Algorithms Column: Approximation Algorithms for
2-Stage Stochastic Optimization Problems

Chaitanya Swamy* David B. Shmoys!
February 5, 2006

1 Column editor’s note

This issue’s column is written by guest columnists, David Shmoys and Chaitanya Swamy. [
am delighted that they agreed to write this timely column on the topic related to stochastic
optimization that has received much attention recently. Their column introduces the reader
to several recent results and provides references for further readings.

Samir Khuller

2 Introduction

Uncertainty is a facet of many decision environments and might arise for various reasons,
such as unpredictable information revealed in the future, or inherent fluctuations caused
by noise. Stochastic optimization provides a means to handle uncertainty by modeling it
by a probability distribution over possible realizations of the actual data, called scenarios.
The field of stochastic optimization, or stochastic programming, has its roots in the work
of Dantzig [4] and Beale [1] in the 1950s, and has since increasingly found application in a
wide variety of areas, including transportation models, logistics, financial instruments, and
network design. An important and widely-used model in stochastic programming is the 2-
stage recourse model: first, given only distributional information about (some of) the data,
one commits on initial (first-stage) actions. Then, once the actual data is realized according
to the distribution, further recourse actions can be taken (in the second stage) to augment
the earlier solution and satisfy the revealed requirements. The aim is to choose the initial
actions so as to minimize the expected total cost incurred. The recourse actions typically
entail making decisions in rapid reaction to the observed scenario, and are therefore more
costly than decisions made ahead of time. Thus there is a trade-off between committing
initially, having only imprecise information while incurring a lower cost, and deferring deci-
sions to the second-stage, when we know the input precisely but the costs are higher. Many

*cswamy@ist.caltech.edu. Center for the Mathematics of Information, Caltech, Pasadena, CA 91125.
fshmoys@cs.cornell.edu. Dept. of Computer Science, Cornell University, Ithaca, NY 14853.

ACM SIGACT News 1 March 2006 Vol. 37, No. 1

applications can be modeled this way, and much of the textbook of Birge and Louveaux [2]
is devoted to models and algorithms for this class of problems. A commonly cited example
involves a setting where a company has to decide where to set up facilities to serve client
demands. Typically the demand pattern is not known precisely at the outset, but one might
be able to obtain, through simulation models or surveys, statistical information about the
demands. This motivates the following 2-step decision process: in the first-stage, given only
distributional information about the demands (and deterministic data for the facility open-
ing costs), one must decide which facilities to open initially; once the client demands are
realized according to this distribution, we can extend the solution by opening more facilities,
incurring a recourse cost, and we have to assign the realized demands to open facilities. This
is the 2-stage stochastic uncapacitated facility location problem. The recourse costs are usu-
ally higher than the original ones (because opening a facility later would involve deploying
resources with a small lead time); these costs could be different for the different facilities,
and could even depend on the realized scenario.

The formal model. The 2-stage recourse model can be formalized as follows: we are
given a probability distribution over possible realizations of the data called scenarios and we
construct a solution in two stages. First, we may take some decisions to construct an antici-
patory part of the solution, z, incurring a cost of ¢(x). Then a scenario A is realized according
to the distribution, and in the second-stage we may augment the initial decisions by taking
recourse actions y4, (if necessary) incurring a certain cost fa(x,y4). The goal is to choose
the initial decisions so as to minimize the expected total cost, ¢(x) + Ea[fa(z,ya)], where
the expectation is taken over all scenarios according to the given probability distribution.

An important issue that we have left unspecified above is the question of how the scenario-
distribution is represented. One simple approach is to assume that we are given, as part of
the input description, a list that explicitly enumerates each scenario (occurring with non-zero
probability) and its probability of occurrence. However, this causes a significant blow-up in
the input size, since the distribution can easily have support of size exponential in the other
input parameters, that is, the non-stochastic portion of the input; for example, in stochastic
facility location, consider the case where the demand of each client is set independently. Thus,
to ensure that a “polynomial time” algorithm in this model has running time polynomial
in the other input parameters, one must restrict oneself to distributions with a polynomial-
size support, which is a severe restriction; we shall call this the polynomial-scenario model to
reflect this fact. The distribution mentioned above is captured by the independent-activation
model as discussed by Immorlica et al. [16], where the scenario-distribution is a product of
independent distributions (described in the input). Typically, there is an underlying set of
elements (clients) and a scenario is generated by independent choices (setting the demands)
made for each element. Independent distributions allow one to succinctly specify a class
of distributions with exponentially many scenarios, and have been used in the Computer
Science community to model uncertainty in various settings [18, 25, 5]. However, many
of the underlying stochastic applications often involve correlated data (e.g., in stochastic
facility location the client demands are expected to be correlated due to economic and/or
geographic factors), which the independent-activation model clearly does not capture. A
more general way of specifying the distribution is the black-box model, where the distribution

ACM SIGACT News 2 March 2006 Vol. 37, No. 1

is specified only via a procedure (a “black box”) that one can use to sample scenarios from
the distribution. In this model, each procedure call is treated as an elementary operation,
and the running time of an algorithm is measured in terms of the number of procedure
calls. The black-box model incorporates the desirable aspects of both the previous models:
it allows one to specify distributions with exponentially many scenarios and correlation in a
compact way that makes it reasonable to talk about polynomial time algorithms.

Stochastic optimization problems are often computationally quite difficult, and often
more difficult than their deterministic counterparts, both from the viewpoint of complexity
theory, as well as from a practical perspective. In many settings the computational diffi-
culty stems from the fact that the distribution might assign a non-zero probability to an
exponential number of scenarios, leading to considerable increase in the problem complexity,
a phenomenon often called the “curse of dimensionality.” Thus, many stochastic problems
that are easy to solve in the polynomial-scenario model due to the expansive input encoding
become NP-hard in the black-box model. For example, 2-stage stochastic linear programs
(i.e., 2-stage problems that can be formulated as linear programs) are polynomial-time solv-
able in the polynomial-scenario model but become #P-hard in the black-box model [10].
In other settings, even with polynomially many scenarios, the stochastic problem gives rise
to a more complex problem than its deterministic counterpart and is NP-hard, whereas the
deterministic problem is solvable in polynomial time.

In this survey, we focus on the design of approximation algorithms for 2-stage stochas-
tic optimization problems. Throughout, we use a p-approximation algorithm to denote a
polynomial time algorithm that always returns a feasible solution with objective function
value within a factor p of the optimum; p is called the approximation ratio or performance
guarantee of the algorithm.

There is an abundance of literature in the stochastic programming community that deals
with computational aspects of solving 2-stage stochastic programs, especially 2-stage linear
programs (LPs), which we shall not cover here; the reader is referred to [2, 28] for more
information. Many of these methods are only suitable in the polynomial-scenario model and
cannot handle the burden of an exponential number of scenarios. One appealing approach in
the black-box model is to sample a certain number of times from the scenario-distribution,
estimate the probability of a scenario by its frequency in the sampled set, and solve the
2-stage problem determined by this approximate distribution. This is known as the sample
average approzimation (SAA) method. The SAA method is a widely used heuristic in prac-
tice and has been empirically shown to work well in various settings (see, e.g., [22, 35]). The
main question here is: how many samples does one need to ensure that an optimal solution
to the sample-average problem is a near-optimal solution to the original problem (with high
probability)? While there are results that prove asymptotic convergence to the optimal so-
lution (to the original problem) in the limit as the number of samples goes to infinity, fewer
results are known about the rate of convergence, or equivalently, about worst-case bounds
on the sample size required to obtain a near-optimal solution. Ideally one would like to
show that a polynomial number of samples always suffice. Such a result would show that
the SAA method gives a reduction from the black-box problem to a polynomial-scenario
problem, thereby reducing the complexity of the stochastic problem, while losing a factor in

ACM SIGACT News 3 March 2006 Vol. 37, No. 1

the approximation guarantee. In particular, this would immediately give an approximation
algorithm for stochastic linear programming problems in the black-box model. The work
that most closely considers the aspect of worst-case bounds is a paper of Kleywegt, Shapiro
and Homem-De-Mello [19] (see also [29]). Kleywegt et al. prove a sample-size bound for
2-stage programs that is independent of the number of scenarios, but depends on the vari-
ance of a certain quantity (calculated using the scenario-distribution) which need not be
polynomially bounded, even for very structured programs. We shall return to this question
of proving polynomial sample-size bounds for the SAA method in Section 5.

There are other sampling-based approaches where instead of sampling just once initially,
the algorithm used to solve the stochastic problem contains a sampling subroutine that is
called whenever one needs to estimate some quantity, such as the function value or the
gradient. Dyer, Kannan and Stougie [9] use such an approach for a stochastic maximization
LP, where samples are used to estimate the objective function value at a given point. This
yields a sample size that is only polynomial in the maximum value attained by any scenario
(due to the high variance in the values of the different scenarios). Nesterov and Vial [26]
employ stochastic subgradients, estimated via sampling, in a subgradient-descent algorithm,
and require a sample size that is polynomial in the maximum variation in the objective
function value in the feasible region.

The design and analysis of algorithms with provable worst-case guarantees for 2-stage
stochastic integer programs is a relatively recent research direction. The first such result
appears to be due to Dye, Stougie and Tomasgard [8] who give a constant-factor approxima-
tion algorithm for a resource provisioning problem in the polynomial-scenario model. Sub-
sequently a series of papers [27, 16, 13, 31] appeared on this topic in the Computer Science
literature, and showed that one can obtain guarantees for a variety of stochastic combinatorial
optimization problems by adapting the techniques developed for the deterministic analogue.
Gupta, Pal, Ravi and Sinha [13], who were the first to consider the black-box model (under
a certain cost assumption), make such a connection explicit. Shmoys and Swamy [31], who
give algorithms in the black-box model with arbitrary costs, show an even more explicit
correspondence. They showed that one could derive approximation algorithms for most of
the problems considered in [27, 16, 13] by adopting a natural LP rounding approach that, in
effect, converted an LP-based approximation guarantee for the deterministic analogue into
a guarantee for the stochastic generalization with a small loss in the approximation factor.
Thus, if we can solve the stochastic LP (even approximately), which is a # P-hard problem,
then we will have essentially reduced the stochastic problem to its deterministic analogue.

This survey is organized as follows: in Section 3 we describe an approximation scheme for
solving a large class of 2-stage stochastic LPs. In Section 4 we describe some techniques for
devising approximation algorithms for stochastic integer programming problems. We focus
mainly on the black-box model, but also sometimes consider the polynomial-scenario model;
in Section 5 we consider the SAA method and establish a concrete connection between these
two models. We conclude in Section 6.

ACM SIGACT News 4 March 2006 Vol. 37, No. 1

3 Stochastic linear programs

We now describe the fully polynomial approximation scheme (FPAS) of Shmoys and Swamy
[31] that can be applied to a rich class of 2-stage stochastic LPs. The algorithm returns a
solution of value within (1 +) times the optimum (with high probability), for any x > 0, in
time polynomial in the input size, %, and an inflation factor A, which is the maximum ratio
between the second- and first-stage costs. This sample-size bound is tight up to polynomial
factors in the black-box model; [31] show that there are instances where (A/p) samples are
needed in the black-box model to obtain a performance guarantee of p, and the dependence
on % is also unavoidable due to the # P-hardness result. As we show in Section 4, this FPAS
provides us with a powerful and versatile tool for designing approximation algorithms for
stochastic integer optimization problems, in much the same way that linear programming has
proved to be immensely useful in the design of approximation algorithms for deterministic
optimization problems.

We shall consider a stochastic generalization of the set cover problem as an illustrative
problem to explain the main ideas. In the 2-stage stochastic set cover (SSC) problem, we are
given a ground set U of n elements, a collection of subsets of U, S1,...,S,,, and a distribution
over subsets of U that specifies the target set of elements to cover. In stage I, we can pick
some sets paying a cost of wy for each set S. Then, a scenario materializes which specifies
a target set A C U of elements to be covered and the costs {w4} of picking sets in that
scenario, and one can pick additional sets to ensure that A is contained in the union of the
sets selected in the two stages. The aim is to minimize the expected cost of the sets picked.
Denoting the probability of scenario A by pa (which we do not know explicitly, and could be
0), we can formulate the problem as an integer program and relax the integrality constraints
to obtain the following linear program.

min {Z wfqa:g —1—2 pAwéfr’A,s : Z(ms +rag)>1 VAje€e A; xg,ras5 >0 VA, S.}
S ACU,S S:e€s

(SSC-P1)

Variable zg indicates whether set S is chosen in stage I, and 74 ¢ indicates if set S is
chosen in scenario A. The constraint says that in every scenario A, every element in that
scenario has to be covered by a set chosen either in stage I or in stage II. Notice that (SSC-P1)
is an LP with an exponential number of variables and constraints, and it seems difficult to
efficiently compute an (near-) optimal solution to (SSC-P1), since even writing out a solution
can take exponential space (and time). However, if we fix the first-stage decisions, i.e., the x5
variables, then the scenarios become separable, so we can reformulate (SSC-P1) as follows:

min h(x) = Zwéxs + Z pafa(x) subject to 0<xzg <1 forall S, (SSC-P2)
S

ACU

where fa(z) := min {Z w§TA75: Z ras>1— Z rs Ve€ A; r1a4g5>0 VS.}
s

S:eeS S:eeS

Here the second-stage decisions only appear in the minimization problem f4(x), which de-
notes the recourse problem that one needs to solve for scenario A. It is easy to show that

ACM SIGACT News 5 March 2006 Vol. 37, No. 1

(SSC-P2) is equivalent to (SSC-P1), and that its objective function is convex. Although we
now have a compact conver program, the complexity of the problem resurfaces as follows:
in general, it is # P-hard to even evaluate the objective function h(.) at a given point [10].
Nevertheless, we can leverage convexity and adapt the ellipsoid method to solve (SSC-P2).

In the ellipsoid method, we start by containing the feasible region within a ball and then
generate a sequence of ellipsoids, each of successively smaller volume. In each iteration,
one examines the center of the current ellipsoid and obtains a specific half-space defined
by a hyperplane passing through the current ellipsoid center. If the current ellipsoid center
is infeasible, then one uses a violated inequality as the hyperplane, otherwise, one uses an
objective function cut to eliminate (some or all) feasible points whose objective function
value is no better than the current center, and thus make progress. A new ellipsoid is then
generated by finding the minimum-volume ellipsoid containing the half-ellipsoid obtained by
the intersection of the current one with this half-space. Continuing in this way, using the
fact that the volume of the successive ellipsoids decreases by a significant factor, one can
show that after a polynomial number of iterations, the feasible point generated with the best
objective function value is a near-optimal solution.

Let P = Py denote the polytope {x e R™: 0 < xg < 1forall S}, and z; be the
current iterate. Define A = max(1, max4 s w4 /wk), which we assume is known. It is trivial
to determine if x; is feasible, so we need to describe how to obtain an objective function
cut. One option is to simply add the constraint h(z) < h(z;), which although is not a
cut, would preserve convexity of the feasible region. But then in subsequent iterations,
without the ability to evaluate (or even estimate) h(.) at a given point, we would not even
be able to decide if the current point is feasible (or even almost-feasible), which poses a
formidable difficulty. Alternatively, one could use cuts generated by a subgradient, which
is the analogue of gradient for a non-differentiable function: d € R™ is a subgradient of a
function g : R™ — R at point u, if g(v) — g(u) > d - (v — u) for every v € R™. If d; is a
subgradient at point x;, one can add the subgradient cut d; - (x — x;) < 0 and proceed with
the (smaller) polytope Py = {x € P; : d; - (x — x;) < 0}. Unfortunately, even computing
a subgradient is hard to do in polynomial time for the objective functions that arise in
stochastic programs. We circumvent this obstacle by using an approrimate subgradient:

Definition 1 We say that d e R™ s an (w, D)-subgradient of a function g : R™ — R at
point uw € D, if g(v) — g(u) > d- (v —u) — wg(u) holds Yv € D. We abbreviate (w,P)-

subgradient to w-subgradient.

An extremely useful property of w-subgradients is that one can compute them efficiently
by sampling. If d; is an w- subgradient at z;, one can add the inequality d; - (x —x;)) <0
and obtain the polytope P = {z € P; : d; - (x — ;) < 0}. Since we use an approximate
subgradient, this might discard points with h(.) value less than h(z;). But for any point
y € P;\ Pit1, we have that h(y) > (1 —w)h(z;), so no such point has h(.) value much smaller
than h(z;). Continuing this way we obtain a polynomial number of points xg, z1, . . ., 2} such
that z; € P; C P;_1 for each i, and the volume of the ellipsoid centered at x; containing
Pk, and hence that of Py is small. Now if h(.) has a bounded Lipschitz constant (h has
Lipschitz constant at most K if |h(v) — h(u)| < ||[v — ul|2 Yu,v € R™) then one can show
that min; h(z;) is close to the optimal value OPT with high probability. The algorithm is

ACM SIGACT News 6 March 2006 Vol. 37, No. 1

summarized in procedure FindOpt below.

FindOpt(v,€) [Returns z € P with h(z) < (?I_D% +e. Assume v < 3. K is the Lipschitz constant.]

Ol. Set &k «— 0, yo «— 0, N « (2m2ln(16{§7€RQﬂ, n «— Nlog(%), and w «— 7v/2n. Let
Ey — B(0,R) and Py < P.
02. For i =0,...,N do the following.
a) If y; € Py, set xp — yi- Let di. be an w-subgradient of h(.) at xp. Let H denote the
half space {x € R™ : dj, - (v — x1) < 0}. Set Pxy1 < PrNH and k «— k + 1.

b) If y; ¢ Py, let a-x < b be a violated inequality, that is, a - y; > b, whereas a - x <
b for all x € Pi. Let H be the half space {z € R™ : a - (x — y;) < 0}.

c¢) Set E;+1 to be the ellipsoid of minimum volume containing the half-ellipsoid E; N H.

03. Set k < k — 1. Return the point in {xo,...,zx} with minimum A(.) value.

There are a few details needed to complete the algorithm description. First, since we
cannot compute h(z) we will not be able to compute the point arg min; h(x;) in step O3.
Instead, by using w-subgradients we will find a point Z in the convex hull of xg,...,zy,
such that h(z) is close to min; h(z;). We repeatedly perform a bisection search on the line
segment joining Z (initialized to xo) and x; for i = 1,... k, using an w-subgradient to infer
which direction to move along the segment. Each time the search returns a point y such that
h(y) is close to min(h(z), h(x;)), and we update Z to y. Second, to convert the performance
guarantee of procedure FindOpt into a purely multiplicative (1 4 k)-guarantee, we need to
obtain a lower bound on OPT (and set €, 7 accordingly). Under the mild assumption that
the cost of every set S, in stage I and in every stage Il scenario, is at least 1, one can do
this by sampling initially O()\) times. Essentially, one can detect by sampling O(\) times,
whether the probability that some scenario A #) occurs is at least %; if so, then OPT > %,
otherwise x = 0 is an optimal solution. Finally, we specify how to compute an w-subgradient
at a point x € P efficiently. Let z% be an optimal solution to the dual of f4(z).

Lemma 2 (i) the vector d with components ds =Y , pa(Wws— >, cans Zhe) 8 @ subgradient
of h(.) at x; (i) for every scenario A, set S, [w — 3 c ang Zhel < Aw; and (iii) ifd e R™
is such that ds — wwy < dg < dg for every S, then d is an w-subgradient of h(.) at x.

Parts (i) and (ii) show that each component of the subgradient vector is the expectation of
a random variable (according to the scenario-distribution) with bounded variance. (Part (ii)
also yields a bound on the Lipschitz constant K.) So, with probability at least 1 — 9, one can
estimate this expectation to within an additive error of ww} simultaneously for each S, using
poly (input size, f, In()) samples. This yields an w-subgradient, by part (iii) of Lemma 2.
We compute an w-subgradient at a polynomial number of points, with a polynomially small
w, so overall we get a sample size that is polynomial in the input size, A\, and %

Shmoys and Swamy show that the arguments above, especially Lemma 2, can be gener-
alized to yield an approximation scheme for a rich class of 2-stage stochastic LPs; loosely
speaking, these programs are characterized by the property that every first-stage action has
a corresponding recourse action whose cost, relative to the first-stage, is bounded. This

ACM SIGACT News 7 March 2006 Vol. 37, No. 1

class includes the fractional versions of a variety of stochastic combinatorial optimization
problems such as stochastic covering problems (set cover, network design, multicut), facility
location problems, multicommodity flow.

4 Stochastic integer programs

We now consider some stochastic combinatorial optimization problems, modeled as stochastic
integer programs, and describe some methods that can be used to design approximation
algorithms for these problems.

A general rounding technique. We first describe a simple, but powerful rounding frame-
work due to [31], using stochastic set cover (SSC) as an illustrative example. Recall the
relaxation (SSC-P2) for SSC. We will show that an LP-based approximation guarantee for
the deterministic set cover (DSC) problem yields a corresponding guarantee for the stochas-
tic problem. Given a DSC instance with a universe U of n elements, a family of subsets
S1, ..., S, with set S having weight wg, consider the following LP relaxation of the integer
problem of picking a minimum weight collection of sets to cover U.

OPTp,; := min ngwg subject to Z rg>1 foralle; xg>0 foralllS.
SeS SeS:ecS

(SC-P)

Theorem 3 Given an algorithm that for every DSC instance produces a solution of cost at
most p- OPTpet, one can convert any solution x to (SSC-P2) to an integer solution of cost
at most 2p - h(x).

Proof : Let 7% be an optimal solution to the recourse problem f4(z), so fa(x) =
Yo w?rfﬁh g- Observe the following simple fact: an element e is covered to an extent of at least
% either by the variables xg, or by the variables 17 ¢ in every scenario A containing e. This
will allow us to decouple stage T and the second-stage scenarios. Let B = {e : > g .o s > 5}
Then (2x) is a fractional set cover solution for the instance with universe F, so one can ob-
tain an integer set cover & for E of cost at most 2p - Y gwgrg. These are our stage I sets.
Similarly, for any scenario A, (2r%) is a fractional set cover for A\ E, since for each such
element e we have Y . o7 ¢ > 1. Therefore, one can cover these elements at a cost of at
most 2p - > g wgrk g. So the cost of the solution Z is at most 2p - h(z). n

Combined with the FPAS of Section 3, this yields approximation guarantees for various
stochastic covering problems, e.g., we obtain guarantees of 2logn + € for SSC, and 4 + ¢
for stochastic vertex cover. A useful property of the rounding is that it yields per-scenario
guarantees, that is, the cost of (stage I and) each scenario in the integer solution can be
bounded using the corresponding component in the fractional solution.

Stochastic facility location. In the deterministic uncapacitated facility location (UFL)
problem, given a set of candidate facilities F and a set of clients D, we have to select a
subset of facilities to open and assign each client to an open facility. Each facility ¢ has

ACM SIGACT News 8 March 2006 Vol. 37, No. 1

an opening cost of f; and each client j has demand d;, and the cost of assigning client j
to facility ¢ is given by d;c;;, where ¢;; is the distance between ¢ and j and these distances
form a metric. The goal is to minimize the sum of the facility opening and client assignment
costs. In the 2-stage stochastic version of the problem, abbreviated SUFL, the demand of
a client is a random variable (the demands may be correlated), and we can open facilities
either in stage I, or after the scenario A with demands d;‘ is revealed, paying a cost of f}
or f# respectively for opening facility i. We first consider SUFL in the polynomial-scenario
model and show that one can design an approximation algorithm by dovetailing an approach
used for UFL. Then we show that the above rounding technique can be adapted to derive an
approximation algorithm for SUFL in the black-box model. For simplicity, we will assume
that dj‘ € {0, 1} for every j, A, so a scenario now specifies a set of clients that need to be
assigned to facilities.

Let A denote the collection of all scenarios, which is explicitly described in the input in
the polynomial-scenario model. Consider the following LP relaxation for SUFL. We use i to
index the facilities, j to index the clients, and A to index the scenarios. Variables y; and
ya, indicate whether facility ¢ is opened in stage I or in scenario A respectively, and x4 ;;
indicates if client j is assigned to facility ¢ in scenario A.

) max Z PACA (D)

A,jeEA

min Z flyi+
’ st. aay; < cytPay Vi, AjeA (1)

Z Pa <Zf¢A?JA,i + D GijTag

AcA JEA
(P)

: G < f VA (2)
.U, > > Z/QAJJ — (A 7
s.t ZxA,z] >1 \V/A,j cA =
ﬁCA,ij S Yi + YA V'l, A,j € A Z pAﬁA,ij S fZI /i (3)
Yi, Taij,Yai = 0 Vi, A, j e A AjeA

aaj,Bai; >0 Vi, A, j € A.

Let (D) be the dual program. We briefly sketch a primal-dual 3-approximation algorithm
due to Mahdian [23], which closely resembles the Jain-Vazirani (JV) algorithm for UFL [17].
All dual variables are initially set to 0. It is easy to imagine the dual-ascent process: we
uniformly increase all ay; variables at rate 1 until some constraint becomes tight. If con-
straint (1) goes tight for some (7, A) and facility i, we also start increasing (4 ,; at rate 1. If
constraint (2) goes tight for some A, i, then we tentatively open facility i for scenario A and
freeze (i.e., stop increasing) all a4 j, Ba,; variables for which a4 ; > ¢;;. If (3) goes tight for a
facility ¢, we tentatively open ¢ for stage I, and for every scenario A, we freeze the a4 j, Ba;
variables for which a4 ;; > ¢;;. The process ends when all ay; variables are frozen. Now
we perform a clean-up step for stage I, and for each scenario, to decide which facilities to
open. For stage I, we open a maximal subset F' of the tentatively open stage I facilities, such
that for every (j, A), there is at most one facility i € F' with (54,; > 0. In every scenario A,
we open a maximal subset F)4 of the tentatively open facilities for scenario A, such that for
every j € A, there is at most one facility i € F'U Fy with 84,; > 0. The analysis proceeds
as in the JV algorithm, by showing that for every (j, A), if the facility that caused a4 ; to
freeze is not open, then there must be a facility opened in stage I or in scenario A that is at
most 3ay ; distance away from j. This proves an approximation ratio of 3.

ACM SIGACT News 9 March 2006 Vol. 37, No. 1

We now consider SUFL in the black-box model. We compactly express (P) as the con-
vex program: minimize h(y) := >, fiy; + > 4c 4 Paga(y), where ga(y) is the minimum of
Y f,-A?/A,mLZjeA’i Cij® A; subject to the constraints) . x4, > 1forall j € A, z4,; < i, yas
forall 7,5 € A, and x,j,y4, > 0 for all 4, j € A. Note that this is not a stochastic covering
program. While UFL admits a star-covering relaxation (clients have to be covered by stars,
a star is a facility and a set of clients assigned to it), the corresponding stochastic covering
program does not model SUFL, because in SUFL when we open a facility in stage [we do
not fix then the set of clients it will serve; this is decided in stage II, and will typically be
scenario-dependent. Yet, the decoupling idea can be applied here, to the covering constraint
> ;Taij > 1, to obtain an approximation algorithm. Let pyr. denote the integrality gap of
UFL, which is at most 1.52 [24].

Theorem 4 The integrality gap of (P) is at most 2pygL.

Proof: Let y be any feasible solution to the convex program and let (z%, 3%) be an optimal
solution to ga(y). We write % ,; = !, ;; 4+ !} ;; for each scenario A and client j € A, where
:Eim-j < y; and x%ﬂ-j <y} ;- This is always possible since 27 ;; < y; +y% ;- So either), xIA’U >
% or xlj’ij > % Again we use this to decouple stage I and the second-stage scenarios. For
a client j, define S; = {A > j : Y 2%, > 3}. For the stage I decisions, we construct a
feasible fractional solution for a UFL instance where the facility costs are f], the assignment
costs are c;;, and the “demand” of client j is set to) ,. s, PA; and then round this using an
algorithm for UFL. If we treat each (j, A) where A € S; as a separate client with demand pa4,
we obtain a feasible solution by setting §; = min(1, 2y;) and 4 ;; = min(1,2z!, ;;). But since
the y; facility variables do not depend on the scenario, we can re-optimize the assignment
for each (j, A) to obtain an assignment that does not depend on A. Thus, we can coalesce
all the (j,A) clients into one, with demand }_ ,. s, Pa. Since the integrality gap is purc,
there is an integer solution (Z,g) of cost at most 2pyr (>, flyf + Zj,i,AeSj pacixly ;;); this
determines which facilities to open in stage I. In any scenario A, each client j such that
A € §; is assigned to the stage I facility given by the assignment Z. For each remaining
client j, since Y, '} ;; > 1, the solution §a; = min(1,2y%;), &4, = min(1,22Y ;) yields
a feasible solution for the UFL instance with client set {j € A: A ¢ S;}. Again the pyp
integrality gap shows that there is an integer solution with “low” cost. Overall, we get that
the total cost of the solution 7 is at most 2pygL - A(y). This shows that the integrality gap
is at most 2pygL. [|

This yields a 3.04-approximation algorithm in the polynomial-scenario model (taking
purL = 1.52 [24]). In the black-box model, the rounding has to modified slightly to take
into account the fact that since we do not know (and may not even be able to estimate) the
demand), s, PA of a client j in the UFL instance solved for stage I, we will not be able to
apply the algorithm of [24] to obtain the stage I decisions. Instead, we use an approximation
algorithm for UFL due to Swamy [32] (see Section 2.4) that works oblivious of the client
demands, to get an algorithm for SUFL with a slightly larger approximation ratio.

Stochastic Steiner tree. We now describe the boosted sampling technique of Gupta et
al. [13] that shows that for certain stochastic problems, an approximation algorithm for

ACM SIGACT News 10 March 2006 Vol. 37, No. 1

the deterministic problem that satisfies some cost-sharing properties, can be used to derive
performance guarantees for the stochastic problem. We focus on the stochastic rooted Steiner
tree (SST) problem: we have a graph G = (V| E), a fixed root r € V, and a distribution that
specifies a random set of terminals to connect to the root. We can buy edges either in stage
I or after the terminal set A C V has been revealed, paying a cost of ¢, or ¢! respectively
for edge e, so as to connect all the nodes in A to r. We can use boosted sampling to devise
a 4-approximation algorithm, under the cost restriction ¢! = Me¢, for every edge e in every
scenario A. This reflects a limitation of the boosted sampling approach. In the case of SST,
without such a restriction the problem becomes Group-Steiner-tree-hard [27], but for other
problems such as stochastic {vertex cover, facility location}, one can use other techniques to
obtain good guarantees without imposing any such cost restriction. It is worth noting that
we can formulate a fractional version of SST as a stochastic covering program, where we need
to cover each cut separating a terminal from the root by edges bought in the two stages.
One can therefore obtain a (1 + €)-optimal fractional solution in polynomial time. However
the rounding procedure detailed above does not work, because the cut-covering problems
obtained after decoupling the two stages need not correspond to Steiner tree instances (and
may not even fall into the Goemans-Williamson framework [11]).

Here we assume for simplicity that ¢! = Ac, for every A, e. Let ST(S) denote the cost of
an optimal Steiner tree on SU{r} wrt. costs {c.}. We say that an algorithm A for the Steiner
tree problem admits a (3-strict cost sharing if there is a function £ : 2" x V +— Ry such that
for every S, T C V with SNT =0, (i) £(S,u) =0 for u ¢ S; (ii) >_,cs&(S,u) < ST(S); and
(iii) there is a procedure Aug 4 that augments the tree A(S) constructed by A on input S to
a tree on SUT U {r} incurring cost c(Aug4(S,T)) < B3 ,cp E(SUT, w). Intuitively £(S, w)
stands for u’s share in the cost of a Steiner tree on S.

We may assume that G is complete and the edge costs form a metric. We use the
MST heuristic as algorithm 4. This is a 2-approximation algorithm that admits a 2-strict
cost sharing. Procedure Aug, consists of contracting S into the root, and building an
MST on 7' U {r} in the contracted graph. Rooting the MST on S U {r} at r, we set
£(S,u) = %(cost of the edge joining u to its parent). This satisfies properties (i) and (ii)
above, and it is not hard to show that it satisfies (iii) with § = 2. The algorithm for SST is
quite simple: we draw A samples Ay, ..., A, from the distribution and build the tree A(S)
where S = |J; 4;, as our first-stage solution. Intuitively, this tries to account for the A
inflation factor by sampling each scenario A, in expectation, Ap, times. In the second-stage,
if scenario A is realized, we use Aug, to augment A(S) and connect A\ S to the root. A
nice feature of the algorithm is that only A samples are required.

Let EY and E% be the edges purchased in stage I and in scenario A by an optimal
(integer) solution to SST, and let OPT = ¢(E}) + AEa[c(E%)] be the cost incurred. Let
£(X,Y) denote) .y &(X,u). The first-stage cost can be bounded by noting that ST(S)

is at most the cost of Zg = Ej U (Uj‘:1 Ejl) since Zg connects S to r. The expected
first-stage cost is at most 2Eg [ST(S)] < 2ESZ[C(ZS)] which is at most 2 - OPT, since each
scenario A is sampled Ap4 times in expectation. The expected second-stage cost is given by
AEg 4 [c(Aug4(S, A\ S))] which is at most 2AEg 4 [€(SUA, A\ S)] by property (iii). We can
treat scenario A as an extra sample Ay,1, and since the A;’s are identically distributed, we
have that Eg4[((SUA, A\ S)] < /\LHE&A [E(SUA,SUA)| < 2=Ega[ST(SUA)]. Finally,

A+1

ACM SIGACT News 11 March 2006 Vol. 37, No. 1

by arguing as we did for stage I, one can bound Eg 4 [ST(S U A)} by % - OPT. Thus the
expected second-stage cost is at most 2 - OPT, and the total cost is at most 4 - OPT.

Gupta et al. show that boosted sampling can be applied to any stochastic problem
satisfying a certain sub-additivity condition, if we have an approximation algorithm for
the deterministic version that admits a [-strict cost-sharing (which is now defined more
abstractly). They show that an a-approximation algorithm with a [-strict cost sharing
gives an (a +)-approximation algorithm for the stochastic problem. In all known cases,
such an approximation algorithm is obtained via the primal-dual schema (the MST heuristic
can be viewed as a primal-dual algorithm) and the cost shares are derived from the dual
variables. Thus, boosted sampling may be viewed as a primal-dual approach for designing
approximation algorithms for stochastic problems.

5 The Sample Average Approximation method

The sample average approximation (SAA) method is a natural approach for computing
solutions in the black-box model. Here we replace the original stochastic problem by a
sample-average problem obtained by sampling scenarios some A times and estimating the
scenario probabilities by their frequencies of occurrence in the sampled set, and solve this
problem. If one can show that a polynomially bounded A suffices to obtain a (14 ¢€)-optimal
solution (to the original problem), then one would obtain a reduction from the black-box
problem to a polynomial-scenario problem while losing a (14 ¢) factor. As mentioned earlier,
Kleywegt et al. [19] prove a sample-size bound for general 2-stage programs that depends on
the variance of a certain quantity, which need not be polynomially bounded. Although this
bound has been shown to be tight in the black-box model for general 2-stage programs [30],
for structured programs one can prove better bounds that do not follow directly from the
bound in [19]. In fact, part of the challenge in dealing with stochastic problems, in light
of strong lower bounds such as those in [30], is to identify (simple) structural properties
that when imposed on the problem yield a more tractable, yet broad and interesting class of
problems. Swamy and Shmoys [33] (see also [34]) proved a polynomial bound for the SAA
method for the class of 2-stage LPs considered in [31], by building upon ideas used in the
ellipsoid-based FPAS of Section 3. Thus the SAA method yields a simpler, more efficient
scheme for this class of programs.

A naive approach for proving this result would be to argue that values of the true and
sample-average objective function are close to each other. But this fails immediately, because
there could be very low probability scenarios, which will almost never sampled, that con-
tribute significantly to the (true) objective function. The key insight is that such rare scenar-
ios do not much affect the optimal first-stage decisions. The proof in [33] uses (approximate)
subgradients to identify a notion of closeness between the sample-average and true objec-
tive functions. Loosely speaking, this notion captures the property that the ellipsoid-based
FPAS can be made to run identically on both the sample-average and the true problems,
which intuitively suggests that optimizing the sample-average function is nearly equivalent
to optimizing the true function. Charikar, Chekuri and P&l [3] gave a different proof for
roughly the same class of programs. While [33] only shows that any optimal solution to
the sample-average LP is a (1 + €)-optimal solution to the true LP (with high probability),

ACM SIGACT News 12 March 2006 Vol. 37, No. 1

Charikar et al. argue that by slightly modifying the “standard” SAA approach, one can
prove that any a-optimal solution to the sampled problem is an (a + €)-optimal solution
to the true problem. In Section 4, we gave a 3-approximation algorithm for SUFL in the
polynomial-scenario model. Furthermore, in the polynomial-scenario model, by mimicking
the primal-dual algorithms for set cover and vertex cover one can obtain the same guarantees
of logn and 2 respectively for the stochastic problem [27]. The result in [3] shows that these
guarantees also extend to the black-box model.

In yet another approach, Nemirovski and Shapiro (personal communication), in an effort
to reconcile the contrast between the lower bounds in [30] and the upper bounds in [31, 33],
gave a new preprocessing step that showed that for the 2-stage set cover problem, the bound
of Kleywegt et al. applied to the modified problem gives a polynomial sample size bound.

6 Concluding remarks

We have described a variety of techniques for the design of approximation algorithms for
2-stage stochastic linear and integer programs by considering a few illustrative problems.
Various other 2-stage combinatorial optimization problems have been considered from the
perspective of approximation algorithms design in the literature. These include the stochastic
versions of the bin-packing [16, 27|, multicommodity flow [31], unrooted Steiner tree [12],
minimum multicut [6], and minimum spanning tree [7] problems.

A number of interesting questions arise. A natural generalization of the 2-stage model
is the multi-stage recourse model, where the input is revealed in a series of stages, and one
can take recourse actions in each stage in response to the information learned. Swamy and
Shmoys [34] recently showed that the SAA method yields an FPAS for a rich class of k-stage
LPs for any fixed k. Since the LP-rounding approach for 2-stage programs (Theorem 3)
easily generalizes, this leads to approximation algorithms for k-stage covering and facility
location problems, where the guarantees now degrade by a factor of k (instead of 2). Gupta et
al. [14] showed that the boosted sampling approach also extends but the loss in performance
guarantee is exponential in k (except for the k-stage Steiner tree problem). In both these
results, the approximation ratios depend on k; removing this dependence on k is an open
problem. For covering and facility location problems, it should be possible to obtain a
guarantee for the k-stage problem that almost matches the deterministic guarantee, since
one can show that the integrality gap of the k-stage LP, for set cover, vertex cover, and
facility location, is close to that of the deterministic LP. Both [14, 34] require a sample size
that is exponential in k. A very interesting and challenging problem is to obtain bounds,
for linear or integer programs, that are polynomial in k. This may not be possible in the
black-box model, but it would be interesting to prove such a bound even for distributions
where the different stages are independent. Such results have been obtained in the setting
of stochastic inventory control problems in [21] and (with a stronger black box) in [20].

The stochastic recourse model measures the expected cost associated with the first-stage
decisions, but often in applications one is also interested in the risk associated with the first-
stage decisions, where risk is some measure of the variability (e.g., variance) in the (random)
cost incurred in later stages. [15] consider the use of budgets that bound the cost of each
scenario, as a means of guarding against (one-sided) risk, but this limits one to polynomial-

ACM SIGACT News 13 March 2006 Vol. 37, No. 1

scenario distributions. It would be interesting to explore stochastic models that incorporate
risk, while allowing for a broader class of distributions (with exponentially many scenarios).
Another research avenue, which brings us closer to Markov Decision Problems, is to investi-
gate problems where the uncertainty is affected by the decisions taken. Stochastic scheduling
problems, where the scheduling decisions interact with the evolution of the random job sizes
(especially in a preemptive environment), provide a fertile ground for such problems.

References

1]

2]

E. M. L. Beale. On minimizing a convex function subject to linear inequalities. Journal
of the Royal Statistical Society, Series B, 17:173-184; discussion 194-203, 1955.

J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer-
Verlag, NY, 1997.

M. Charikar, C. Chekuri, and M. Pal. Sampling bounds for stochastic optimization.
Proceedings, 9th RANDOM, pages 257-269, 2005.

G. B. Dantzig. Linear programming under uncertainty. Mgmt. Sc., 1:197-206, 1955.

B. Dean, M. Goemans, and J. Vondrak. Approximating the stochastic knapsack prob-
lem: the benefit of adaptivity. Proceedings, 45th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 208217, 2004.

K. Dhamdhere, V. Goyal, R. Ravi, and M Singh. How to pay, come what may: ap-
proximation algorithms for demand-robust covering problems. Proceedings, 46th Annual
IEEE Symposium on Foundations of Computer Science, pages 367-378, 2005.

K. Dhamdhere, R. Ravi, and M Singh. On two-stage stochastic minimum spanning
trees. Proceedings, 11th IPCO, pages 321-334, 2005.

S. Dye, L. Stougie, and A. Tomasgard. The stochastic single resource service-provision
problem. Naval Research Logistics, 50(8):869-887, 2003. Also appeared as “The stochas-
tic single node service provision problem”, COSOR-Memorandum 99-13, Dept. of Math-
ematics and Computer Science, Eindhoven Technical University, Eindhoven, 1999.

M. Dyer, R. Kannan, and L. Stougie. A simple randomised algorithm for convex optimi-
sation. SPOR-Report 2002-05, Dept. of Mathematics and Computer Science, Eindhoven
Technical University, Eindhoven, 2002.

M. Dyer and L. Stougie. Computational complexity of stochastic programming prob-
lems. SPOR-Report 2005-11, Dept. of Mathematics and Computer Science, Eindhoven
Technical University, Eindhoven, 2005.

M. Goemans and D. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24:296-317, 1995.

ACM SIGACT News 14 March 2006 Vol. 37, No. 1

[12] A. Gupta and M. Pal. Stochastic Steiner trees without a root. Proceedings, 32nd ICALP,
pages 1051-1063, 2005.

[13] A. Gupta, M. P4l, R. Ravi, and A. Sinha. Boosted sampling: approximation algorithms
for stochastic optimization. Proceedings, 36th Annual ACM Symposium on Theory of
Computing, pages 417-426, 2004.

[14] A. Gupta, M. Pal, R. Ravi, & A. Sinha. What about Wednesday? Approximation
algorithms for multistage stochastic optimization. Proceedings, 8th APPROX, pages
86-98, 2005.

[15] A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: LP rounding ap-
proximation algorithms for stochastic network design. Proceedings, 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 218-227, 2004.

[16] N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni. On the costs and benefits
of procrastination: approximation algorithms for stochastic combinatorial optimization
problems. Proceedings, 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 684-693, 2004.

[17] K. Jain and V.V. Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. JACM,
48(2):274-296, 2001.

[18] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty connections.
SIAM Journal on Computing, 30(1):191-217, 2000.

[19] A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approxi-
mation method for stochastic discrete optimization. SIAM Journal of Optimization,
12:479-502, 2001.

[20] R. Levi, M. Pal, R. Roundy, and D. B. Shmoys. Approximation algorithms for stochastic
inventory control models Proceedings, 11th IPCO, pages 306-320, 2005.

[21] R. Levi, R. Roundy, and D. B. Shmoys. Provably near-optimal sampling-based policies
for stochastic inventory control models. To appear in Proceedings, 38th Annual ACM
Symposium on Theory of Computing, 2006.

[22] J. Linderoth, A. Shapiro, and R. K. Wright. The empirical behavior of sampling methods
for stochastic programming. Annals of Operations Research, to appear.

[23] M. Mahdian. Facility Location and the Analysis of Algorithms through Factor-revealing
Programs. Ph.D. thesis, MIT, Cambridge, MA, 2004.

[24] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric
facility location. Proceedings, 5th APPROX, pages 229-242, 2002.

[25] R. Mohring, A. Schulz, and M. Uetz. Approximation in stochastic scheduling: the power
of LP based priority policies. JACM, 46:924-942 1999.

ACM SIGACT News 15 March 2006 Vol. 37, No. 1

[26] Y. Nesterov and J.-Ph. Vial. Confidence level solutions for stochastic program-
ming. CORE Discussion Papers, 2000. http://www.core.ucl.ac.be/services/psfiles/
dp00/dp2000-13. pd.

[27] R. Ravi and A. Sinha. Hedging uncertainty: approximation algorithms for stochastic
optimization problems. Proceedings, 10th IPCO, pages 101-115, 2004.

[28] A. Ruszezynski and A. Shapiro. Editors, Stochastic Programming, volume 10 of Hand-
books in Operations Research and Mgmt. Sc., North-Holland, Amsterdam, 2003.

[29] A. Shapiro. Monte Carlo sampling methods. In A. Ruszczynski and A. Shapiro, editors,
Stochastic Programming, volume 10 of Handbooks in Operations Research and Mgmit.
Sc., North-Holland, Amsterdam, 2003.

[30] A. Shapiro and A. Nemirovski. On complexity of stochastic programming problems.
Published electronically in Optimization Online, 2004. http://www.optimization-
online.org/DB_FILE/2004/10/978.pdf.

[31] D. B. Shmoys and C. Swamy. An approximation scheme for stochastic linear program-
ming and its application to stochastic integer programs. JACM, to appear. Preliminary
version appeared as “Stochastic optimization is (almost) as easy as deterministic opti-
mization” in Proceedings, 45th Annual IEEE FOCS, pages 228237, 2004.

[32] C. Swamy. Approzimation Algorithms for Clustering Problems. Ph.D. thesis, Cornell
University, Ithaca, NY, 2004.

[33] C. Swamy and D. B. Shmoys. The sample average approximation method for 2-stage
stochastic optimization. November 2004. http://ist.caltech.edu/ cswamy/papers/
SAAproof.pdf.

[34] C. Swamy and D. B. Shmoys. Sampling-based approximation algorithms for multi-
stage stochastic optimization. Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pages 357-366, 2005.

[35] B. Verweij, S. Ahmed, A. J. Kleywegt, G. L. Nemhauser, and A. Shapiro. The sample
average approximation method applied to stochastic routing problems: a computational
study. Computational Optimization and Applications, 24:289-333, 2003.

ACM SIGACT News 16 March 2006 Vol. 37, No. 1

