 7 in slot a and 0 otherwise. Let X be a random variable

defined as
X = Zpinj
J

Claim. E[X] <s.

Proof. The probability that X; is 1 equals z, ;. Hence, E[X;] = z, ;. By lin-
earity of expectations it follows that E[X] = 3, p;; E[X;] = 3, pijze,;. The
throughput constraint on vertex v implies E]‘ DijTv,; < s from which the claim
follows.

65 i| S/pmax

Claim. Pr[X > (1+44)s] < [W

Proof. Let X be the sum of n independent Poisson trials Xy, Xs,..., X, with
Pr(X; =1] =p; and p = E[X] = >"" , p;. Using Chernoff bounds we obtain

66 a
Pr(X > (1+0)u] < [W]

In our setting the Poisson trials X, Xs, ..., X, are such that Pr[X, =1] =
Ty and X = Ej p;jX;. Consider the random variable X = X/Pmax- X has
mean [ = E[X]/pmax. Let s; = pi;j/Pmax; clearly s; < 1.

For any ¢ > 0 we have:

Pr[X > (14 6)E[X]] = Pr[X > (1 + 6)ji] = Pr[e!X > ¢!(1+9)7]

By Markov’s inequality it follows that

etf(:|
tX t(14-6) i [
Pr[etX > ! (1H0A] < T



Since X =3 ; $;X; and the random variables X; are independent we obtain
E {etff} =E [Hj ets.fXj} = H E[etSij].
J

The random variable €% takes value e'*i with probability x,, ; and the value
1 with probability 1 — x, ;. Hence,

| CIERRIE | (R

J

Since s; <1, ' —1 < (e’ —1). Hence

E[etk} < H[l + :Cv,jsj(et -1 < He’”’“isi(et—l)

J J
where the last inequality uses the fact that for positive x, e* > 1 + z. Now

t . . ~
Heﬂcv,jsj(et—l) — e(e -1 Zj Tv,585 _ e(et—l)u
J

Therefore,

e(et_l)ﬁ

Pr(X > (1+0)s] <Pr[X > (1+)E[X]] < SR

Taking ¢t = In(1 + 0) gives us the best possible bound which is

S5 :| S/pmax

Pr[X > (1+6)s] < {m

and this proves the claim

Observe that a trivial flow shop schedule satisfying the slotting constraints
can be obtained by assigning job j to slot j +4 — 1 on machine 7, 1 < j < n
and 1 < ¢ < m. This schedule has makespan (n + m — 1)s and hence the
number of vertices in the graph (excluding the source and sink vertices) is at
most m(n +m — 1).

Let ¢ = WO 14 choose s = max{2,log.[2m(n +m — 1)|} . From

&0 , 108, Pmax
the above claim it follows that Pr[X > (14 9)s] < m Hence the prob-
ability that for some machine and some time-slot the total processing time of
operations scheduled on this machine in this time-slot is more than (1 + J)s is
at most 1/2. Equivalently, with probability at least 1/2 the processing time in
every slot is less than (1 4 d)s. Expanding each slot of size s to a slot of size
(1 + 9)s then gives us a flow shop schedule of makespan (1 + §)ks.

Recall that any flow shop schedule satisfying the slotting restriction has
makespan at least (k—1)s. Further, a flow shop schedule of makespan O PT yields



a schedule satisfying the slotting restrictions and having makespan — zf - OPT+
(m — 1)s. This implies that

(k—1)s < —>—OPT + (m — 1)s

s — Pmax

Hence with probability at least 1/2 the randomized rounding procedure gives us
a feasible schedule whose makespan is bounded by

(1+0)ks < a+d)s
§ — Pmax

OPT + (1+6)ms

(1+5) . .
% and ¢ is a positive

where s = max{2,log.[2m(n + m — 1)]}Pmax, ¢ =
constant chosen so that ¢ > 1.

Theorem 4.1. There exists a polynomial time randomized algorithm for flow
shop scheduling which with probability at least 1/2 finds a schedule with makespan
at most

2(1+90)OPT 4+ m(1 4 0)pmax log,.[2m(n + m — 1)]

(1+5)
c=Urd

where =5
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