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Abstract

In the capacitated facility location problem with hard capacities, we are given a set of facilities, F ,
and a set of clients D in a common metric space. Each facility i has a facility opening cost fi and
capacity ui that specifies the maximum number of clients that may be assigned to this facility. We want
to open some facilities from the set F and assign each client to an open facility so that at most ui clients
are assigned to any open facility i. The cost of assigning client j to facility i is given by the distance cij ,
and our goal is to minimize the sum of the facility opening costs and the client assignment costs. The
only known approximation algorithms that deliver solutions within a constant factor of optimal for this
NP-hard problem are based on local search techniques. It is an open problem to devise an approximation
algorithm for this problem based on a linear programming lower bound (or indeed, to prove a constant
integrality gap for any LP relaxation). We make progress on this question by giving a 5-approximation
algorithm for the special case in which all of the facility costs are equal, by rounding the optimal solution
to the standard LP relaxation. One notable aspect of our algorithm is that it relies on partitioning the input
into a collection of single-demand capacitated facility location problems, approximately solving them,
and then combining these solutions in a natural way.
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1 Introduction

There has been a great deal of recent work on approximation algorithms for facility location problems [13].
We consider the capacitated facility location problem with hard capacities. We are given a set of facilities,
F , and a set of clients D in a common metric space. Each facility i has a facility opening cost fi and a
capacity ui that specifies the maximum number of clients that may be assigned to this facility. We want to
open some facilities from the set F and assign each client to an open facility so that at most ui clients are
assigned to any open facility i. The cost of assigning client j to facility i is given by the distance cij , and
our goal is to minimize the sum of the facility opening costs and the client assignment costs.

The recent work on facility location problems has come in two varieties: LP-based algorithms, and local
search-based algorithms. For the problem described above, no constant approximation algorithm based on
LP is known, and in fact, no LP relaxation is known for which the ratio between the optimal integer and
fractional values has been bounded by a constant. Surprisingly, constant performance guarantees can still be
proven based on local search. If one compares local search-based and LP-based approximation algorithms,
there is notable advantage to the latter type: even though one may prove, for example, that an LP-rounding
procedure increases the cost by at most a factor of five, for the given instance, the increase might only be a
factor 1.05, and hence you gain that stronger a fortiori performance guarantee; in contrast, the local search
algorithm produces a solution, and at termination, one only knows that its cost is no more than the proven a
priori performance guarantee assures.

We present an algorithm that rounds the optimal fractional solution to a natural LP relaxation by using
this solution to guide the decomposition of the input into a collection of single-demand-node capacitated
facility location problems, which are then solved independently. In the special case that all facility opening
costs are equal, we show that our algorithm is a 5-approximation algorithm, thereby also providing the first
constant upper bound on the integrality gap of this formulation in this important special case. One salient
feature of our algorithm is that it relies on a decomposition of the input into instances of the single-demand
capacitated facility location problem; in this way, the algorithm mirrors the work of Aardal [1], who presents
a computational polyhedral approach for this problem which uses the same core problem in the identification
of cutting planes.

There are several variants of the capacitated facility location problem, which have rather different prop-
erties, especially in terms of the approximation algorithms that are currently known. One distinction is
between soft and hard capacities: in the latter problem, each facility is either opened at some location or
not, whereas in the former, one may specify any integer number of facilities to be opened at that location.
Soft capacities make the problem easier; Shmoys, Tardos, & Aardal [15] gave the first constant approxi-
mation algorithm for this problem based on an LP-rounding technique; Jain & Vazirani [5] gave a general
technique for converting approximation algorithm results for the uncapacitated problem into algorithms that
can handle soft capacities. Mahdian, Ye, & Zhang [10] subsequently gave a 2-approximation algorithm for
the problem with soft capacities. Korupolu, Plaxton, & Rajaraman [6] gave the first constant approximation
algorithm that handles hard capacities, based on a local search procedure, but their approach worked only
if all capacities are equal. Chudak & Williamson [4] improved this performance guarantee to 5.83 for the
same uniform capacity case. Pál, Tardos, & Wexler [12] gave the first constant performance guarantee for
the case of non-uniform hard capacities. This was recently improved by Mahdian & Pál [9] and Zhang,
Chen, & Ye [17] to yield a 5.83-approximation algorithm.

There is also a distinction between the case of unsplittable assignments and splittable ones. That is,
suppose that each client j has a certain demand dj to be assigned to open facilities so that the total demand
assigned to each facility is at most its capacity: does each client need to have all of its demand served
by a unique facility? In the former case, the answer is yes, whereas in the latter, the answer is no. All
approximation algorithms for hard capacities have focused on the splittable case. One should note that in
the unsplittable case, just deciding if there exists a feasible solution is NP-complete, by a straightforward
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reduction from the bin-packing problem. Note that once one has decided which facilities to open, the
optimal splittable assignment can be computed by solving a transportation problem. A splittable assignment
can be converted to an unsplittable one at the cost of increasing the required capacity at each facility (using
an approximation algorithm for the generalized assignment problem [14]). Of course, if there are integer
capacities and all demands are 1, there is no distinction between the two problems.

For hard capacities, it is easy to show that the natural LP formulations do not have any constant integral-
ity ratio; the simplest such example has two facility locations, one essentially free, and one very expensive.
In contrast, we focus on the case in which all facility opening costs are equal. For ease of exposition, we will
focus on the case in which each demand is equal to 1. However, it is a relatively straightforward exercise to
extend the algorithm and its analysis to the case of general demands (provided that splittable assignments
are allowed). We will use the terms “assignment cost” and “service cost” interchangeably.

Our Techniques. The outline of our algorithm is as follows. Given the optimal LP solution and its
dual, we view the optimal primal solution as a bipartite graph in which the nodes correspond to facility
locations and clients, and the edges correspond to pairs (i, j) such that a positive fraction of the demand
at client j is assigned to facility i by the LP solution. We use this to construct a partition of the demand
and facilities into clusters: each cluster is “centered” at a client, and the neighbors of this client contained
in the cluster are opened (in the fractional solution) in total at least 1/2. Each fractionally open facility
location will, ultimately, be assigned to some cluster (i.e., not every facility assigned to this cluster need
be a neighbor of the center), and each cluster will be expected to serve all of the demand that its facilities
serve in the fractional solution. Each facility i that is fully opened in the fractional solution can immediately
be opened and serve all of its demand; we view the remaining demand as located at the cluster center,
and find a solution to the single-demand capacitated facility location problem induced by this cluster to
determine the other facilities to open within this cluster. Piecing this together for each cluster, we then solve
a transportation problem to determine the corresponding assignment.

To analyze this procedure, we show that the LP solution can also be decomposed into feasible frac-
tional solutions to the respective single-demand problems. Our algorithm for the single-node subproblems
computes a rounding of this fractional solution, and it is important that we can bound the increase in cost
incurred by this rounding. Furthermore, note that it will be important for the analysis (and the effectiveness
of the algorithm) that we ensure that in moving demand to a cluster center, we are not moving it too much,
since otherwise the solution created for the single-node problem will be prohibitively expensive for the true
location of the demand.

One novel aspect of our analysis is that the performance guarantee analysis comes in two parts: a part
that is related to the fact that the assignment costs are increased by this displacement of the demand, and a
part that is due to the aggregated effect of rounding the fractional solutions to the single-node problems. One
consequence of this is that our analysis is not the “client-by-client” analysis that has become the dominant
paradigm in recent work in this area. Finally, our analysis relies on both the primal and dual LPs to bound
the cost of the solution computed. In doing this, one significant difficulty is that the terms in the dual
objective that correspond to the upper bound for the hard capacity have a −1 as their coefficient; however,
we show that further structure in the optimal primal-dual pair that results from the complementary slackness
conditions is sufficient to overcome this obstacle (in a way similar to that used earlier in [16]).

Although our analysis applies only to the case in which the fixed costs are equal, our algorithm is suffi-
ciently general to handle arbitrary fixed costs. Furthermore, we believe that our approach may prove to be
a useful first step in analyzing more sophisticated LP relaxations of the capacitated facility location prob-
lem; in particular, we believe that the decomposition into single-node problems can be a provably effective
approach in the more general case. Specifically, we conjecture that the extended flow cover inequalities of
Padberg, Van Roy, and Wolsey [11] as adapted by Aardal [1] are sufficient to insure a constant integrality
gap; this raises the possibility of building on a recent result of Carr, Fleischer, Leung, and Phillips [3] that
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showed an analogous result for the single-demand node problem. Furthermore, recent work of Levi, Lodi, &
Sviridenko [7] and Carnes & Shmoys [2] have shown that in the context of capacitated inventory problems,
these flow cover inequalities are sufficient to guarantee constant approximation algorithms.

2 A Linear Program

We can formulate the capacitated facility location problem as an integer program and relax the integrality
constraints to get a linear program (LP). We use i to index the facilities in F and j to index the clients in D.

min
∑

i

fiyi +
∑

j

∑
i

djcijxij (P)

s.t.
∑

i

xij ≥ 1, ∀j, (1)

xij ≤ yi, ∀i, j, (2)∑
j

djxij ≤ uiyi, ∀i, (3)

yi ≤ 1, ∀i, (4)

xij , yi ≥ 0, ∀i, j.

Variable yi indicates if facility i is open and xij indicates the fraction of the demand of client j that is
assigned to facility i. The first constraint states that each client must be assigned to a facility. The second
constraint says that if client j is assigned to facility i then i must be open, and constraint (3) says that at
most ui amount of demand may be assigned to i. Finally (4) says that a facility can only be opened once.
A solution where the yi variables are 0 or 1 corresponds exactly to a solution to our problem. The dual
program is

max
∑

j

αj −
∑

i

zi (D)

s.t. αj ≤ djcij + βij + djγi, ∀i, j, (5)∑
j

βij ≤ fi + zi − uiγi, ∀i, (6)

αj , βij ,γi, zi ≥ 0, ∀i, j.

Intuitively αj is the budget that j is willing to spend to get itself assigned to an open facility. Constraint
(5) says that a part of this is used to pay for the assignment cost djcij and the rest is used to (partially) pay
for the facility opening cost.

For convenience, in what follows, we consider unit demands, i.e., dj = 1 for all j. The primal constraint
(3) and the dual constraint (5) then simplify to

∑
j xij ≤ uiyi, and αj ≤ cij + βij + γi, and the objective

function of the primal program (P) is min
∑

i fiyi +
∑

j,i cijxij . All our results continue to hold in the
presence of arbitrary demands dj if the demand of a client is allowed to be assigned to multiple facilities.

3 Rounding the LP

In this section we give a 5-approximation algorithm for capacitated facility location when all facility costs
are equal. We will round the optimal solution to (P) to an integer solution losing a factor of at most 5, thus
obtaining a 5-approximation algorithm.
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3.1 The Single-Demand-Node Capacitated Facility Location Problem

The special case of capacitated facility location where we have just one client or demand node (called
SNCFL) plays an important role in our rounding algorithm. This is also known as the single-node fixed-
charge problem [11] or the single-node capacitated flow problem. The linear program (P) simplifies to the
following.

min
∑

i

fivi +
∑

i

ciwi (SN-P)

s.t.
∑

i

wi ≥ D,

wi ≤ uivi, ∀i, (7)

vi ≤ 1, ∀i, (8)

wi, vi ≥ 0, ∀i.

Here D is the total demand that has to be assigned, fi ≥ 0 is the fixed cost of facility i, and ci ≥ 0 is the
per unit cost of sending flow, or the distance, to facility i. Variable wi is the total demand (or flow) assigned
to facility i, and vi indicates if facility i is open. We show that a simple greedy algorithm returns an optimal
solution to (SN-P) that has the property that at most one facility is fractionally open, i.e., there is at most
one i such that 0 < vi < 1. We will exploit this fact in our rounding scheme.

Given any feasible solution (w, v) we can set v̂i = wi
ui

and obtain a feasible solution (w, v̂) of no greater

cost. So we can eliminate the vi variables from (SN-P), changing the objective function to min
∑

i

( fi

ui
+

ci

)
wi, and replacing constraints (7), (8) by wi ≤ ui for each i. Clearly, this formulation, which can be

viewed as a fractional knapsack covering problem, is equivalent to the earlier one. Since this is a variant
of a fractional knapsack problem, it is easy to see now that the following greedy algorithm delivers an
optimal solution: start with wi = vi = 0 for all i. Consider facilities in increasing order of fi

ui
+ ci value

and assign to facility i a demand equal to ui or the residual demand left, whichever is smaller, i.e., set
wi = min(ui, demand left), vi = wi

ui
, until all D units of demand have been assigned. We get the following

lemma.

Lemma 3.1 The greedy algorithm that assigns demand to facilities in increasing order of fi

ui
+ ci delivers

an optimal solution to (SN-P). Furthermore, there is at most one facility i in the optimal solution such that
0 < vi < 1.

3.2 The Algorithm

We now describe the full rounding procedure. Let (x, y) and (α, β, γ, z) be the optimal solutions to (P) and
(D) respectively, and let OPT be the common optimal value. We may assume without loss of generality
that

∑
i xij = 1 for each client j. We first give an overview of the algorithm.

Our algorithm runs in two phases. In the first phase, we partition the facilities i such that yi > 0 into
clusters each of which will be “centered” around a client that we will call the cluster center. The partition of
the facilities will induce a fractional partition of the demand. We denote the cluster centered around client
k by Nk. The cluster Nk is defined by its center k, and consists of the set of facilities assigned to it, and has
associated demand equal to the fractional demand served by these facilities, i.e.,

∑
i∈Nk

∑
j xij . (Thus, the

clusters also induce a partition of the total demand.) The clustering phase maintains two properties that will
be essential for the analysis. It ensures that, (1) each cluster contains total fractional facility weight of at
least 1

2 , i.e.,
∑

i∈Nk
yi ≥ 1

2 , and (2) if some facility in cluster Nk fractionally serves a client j, then the center
k is not “too far” away from j (we make this precise in the analysis). To maintain the second property we
require a somewhat more involved clustering procedure than the one presented in [15]. In the second phase
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of the algorithm we decide which facilities will be (fully) opened in each cluster. We consider each cluster
separately, and open enough facilities in Nk to serve the fractional demand associated with the cluster. This
is done in two steps. First, we open each facility i in Nk for which yi = 1. Next, we set up an instance
of SNCFL. The instance consists of all the remaining facilities within this cluster, and the entire demand
served by these facilities, Dk =

∑
i∈Nk:yi<1

∑
j xij , considered as concentrated at the center k. Now we

use the greedy algorithm above to obtain an optimal solution to this instance with the property that at most
one facility is fractionally open. Since the facility costs are all equal and each cluster has enough facility
weight, we can fully open this final facility and charge this against the cost that the LP incurs in opening
facilities from Nk. By piecing together the solutions for the different clusters, we construct a solution to the
capacitated facility location instance in which each facility is either fully open or closed. Now we compute
the min-cost assignment of clients to open facilities by solving a transportation problem.

We now describe the algorithm in detail. Let F = {i : yi > 0} be the (partially) opened facilities in
(x, y), and Fj = {i : xij > 0} be the facilities in F that fractionally serve client j.

1. Clustering. This is done in two steps.

C1. At any stage, let C be the set of the current cluster centers, which is initially empty. We use Nk

to denote a cluster centered around client k ∈ C. For each client j /∈ C, we maintain a set Bj

of unclustered facilities that are closer to it than to any cluster center, i.e., Bj = {i ∈ Fj : i /∈⋃
k∈C Nk and cij ≤ mink∈C cik}. (This definition of Bj is crucial in our analysis that shows

that if client j is fractionally served by Nk, then k is not “too far” from j.) We also have a set
S containing all clients that could be chosen as cluster centers. These are all clients j /∈ C that
send at least half of their demand to facilities in Bj , i.e., S = {j /∈ C :

∑
i∈Bj

xij ≥ 1
2}. Of

course, initially S = D, since C = ∅.
While S is not empty, we repeatedly pick j ∈ S with the smallest αj value (the value of the
corresponding dual variable) and form the cluster with Nj = Bj around it. We update the sets C
and S accordingly. (Note that for any cluster Nk, we have that

∑
i∈Nk

yi ≥
∑

i∈Nk
xik ≥ 1

2 .)
C2. After the previous step, there could still be facilities in F that are not assigned to any cluster. We

now assign these facilities in U = F −
⋃

k∈C Nk to clusters. We assign each facility i ∈ U to
the cluster whose center is nearest to it, i.e., we set Nj ← Nj ∪{i} where j = argmink∈Ccik. In
addition, we increase the demand associated with this cluster by adding to it all of the fractional
demand served by facility i,

∑
j xij . (After this step, the clusters Nj , j ∈ C, partition the set of

facilities F and induce a partition of the total demand
∑

i

∑
j xij .)

2. Reducing to the single-node instances. For each cluster Nk, we first open each facility i in Nk

with yi = 1. We now create an instance of SNCFL on the remaining set of facilities, by considering
the total demand assigned to these facilities as being concentrated at the cluster center k. So our
set of facilities is Lk = {i ∈ Nk : yi < 1}, each ci is the distance cik, and the total demand
is Dk =

∑
i∈Lk

∑
j xij . We use the greedy algorithm of Section 3.1 to find an optimal solution

(w(k), v(k)) to this linear program. Let O∗
k be the value of this solution. We call the facility i such

that 0 < v
(k)
i < 1 (if such a facility exists) the extra facility in cluster Nk. We fully open all of the

facilities in Lk with v
(k)
i > 0 (including the extra facility). Note that the facilities opened (including

each i such that yi = 1) have enough capacity to satisfy all of the demand
∑

i∈Nk

∑
j xij (and thus,

the total capacity of the facilities opened in all of the clusters is enough to serve the total demand).
Piecing together the solutions for all of the clusters, we get a solution where all of the y variables are
assigned values in {0, 1}.

3. Assigning clients. We compute a minimum-cost assignment of clients to open facilities by solving
the corresponding transportation problem (which, as noted above, is feasible). It is straightforward to
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see that since we opened enough facilities to serve the total demand, this transportation problem has
a feasible solution.

3.3 Analysis

The performance guarantee of our algorithm will follow from the fact that the decomposition constructed by
the algorithm of the original problem instance into single-node subproblems, one for each cluster, satisfies
the following two nice properties. First, in Lemma 3.5, we show that the total cost of the optimal solutions
for all of these single-node instances is not too large compared to OPT . We prove this by showing that
the LP solution induces a feasible solution to (SN-P) for the SNCFL instance of each cluster and that the
total cost of these feasible solutions is bounded by certain terms related to the optimal value to the LP
relaxation of the original capacitated facility location instance. Second, in Lemma 3.7, we show that the
optimal solutions to each of these single-node instances obtained by our greedy algorithm in Section 3.1,
can be mapped back to yield a solution to the original problem in which every facility is either opened fully,
or not opened at all, while losing a small additive term. Piecing together these partial solutions, we construct
a solution to the capacitated facility location problem. The cost of this solution is bounded by aggregating
the bounds obtained for each partial solution. We note that this bound is not based on a “client-by-client”
analysis, but rather on bounding the cost generated by the overall cluster.

Observe that there are two sources for the extra cost involved in mapping the solutions to the single-
node instances. We might need to (completely) open one fractionally open facility in the optimal fractional
solution to (SN-P). This additional cost is bounded in Lemma 3.6, and this is the only place in the entire
proof which uses the assumption that the fixed costs are all equal. In addition, we need to transfer all of
the fractional demand that was assumed to be concentrated at the center of the cluster, back to its original
location. To bound the extra assignment cost involved, we rely on the important fact that if a client j is
fractionally served by some facility i ∈ Nk, then the distance cjk is bounded. Since the triangle inequality
implies that cjk ≤ cij + cik, we focus on bounding the distance cik. This is done in Lemmas 3.3 and 3.4. In
Lemma 3.8, we provide a bound on the facility cost and assignment cost involved in opening the facilities
with yi = 1, which, by relying on complementary slackness, overcomes the difficulties posed by the −zi

term in the dual objective function.
We then combine these bounds to prove our main theorem, Theorem 3.9, which states that the resulting

feasible solution for the capacitated facility location problem is of cost at most 5 ·OPT .
We first prove the following lemma that states a necessary condition for a facility i to be assigned to

cluster Nk.

Lemma 3.2 Let i be a facility assigned to cluster Nk in step C1 or C2. Let C′ be the set of cluster centers
just after this assignment. Then, k is the cluster center closest to i among all cluster centers in C′; that is,
cik = mink′∈C′ cik′ .

Proof : Since k ∈ C′, clearly we have that cik ≥ mink′∈C′ cik′ . If i is assigned in step C1, then it must be
included when the cluster centered at k is first formed; that is, i ∈ Bk and the lemma holds by the definition
of Bk. Otherwise, if i is assigned in step C2, then C′ is the set of all cluster centers, in which case it is again
true by the assignment rule used in this step.

For each client j, consider the point in the algorithm when j was removed from the set S in step C1,
either because a cluster was created around it, or because the weight of the facilities in Bj decreased below
1
2 when some other cluster was created. In each case, we will define sets A′

j and B′
j based on this moment

in the algorithm’s execution. If the client j is added to C, then at this moment, the set Bj goes from having
total fractional facility weight at least 1/2, to being empty. In this case, we will define B′

j to be the set Bj

just before j is deleted from S. On the other hand, if j is not added to C (and hence we know that this is the
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moment that the total fractional weight of Bj decreases below 1/2), then we let B′
j be the set of facilities Bj

just after j is removed from S. In either case, we let A′
j = Fj \ B′

j . Recall that there are two reasons for
removing a facility i from the set Bj : it was assigned to some cluster Nk, or there was some cluster center
k′ ∈ C, such that cik′ < cij . Note that this implies (by Lemma 3.2) that once i is removed from Bj , even if
j becomes a cluster center, i can never get assigned to Nj . We define i∗(j) as the facility in A′

j nearest to j.

Lemma 3.3 Consider any client j and any facility i ∈ A′
j . If i is assigned to cluster Nk, then cik ≤ αj .

Proof : Notice that k 6= j since even if j is a cluster center (which could happen), i is removed from Bj

at some point before cluster Nj is created, so as mentioned above, i cannot be assigned to Nj . Consider the
point when j was removed from S in step C1, and let C′ be the set of cluster centers just after j is removed.
Note that j is in C′ if it is just now selected as a cluster center. Suppose that j ∈ C′. Then A′

j is determined
by the situation just before j is added to C. Recall that initially (when C = ∅), we have that Bj = Fj , and
that gradually facilities are deleted from Bj (and hence destined for A′

j). There are two reasons for a facility
i′to be deleted from Bj : either it was included within Nk′ for a cluster center k′ that is added to C, or else
the distance ci′j is greater that the distance from i′ to one of the cluster centers already included in C. For
the given facility i, this means that, respectively, either (i) i ∈ Nk′ for some k′ ∈ C′ − {j}, or (ii) we have
that cij > mink′∈C′−{j} cik′ . But now consider the case that j is not selected as a cluster center (and hence
A′

j is determined by the situation just after j is deleted from S); again it follows that either case (i) or case
(ii) must apply (since in this case j 6∈ C implies that C = C − {j}).

In case (i), it must be that k′ = k, since the clusters are disjoint. Also, cik ≤ αk, since Nk ⊆ Fk, and
αk ≤ αj , since k was picked while j was still available in S (recall the order in which we consider clients
in S). In case (ii), consider the set of cluster centers C′′ just after i is assigned to Nk (either in step C1 or
step C2), and so k ∈ C′′. It must be that C′′ ⊇ C′, since i was removed from Bj before it was assigned to
Nk, and by Lemma 3.2, cik = mink′∈C′′ cik′ . Hence, cik ≤ mink′∈C′−{j} cik′ < cij ≤ αj since A′

j ⊆ Fj .

Lemma 3.4 Consider any client j and any facility i ∈ B′
j . Let i be assigned to cluster Nk. If j ∈ C, then

cik ≤ cij; otherwise, cik ≤ cij + ci∗(j)j + αj .

Proof : If j is a cluster center, then when it was removed from S, we have constructed the cluster Nj equal
to the set B′

j . So i is assigned to Nj , that is, k = j, and hence the bound holds.
Suppose j /∈ C. Consider the point just before the facility i∗(j) is removed from the set Bj in step C1,

and let C′ be the set of cluster centers at this point. By the definition of the set A′
j and i∗(j), j is still a

candidate cluster center at this point. Let k′ ∈ C′ be the cluster center due to which i∗(j) was removed from
Bj , and so i∗(j) ∈ Nk′ ⊆ Fk′ or ci∗(j)k′ < ci∗(j)j . In each case, we have ci∗(j)k′ ≤ αj , since the choice
of k′ implies that αk′ ≤ αj . Now consider the set of cluster centers C′′ just after i is assigned to Nk. Since
i /∈ A′

j , i∗(j) was removed from Bj before this point. So we have C′′ ⊇ C′. Using Lemma 3.2,

cik = min
k′′∈C′′

cik′′ ≤ cik′ ≤ cij + ci∗(j)j + ci∗(j)k′ ≤ cij + ci∗(j)j + αj .

Consider now any cluster Nk. Recall that Lk = {i ∈ Nk : yi < 1}, (w(k), v(k)) is the optimal solution
to (SN-P) found by the greedy algorithm for the single-node instance corresponding to this cluster, and O∗

k

is the value of this solution. Let k(i) ∈ C denote the cluster to which facility i is assigned, and so i ∈ Nk(i).

Lemma 3.5 For each k ∈ C, the optimal value O∗
k ≤

∑
i∈Lk

fiyi+
∑

j

∑
i∈Lk

cikxij , and hence,
∑

k∈C O∗
k ≤∑

i:yi<1 fiyi +
∑

j

∑
i:yi<1 cik(i)xij .
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Proof : The second bound follows from the first since the clusters Nk are disjoint. We will upper bound
O∗

k by exhibiting a feasible solution (ŵ, v̂) of cost at most the claimed value. Set v̂i = yi, and ŵi =∑
j xij for all i ∈ Lk. Note that

∑
i ŵi =

∑
i∈Lk

∑
j xij = Dk. The facility cost of this solution is at most∑

i∈Lk
fiv̂i =

∑
i∈Lk

fiyi. The service cost is
∑

i∈Lk
ciŵi =

∑
j

∑
i∈Lk

cikxij . Combining this with the
bound on facility cost, we obtain the claimed result.

Lemma 3.6 The cost of opening the (at most one) extra facility in cluster Nk is at most 2
∑

i∈Nk
fiyi.

Proof : We have
∑

i∈Nk
yi ≥

∑
i∈Nk

xik ≥ 1
2 since Nk was created in step C1 and is centered around

k, and no facility is removed from Nk in step C2. We open at most one extra facility from Nk. Since all
facilities have the same cost f , the cost of opening this facility is f ≤ f · 2

∑
i∈Nk

yi = 2
∑

i∈Nk
fiyi. This

is the only place where we use the fact that the facility costs are all equal.

Let ŷ be the 0-1 vector indicating which facilities are open, i.e., ŷi = 1 if i is open, and 0 otherwise.
We let ŷ(k) denote the portion of ŷ consisting of the facilities in Lk, i.e., ŷ(k) =

(
ŷ

(k)
i

)
i∈Lk

and ŷ
(k)
i = 1 if

i ∈ Lk is open, and 0 otherwise.

Lemma 3.7 The solution
(
w(k), v(k)

)
for cluster Nk yields an assignment x̂(k) =

(
x̂

(k)
ij

)
i∈Lk,j∈D such that,

(i) (x̂(k), ŷ(k)) obeys constraints (2)–(4) for all i ∈ Lk,

(ii) x̂ satisfies
∑

i∈Lk
xij fraction of the demand of each client j, that is,

∑
i∈Lk

x̂ij =
∑

i∈Lk
xij for all j,

and,

(iii) the cost
∑

i∈Lk
fiŷ

(k)
i +

∑
j

∑
i∈Lk

cij x̂
(k)
ij is at most O∗

k + 2
∑

i∈Nk
fiyi +

∑
j

∑
i∈Lk

cijxij +∑
j

∑
i∈Lk

cikxij .

Proof : We have O∗
k =

∑
i∈Lk

(
fiv

(k)
i + ciw

(k)
i

)
. Constraints (4) are clearly satisfied for i ∈ Lk, since

ŷ(k) is a {0, 1}-vector. The facility cost
∑

i∈Lk
fiŷ

(k)
i is at most

∑
i∈Lk

fiv
(k)
i + 2

∑
i∈Nk

fiyi since every
facility other than the extra facility is either fully open or not open in the solution (w(k), v(k)) and the cost
of opening the extra facility is at most 2

∑
i∈Nk

fiyi by Lemma 3.6.

We set the variables x̂
(k)
ij for i ∈ Lk so that the service cost

∑
j

∑
i∈Lk

cij x̂
(k)
ij can be bounded by∑

i∈Lk
ciw

(k)
i +

∑
j

∑
i∈Lk

(cij + cik)xij . By combining this with the above bound on the facility cost,
we obtain the desired result. The service cost of the single-node solution is the cost of transporting the
entire demand Dk =

∑
j

∑
i∈Lk

xij from the facilities in Lk to the center k, and now we want to move the
demand,

∑
i∈Lk

xij , of client j from k back to j. Doing this for all clients, we incur an additional cost of∑
j

∑
i∈Lk

cjkxij ≤
∑

j

∑
i∈Lk

(cij + cik)xij . More precisely, we set x̂
(k)
ij , i ∈ Lk arbitrarily so that, (1)∑

i∈Lk
x̂

(k)
ij =

∑
i∈Lk

xij for each client j, and (2)
∑

j x̂
(k)
ij = w

(k)
i for each facility i ∈ Lk. This satisfies

constraints (2),(3) — if x̂
(k)
ij > 0 then w

(k)
i > 0, so ŷ

(k)
i = 1, and

∑
j x̂

(k)
ij = w

(k)
i ≤ ui = uiŷ

(k)
i . The

service cost is∑
j

∑
i∈Lk

cij x̂
(k)
ij ≤

∑
i∈Lk

∑
j

cikx̂
(k)
ij +

∑
j

∑
i∈Lk

cjkx̂
(k)
ij ≤

∑
i∈Lk

ciw
(k)
i +

∑
j

∑
i∈Lk

(cij + cik)xij .
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Lemma 3.8 The cost of opening facilities i with yi = 1, and for each such i, of sending xij units of flow
from j to i for each client j, is at most

∑
j

∑
i:yi=1 αjxij −

∑
i zi.

Proof : This follows from complementary slackness. Each facility i with zi > 0 has yi = 1. For each such
facility we have that

∑
j

αjxij =
∑

j

cijxij +
∑

j

βijxij +
∑

j

γixij

(
xij > 0⇒ αj = cij + βij + γi

)
=

∑
j

cijxij +
∑

j

βijyi + uiγiyi

(
βij > 0 ⇒ xij = yi,
γi > 0 ⇒

∑
j xij = uiyi

)

=
∑

j

cijxij + fi + zi.

(
yi > 0⇒

∑
j

βij + uiγi = fi + zi

)
By summing over all i with yi = 1, we complete the proof of the lemma.

Putting the various pieces together, we get the following theorem.

Theorem 3.9 The cost of the solution returned is at most 5 ·OPT .

Proof : To bound the total cost, it suffices to give a fractional assignment (x̂ij) such that (x̂, ŷ) is a feasible
solution to (P) and has cost at most 5 · OPT . We construct the fractional assignment as follows. First, we
set x̂ij = xij for each facility i with yi = 1 = ŷi. This satisfies constraints (2)–(4) for i such that yi = 1.
By the previous lemma we have,∑

i:yi=1

fiŷi +
∑

j

∑
i:yi=1

cij x̂ij =
∑

j

∑
i:yi=1

αjxij −
∑

i

zi. (9)

Second, for each cluster Nk, we set x̂ij = x̂
(k)
ij for i ∈ Lk where (x̂(k), ŷ(k)) is the partial solution for

cluster Nk given by Lemma 3.7. Each variable x̂ij that is not set either of these two ways is set equal to 0.
Applying parts (i) and (ii) of Lemma 3.7 for all k ∈ C, we get that (x̂, ŷ) satisfies (2)–(4) for each i such
that yi < 1, and

∑
i:yi<1 x̂ij =

∑
i:yi<1 xij for each client j Hence, (x̂, ŷ) satisfies constraints (2)–(4) and∑

i x̂ij =
∑

i:yi=1 xij +
∑

i:yi<1 xij = 1, showing that (x̂, ŷ) is a feasible solution to (P). Since the clusters
Nk are disjoint, from part (iii) of Lemma 3.7, we have that∑

i:yi<1

fiŷi +
∑

j

∑
i:yi<1

cij x̂ij ≤
∑
k∈C

O∗
k + 2

∑
i

fiyi +
∑

j

∑
i:yi<1

cijxij +
∑

j

∑
i:yi<1

cik(i)xij

≤ 3
∑

i

fiyi +
∑

j

∑
i:yi<1

cijxij + 2
∑

j

∑
i:yi<1

cik(i)xij .

where the last inequality follows from Lemma 3.5. For any client j and facility i ∈ Fj , if i ∈ A′
j , then

we have cik(i) ≤ αj by Lemma 3.3; otherwise, by Lemma 3.4, cik(i) ≤ cij ≤ cij + αj for j ∈ C, and
cik(i) ≤ cij + ci∗(j)j + αj for j /∈ C. Plugging this in the above expression we get that∑

i:yi<1

fiŷi +
∑

j

∑
i:yi<1

cij x̂ij ≤ 3
∑

i

fiyi +
∑

j

∑
i:yi<1

cijxij + 2
∑

j

∑
i:yi<1

αjxij

+ 2
∑

j

∑
i:yi<1
i/∈A′

j

cijxij +
∑
j /∈C

2ci∗(j)j

∑
i:yi<1
i/∈A′

j

xij .
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For j /∈ C,
∑

i/∈A′
j
xij < 1

2 . So 2ci∗(j)j

(∑
i:yi<1,i/∈A′

j
xij

)
is at most,

ci∗(j)j = min
i∈A′

j

cij ≤

∑
i∈A′

j
cijxij∑

i∈A′
j
xij

< 2
∑
i∈A′

j

cijxij .

This implies that∑
i:yi<1

fiŷi +
∑

j

∑
i:yi<1

cij x̂ij ≤ 3
∑

i

fiyi +
∑

j

∑
i:yi<1

cijxij + 2
∑

j

∑
i:yi<1

αjxij

+ 2
∑

j

∑
i:yi<1
i/∈A′

j

cijxij + 2
∑
j /∈C

∑
i∈A′

j

cijxij

≤ 2
∑

j

∑
i:yi<1

αjxij + 3
(∑

i

fiyi +
∑
j,i

cijxij

)
. (10)

Finally, combining (9) and (10), we obtain that

Total Cost ≤
(∑

j

∑
i:yi=1

αjxij −
∑

i

zi

)
+ 2

∑
j

∑
i:yi<1

αjxij + 3
(∑

i

fiyi +
∑
j,i

cijxij

)

≤ 2
(∑

j

∑
i:yi=1

αjxij −
∑

i

zi +
∑

j

∑
i:yi<1

αjxij

)
+ 3 ·OPT = 5 ·OPT .
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