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Abstract We study the min-cost chain-constrained spanning-tree (MCCST) prob-
lem: find a min-cost spanning tree in a graph subject to degree constraints on a
nested family of node sets. We devise the first polytime algorithm that finds a
spanning tree that (i) violates the degree constraints by at most a constant factor
and (ii) whose cost is within a constant factor of the optimum. Previously, only
an algorithm for unweighted CCST was known [14], which satisfied (i) but did
not yield any cost bounds. This also yields the first result that obtains an O(1)-
factor for both the cost approximation and violation of degree constraints for any
spanning-tree problem with general degree bounds on node sets, where an edge
participates in a super-constant number of degree constraints.

A notable feature of our algorithm is that we reduce MCCST to unweighted
CCST (and then utilize [14]) via a novel application of Lagrangian duality to sim-
plify the cost structure of the underlying problem and obtain a decomposition into
certain uniform-cost subproblems.

We show that this Lagrangian-relaxation based idea is in fact applicable more
generally and, for any cost-minimization problem with packing side-constraints,
yields a reduction from the weighted to the unweighted problem. We believe that
this reduction is of independent interest. As another application of our technique,
we consider the k-budgeted matroid basis problem, where we build upon a recent

rounding algorithm of [4] to obtain an improved nO(k1.5/ε)-time algorithm that
returns a solution that satisfies (any) one of the budget constraints exactly and
incurs a (1 + ε)-violation of the other budget constraints.
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1 Introduction

Constrained spanning-tree problems, where one seeks a minimum-cost spanning
tree satisfying additional ({0, 1}-coefficient) packing constraints, constitute an
important and widely-studied class of problems. In particular, when the pack-
ing constraints correspond to node-degree bounds, we obtain the classical min-

cost bounded-degree spanning tree (MBDST) problem, which has a rich history of
study [7,11,12,5,8,16] culminating in the work of [16] that yielded an optimal
result for MBDST. Such degree-constrained network-design problems arise in di-
verse areas including VLSI design, vehicle routing and communication networks
(see, e.g., the references in [15]), and their study has led to the development of
powerful techniques in approximation algorithms.

Whereas the iterative rounding and relaxation technique introduced in [16] (which
extends the iterative-rounding framework of [10]) yields a versatile technique for
handling node-degree constraints (even for more-general network-design prob-
lems), we have a rather limited understanding of spanning-tree problems with
more-general degree constraints, such as constraints |T ∩ δ(S)| ≤ bS for sets S

in some (structured) family S of node sets.1 A fundamental impediment here is
our inability to leverage the techniques in [8,16]. The few known results yield: (a)
(sub-) optimal cost, but a super-constant additive- or multiplicative- factor viola-
tion of the degree bounds [3,1,6,2]; or (b) a multiplicative O(1)-factor violation of
the degree bounds (when S is a nested family), but no cost guarantee [14]. In par-
ticular, in stark contrast to the results known for node-degree-bounded network-
design problems, there is no known algorithm that yields an O(1)-factor cost ap-
proximation and an (additive or multiplicative) O(1)-factor violation of the degree
bounds. (Such guarantees are only known when each edge participates in O(1)
degree constraints [2]; see however [17] for an exception.)

We consider the min-cost chain-constrained spanning-tree (MCCST) problem in-
troduced by [14], which is perhaps the most-basic setting involving general de-
gree bounds where there is a significant gap in our understanding vis-a-vis node-
degree bounded problems. In MCCST, we are given an undirected connected graph
G = (V,E), nonnegative edge costs {ce}, a nested family S (or chain) of node sets
S1 ( S2 ( · · · ( S` ( V , and integer degree bounds {bS}S∈S . The goal is to
find a minimum-cost spanning tree T such that |δT (S)| ≤ bS for all S ∈ S, where
δT (S) := T ∩δ(S). Olver and Zenklusen [14] give an algorithm for unweighted CCST

that returns a tree T such that |δT (S)| = O(bS) (i.e., there is no bound on c(T )),

and show that, for some ρ > 0, it is NP-complete to obtain an additive ρ · log |V |
log log |V |

violation of the degree bounds. We therefore focus on bicriteria (α, β)-guarantees
for MCCST, where the tree T returned satisfies c(T ) ≤ α ·OPT and |δT (S)| ≤ β ·bS
for all S ∈ S.

Our contributions. Our main result is the first
(
O(1), O(1)

)
-approximation algo-

rithm for MCCST. Given any λ > 1, our algorithm returns a tree T with c(T ) ≤
λ
λ−1 · OPT and |δT (S)| ≤ 9λ · bS for all S ∈ S, using the algorithm of [14] for
unweighted CCST, denoted AOZ, as a black box (Theorem 3.3). As noted above,

1 Such general degree constraints arise in the context of finding thin trees [1], where S
consists of all node sets, which turn out to be a very useful tool in devising approximation
algorithms for asymmetric TSP.
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this is also the first algorithm that achieves an
(
O(1), O(1)

)
-approximation for any

spanning-tree problem with general degree constraints where an edge belongs to
a super-constant number of degree constraints.

We show in Section 4 that our techniques are applicable more generally. We
give a reduction showing that for any cost-minimization problem with packing
side-constraints, if we have an algorithm for the unweighted problem that returns
a solution with an O(1)-factor violation of the packing constraints and satisfies a
certain property, then one can utilize it to obtain an

(
O(1), O(1)

)
-approximation

for the cost-minimization problem. Furthermore, we show that if the algorithm for
the unweighted counterpart satisfies a stronger property, then we can utilize it to
obtain a

(
1, O(1)

)
-approximation (Theorem 5.1).

We believe that our reductions are of independent interest and will be useful
in other settings as well. Demonstrating this, we show an application to the k-

budgeted matroid basis problem, wherein we seek to find a basis satisfying k budget

constraints. Grandoni et al. [9] devised an nO(k2/ε)-time algorithm that returned a
(1, 1 + ε, . . . , 1 + ε)-solution: i.e., the solution satisfies (any) one budget constraint
exactly and violates the other budget constraints by a (1+ε)-factor (if the problem
is feasible). Very recently, Bansal and Nagarajan [4] improved the running time to

nO(k1.5/ε) but return only a (1 + ε, . . . , 1 + ε)-solution. Applying our reduction (to
the algorithm in [4]), we obtain the best of both worlds: we return a (1, 1+ε, . . . , 1+ε)-

solution in nO(k1.5/ε)-time (Theorem 5.7).

The chief novelty in our algorithm and analysis, and the key underlying idea, is
an unorthodox use of Lagrangian duality. Whereas typically Lagrangian relaxation
is used to drop complicating constraints and thereby simplify the constraint struc-
ture of the underlying problem, in contrast, we use Lagrangian duality to simplify
the cost structure of the underlying problem by equalizing edge costs in certain
subproblems. To elaborate (see Section 3.1), the algorithm in [14] for unweighted
CCST can be viewed as taking a solution x to the natural linear-programming
(LP) relaxation for MCCST, converting it to another feasible solution x′ satisfy-
ing a certain structural property, and exploiting this property to round x′ to a
spanning tree. The main bottleneck here in handling costs (as also noted in [14])
is that cᵀx′ could be much larger than cᵀx since the conversion ignores the ces and
works with an alternate “potential” function.

Our crucial insight is that we can exploit Lagrangian duality to obtain perturbed

edge costs {cy
∗

e } such that there is no change in the perturbed cost due to the conversion

process (see Lemma 3.6). The perturbation also ensures that applying AOZ to x′

yields a tree whose perturbed cost is equal to (cy
∗
)ᵀx′ = (cy

∗
)ᵀx. Finally, we show

that for an optimal LP solution x∗, the “error” (cy
∗
− c)ᵀx∗ incurred in working

with the cy
∗
-cost is O(OPT ); this yields the

(
O(1), O(1)

)
-approximation.

We extend the above idea to an arbitrary cost-minimization problem with pack-
ing side-constraints as follows. Let x∗ be an optimal solution to the LP-relaxation,
and P be the polytope obtained by dropping the packing constraints. We observe
that the same Lagrangian-duality based perturbation ensures that all points on
the minimal face of P containing x∗ have the same perturbed cost. Therefore, if
we have an algorithm for the unweighted problem that rounds x∗ to a point x̂ on
this minimal face, then we again obtain that (cy

∗
)ᵀx̂ = (cy

∗
)ᵀx∗, which then leads

to an
(
O(1), O(1)

)
-approximation (as in the case of MCCST).
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Related work. Whereas node-degree-bounded spanning-tree problems have been
widely studied, relatively few results are known for spanning-tree problems with
general degree constraints for a family S of node-sets. With the exception of the
result of [14] for unweighted CCST, these other results [3,1,6,2] all yield a tree of
cost at most the optimum with an ω(1) additive- or multiplicative- factor violation
of the degree bounds. Both [3] and [2] obtain additive factors via iterative rounding
and relaxation. The factor in [3] is (r − 1) for an arbitrary S, where r is the
maximum number of degree constraints involving an edge (which could be |V |
even when S is a chain), while [2] yields an O(log |V |) factor when S is a laminar
family (the factor does not improve when S is a chain). The dependent-rounding

techniques in [1,6] yield a tree T satisfying |δT (S)| ≤ min
{
O
( log |S|
log log |S|

)
bS , (1 +

ε)bS +O
( log |S|

ε

)}
for all S ∈ S, for any family S.

For MBDST, Goemans [8] obtained the first
(
O(1), O(1)

)
-approximation; his

result yields a tree of cost at most the optimum and at most +2 violation of
the degree bounds. This was subsequently improved to an (optimal) additive +1
violation by [16]. Zenklusen [17] considers an orthogonal generalization of MBDST,
where there is a matroid-independence constraint on the edges incident to each
node, and obtains a tree of cost at most the optimum and “additive” O(1) violation
(defined appropriately) of the matroid constraints. To our knowledge, this is the
only prior work that obtains an O(1)-approximation to both the cost and packing
constraints for a constrained spanning-tree problem where an edge participates in
ω(1) packing constraints (albeit this problem is quite different from spanning tree
with general degree constraints).

Finally, we note that our Lagrangian-relaxation based technique is somewhat
similar to its use in [11]. However, whereas [11] uses this to reduce uniform-degree
MBDST to the problem of finding an MST of minimum maximum degree, which
is another weighted problem, we utilize Lagrangian relaxation in a more refined
fashion to reduce the weighted problem to its unweighted counterpart.

2 An LP-relaxation for MCCST and preliminaries

We consider the following natural LP-relaxation for MCCST. Throughout, we use
e to index the edges of the underlying graph G = (V,E). For a set S ⊆ V , let E(S)
denote {uv ∈ E : u, v ∈ S}, and δ(S) denote the edges on the boundary of S. For
a vector z ∈ RE and an edge-set F , we use z(F ) to denote

∑
e∈F ze.

min
∑
e

cexe (P)

s.t. x
(
E(S)

)
≤ |S| − 1 ∀∅ 6= S ( V (1)

x(E) = |V | − 1 (2)

x
(
δ(S)

)
≤ bS ∀S ∈ S (3)

x ≥ 0. (4)

For any x ∈ RE+, let supp(x) := {e : xe > 0} denote the support of x. It is well
known that the polytope PST(G) defined by (1), (2), and (4) is the convex hull of
spanning trees of G. We call points in PST(G) fractional spanning trees. We refer
to (1), (2) as the spanning-tree constraints. We will also utilize (Pλ), the modified
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version of (P) where we replace (3) with x
(
δ(S)

)
≤ λbS for all S ∈ S, where λ ≥ 1.

Let OPT (λ) denote the optimal value of (Pλ), and let OPT := OPT (1).

Preliminaries. A family L ⊆ 2V of sets is a laminar family if for all A,B ∈ L, we
have A ⊆ B or B ⊆ A or A ∩ B = ∅. As is standard, we say that A ∈ L is a
child of L ∈ L if L is the minimal set of L such that A ( L. For each L ∈ L, let
GLL = (V LL , E

L
L) be the graph obtained from

(
L,E(L)

)
by contracting the children

of L in L; we drop the superscript L when L is clear from the context.
Given x ∈ PST(G), define a laminar decomposition L of x to be a (inclusion-

wise) maximal laminar family of sets whose spanning-tree constraints are tight
at x, so x

(
E(A)

)
= |A| − 1 for all A ∈ L. Note that V ∈ L and {v} ∈ L for all

v ∈ V . A laminar decomposition can be constructed in polytime (using network-
flow techniques). For any L ∈ L, let xLL, or simply xL if L is clear from context,
denote x restricted to EL. Observe that xL is a fractional spanning tree of GL. This
is trivially true if L has no children; otherwise, for any ∅ 6= Q ⊆ VL, if R is the subset
of V corresponding to Q, and A1, . . . , Ak are the children of L whose corresponding
contracted nodes lie in Q, we have xL

(
EL(Q)

)
= x

(
E(R)

)
−
∑k
i=1 x

(
E(Ai)

)
≤

|R \ (A1 ∪ . . . ∪Ak)|+ k − 1 = |Q| − 1 with equality holding when Q = VL.
The following property of laminar decompositions is well known; we include a

proof in the Appendix for completeness.

Lemma 2.1. Let x ∈ PST(G) and L be a laminar decomposition of x. For F ⊆ E, let

χx,F ∈ {0, 1}supp(x) denote the vector with 1s in the coordinates corresponding to F

and 0s everywhere else. Let S 6= ∅ be a set whose spanning-tree constraint is tight at

x. Then, χx,E(S) is a linear combination of the vectors {χx,E(A)}A∈L.

3 An LP-rounding approximation algorithm

3.1 An overview

We first give a high-level overview. Clearly, if (P) is infeasible, there is no spanning
tree satisfying the degree constraints, so in the sequel, we assume that (P) is
feasible. We seek to obtain a spanning tree T of cost c(T ) = O(OPT ) such that
|δT (S)| = O(bS) for all S ∈ S, where δT (S) is the set of edges of T crossing S.

In order to explain the key ideas leading to our algorithm, we first briefly discuss
the approach of Olver and Zenklusen [14] for unweighted CCST. Their approach
ignores the edge costs {ce} and instead starts with a feasible solution x to (P) that
minimizes a suitable (linear) potential function. They use this potential function to
argue that if L is a laminar decomposition of x, then (x,L) satisfies a key structural
property called rainbow freeness. Exploiting this, they give a rounding algorithm,
hereby referred to as AOZ, that for every L ∈ L, rounds xL to a spanning tree TL of
GL such that |δTL(S)| ≈ O

(
xL(δ(S))

)
for all S ∈ S, so that concatenating the TLs

yields a spanning tree T of G satisfying |δT (S)| = O
(
x(δ(S))

)
= O(bS) for all S ∈ S

(Theorem 3.2). However, as already noted in [14], a fundamental obstacle towards
generalizing their approach to handle the weighted version (i.e., MCCST) is that
in order to achieve rainbow freeness, which is crucial for their rounding algorithm,
one needs to abandon the cost function c and work with an alternate potential function.

We circumvent this difficulty as follows. First, we note that the algorithm in [14]
can be equivalently viewed as rounding an arbitrary solution x to (P) as follows.
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Let L be a laminar decomposition of x. Using the same potential-function idea, we
can convert x to another solution x′ to (P) that admits a laminar decomposition L′
refining L such that (x′,L′) satisfies rainbow freeness (see Lemma 3.1), and then
round x′ using AOZ. Of course, the difficulty noted above remains, since the move
to rainbow freeness (which again ignores c and uses a potential function) does not
yield any bounds on the cost cᵀx′ relative to cᵀx.

Now let x∗ be an optimal solution to (P) (we will later modify this somewhat)
and L be a laminar decomposition of x∗. The crucial insight, and a key notable
aspect of our algorithm and analysis, is that one can leverage Lagrangian duality to

suitably perturb the edge costs so that x∗, the solution x′ (satisfying rainbow freeness)

obtained from x∗, and the spanning tree T obtained by rounding x′ using AOZ, all

have the same perturbed cost. We achieve this as follows. Let y∗ ∈ RS+ denote the
optimal values of the dual variables corresponding to constraints (3). If we define

the perturbed cost of edge e to be cy
∗

e := ce+
∑
S∈S:e∈δ(S) y

∗
S , then using standard

duality theory, it follows that x∗ is a fractional spanning tree of minimum cy
∗
-cost

(Lemma 3.4). Now notice that x′ and the tree T satisfy all the spanning-tree
constraints for the sets in L with equality: the laminar-decomposition L′ of x′

refines L, and AOZ rounds x′L to a spanning tree of GL, for every L ∈ L′. Therefore,
by Lemma 2.1, x′, and the characteristic vector of T , lie on the minimal face of PST(G)
containing x∗. This has the implication that, since the optimal solutions to an
LP form a face of its feasible region, x′ and T are also min cy

∗
-cost (fractional)

spanning trees, and so (cy
∗
)ᵀx∗ = (cy

∗
)ᵀx′ = cy

∗
(T ).

Since T is the output of AOZ run on x′, which is a feasible solution to (P),
it immediately satisfies |δT (S)| = O(bS) for all S ∈ S. To bound the cost, using

complementary slackness, it is easy to argue that c(T ) ≤ cy
∗
(T ) =

∑
e c
y∗

e x∗e =
cᵀx∗+

∑
S∈S bSy

∗
S (Lemma 3.6). (Note that the perturbed costs are used only in the

analysis.) However,
∑
S∈S bSy

∗
S need not be bounded in terms of cᵀx∗. To fix this,

we modify our starting solution x∗: we solve (Pλ) (which recall is (P) with inflated
degree bounds {λbS}), where λ > 1, to obtain x∗, and use this x∗ in our algorithm.
Now, letting y∗ be the optimal dual values corresponding to the inflated degree
constraints, a simple duality argument shows that

∑
S∈S bSy

∗
S ≤

OPT(1)−OPT(λ)
λ−1

(Lemma 3.8), which yields c(T ) = O(OPT ) (see Theorem 3.3).

A noteworthy feature of our algorithm is the rather unconventional use of La-
grangian relaxation, where we use duality to simplify the cost structure (as opposed
to the constraint structure) of the underlying problem by equalizing the costs of
certain solutions. This, coupled with the face-preserving nature of AOZturn out to
be the crucial ingredients that allow us to utilize the algorithm AOZfor unweighted
CCST as a black box without worrying about the difficulties posed by (the move
to) rainbow freeness. In fact, as we show in Section 4, this idea of exploiting La-
grangian relaxation via a face-preserving rounding algorithm (see Definition 4.1)
is applicable more generally, and yields a novel reduction from weighted problems
to their unweighted counterparts. We believe that this reduction is of independent
interest and will find use in other settings as well.
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3.2 Algorithm details and analysis

To specify our algorithm formally, we first define the rainbow-freeness property
and state the main result of [14] (which we utilize as a black box) precisely.

For an edge e, define Se := {S ∈ S : e ∈ δ(S)}. Note that Se could be empty.
We say that two edges e, f ∈ E form a rainbow if Se ⊆ Sf or Sf ⊆ Se. (This
definition is slightly different from the one in [14], in that we allow Se = Sf .) We
say that (x,L) is a rainbow-free decomposition if L is a laminar decomposition of
x and for every set L ∈ L, no two edges of supp(x) ∩ EL form a rainbow. (Recall
that GL = (VL, EL) denotes the graph obtained from

(
L,E(L)

)
by contracting

the children of L.) The following lemma shows that one can convert an arbitrary
decomposition (x,L) to a rainbow-free one; we defer the proof to the Appendix.
(As noted earlier, this lemma is used to equivalently view the algorithm in [14] as
a rounding algorithm that rounds an arbitrary solution x to (P).)

Lemma 3.1. Let x ∈ PST(G) and L be a laminar decomposition of x. We can compute

in polytime a fractional spanning tree x′ ∈ PST(G) and a rainbow-free decomposition

(x′,L′) such that: (i) supp(x′) ⊆ supp(x); (ii) L ⊆ L′; and (iii) x′(δ(S)) ≤ x(δ(S))
for all S ∈ S.

Theorem 3.2 ([14]). There is a polytime algorithm, AOZ, that given a fractional

spanning tree x′ ∈ PST(G) and a rainbow-free decomposition (x′,L′), returns a span-

ning tree TL ⊆ supp(x′) of GL for every L ∈ L′ such that the concatenation T of the

TLs is a spanning tree of G satisfying |δT (S)| ≤ 9x′
(
δ(S)

)
for all S ∈ S.

We can now describe our algorithm compactly. Let λ > 1 be a parameter.
1. Compute an optimal solution x∗ to (Pλ), a laminar decomposition L of x∗.
2. Apply Lemma 3.1 to (x∗,L) to obtain a rainbow-free decomposition (x′,L′).
3. Apply AOZ to the input (x′,L′) to obtain spanning trees TL

′

L of GL
′

L for every

L ∈ L′. Return the concatenation T of all the TL
′

L s.

Analysis. We show that the above algorithm satisfies the following guarantee.

Theorem 3.3. The above algorithm run with parameter λ > 1 returns a spanning tree

T satisfying c(T ) ≤ λ
λ−1 ·OPT and |δT (S)| ≤ 9λbS for all S ∈ S.

Let χT ∈ {0, 1}E denote the characteristic vector of T . The bound on |δT (S)|
follows immediately from Lemma 3.1 and Theorem 3.2 since x∗, and hence x′ ob-
tained in step 2, is a feasible solution to (Pλ). So we focus on bounding c(T ). This

will follow from three things. First, we define the perturbed cy
∗
-cost precisely. Next,

we argue that x∗ has minimum cy
∗
-cost among all points x ∈ PST(G) (Lemma 3.4).

Then, we observe that x′ and χT lie on the minimal face of PST(G) containing

x∗ (Claim 3.5). Using this it is easy to show that c(T ) ≤ cy
∗
(T ) =

∑
e c
y∗

e x∗e =

OPT (λ)+λ
∑
S∈S bSy

∗
S (Lemma 3.6). Finally, we show that

∑
S∈S bSy

∗
S ≤

OPT−OPT(λ)
λ−1

(Lemma 3.8), which yields the bound stated in Theorem 3.3.
To define the perturbed costs, we consider the Lagrangian dual of (Pλ) obtained

by dualizing the (inflated) degree constraints x
(
δ(S)

)
≤ λbS for all S ∈ S:

max
y∈RS+

(
gλ(y) := min

x∈PST(G)

(∑
e

cexe +
∑
S∈S

(
x(δ(S))− λbS)yS

))
. (LDλ)
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For y ∈ RS , let Gλ,y(x) :=
∑
e cexe +

∑
S∈S

(
x(δ(S)) − λbS

)
yS =

∑
e c
y
exe −

λ
∑
S∈S bSyS denote the objective function of the LP that defines gλ(y), where

cye := ce +
∑
S∈S:e∈δ(S) yS .

Let y∗ be an optimal solution to (LDλ). Our perturbed costs are {cy
∗

e }e. The
following lemma follows from standard results in duality theory. We include a proof
for completeness.

Lemma 3.4. We have gλ(y∗) = Gλ,y∗(x∗) = OPT (λ).

Proof. For any y ∈ RS+, we have gλ(y) + λ
∑
S∈S bSyS =(

min
∑
e

cyexe s.t. x
(
E(S)

)
≤ |S| − 1 ∀∅ 6= S ( V, x(E) = |V | − 1, x ≥ 0

)
︸ ︷︷ ︸

(Pλ,y)

=

(
max−

∑
∅6=S⊆V

(|S| − 1)µS s.t. −
∑

∅6=S⊆V :
e∈E(S)

µS ≤ cye ∀e ∈ E, µS ≥ 0 ∀∅ 6= S ( V
)

︸ ︷︷ ︸
(Dλ,y)

where the second equality follows since (Dλ,y) is the dual of (Pλ,y). It follows that

gλ(y∗) = max
y∈RS+

gλ(y) = max −
∑
∅6=S⊆V

(|S| − 1)µS − λ
∑
S∈S

bSyS (Dλ)

s.t. −
∑

∅6=S⊆V :
e∈E(S)

µS −
∑
S∈S:
e∈δ(S)

yS ≤ ce ∀e ∈ E

y ≥ 0, µS ≥ 0 ∀∅ 6= S ( V.

Notice that (Dλ) is the dual of (Pλ), hence, gλ(y∗) = OPT (λ). Moreover, it also
follows that ŷ is an optimal solution to (LDλ) iff there exists µ̂ = (µ̂S)∅6=S⊆V such
that (µ̂, ŷ) is an optimal solution to (Dλ).

So let µ∗ be such that (µ∗, y∗) is an optimal solution to (Dλ). It follows that
x∗ and (µ∗, y∗) satisfy complementary slackness. So we have that if µ∗S > 0 then
x∗
(
E(S)

)
= |S|−1, and if x∗e > 0 then −

∑
∅6=S⊆V :e∈E(S) µ

∗
S−
∑
S∈S:e∈δ(S) y

∗
S = ce,

or equivalently cy
∗

e = −
∑
∅6=S⊆V :e∈E(S) µ

∗
S . Therefore,

Gλ,y∗(x∗) =
∑
e

cy
∗

e x∗e − λ
∑
S∈S

bSy
∗
S =

∑
e

(
−

∑
∅6=S⊆V :e∈E(S)

µ∗S

)
x∗e − λ

∑
S∈S

bSy
∗
S

= −
∑
∅6=S⊆V

µ∗Sx
∗(E(S)

)
− λ

∑
S∈S

bSy
∗
S

= −
∑
∅6=S⊆V

(|S| − 1)µ∗S − λ
∑
S∈S

bSy
∗
S = gλ(y∗).

Claim 3.5. The points x′ and χT lie on the minimal face of PST(G) containing x∗.
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Proof. We have supp(x′), supp(χT ) ⊆ supp(x∗). We need to show that any spanning-
tree constraint that is tight at x∗ is also tight at x′ and χT . By Lemma 2.1, to prove
this, it suffices to show this for the (tight) spanning-tree constraints corresponding
to the sets in the laminar decomposition L of x∗. The laminar decomposition L′
of x′ refines L, so this is true by definition for x′. The spanning tree T is obtained
by concatenating spanning trees TL

′

L for each L ∈ L′. So, for each L ∈ L′, T ∩E(L)
is a spanning tree of

(
L,E(L)

)
and hence, χT

(
E(L)

)
= |L| − 1.

Lemma 3.6. We have c(T ) ≤ cy
∗
(T ) = (cy

∗
)ᵀx′ = (cy

∗
)ᵀx∗ =

∑
e cex

∗
e+λ

∑
S∈S bSy

∗
S .

Proof. We have c(T ) ≤ cy
∗
(T ) since ce ≤ cy

∗

e for all e ∈ E as y∗ ≥ 0. The set
of optimal solutions to the LP minx∈PST(G) Gλ,y∗(x) is a face of PST(G); thus all

points on the minimal face of PST(G) containing x∗ are optimal solutions to this
LP. Therefore, by Claim 3.5, χT and x′ are also optimal solutions to this LP, and
hence, cy

∗
(T ) = (cy

∗
)ᵀx′ = (cy

∗
)ᵀx∗. Finally,

cy
∗
(T ) =

∑
e

cy
∗

e x∗e =
∑
e

(
cex
∗
e +

∑
S∈S:e∈δ(S)

y∗Sx
∗
e

)
=
∑
e

cex
∗
e +

∑
S∈S

y∗Sx
∗(δ(S)

)
=
∑
e

cex
∗
e + λ

∑
S∈S

bSy
∗
S .

Remark 3.7. The property that all points on the the minimal face, say Q, of PST(G)

containing x∗ have the same cy
∗
-cost is equivalent to the property that for every

L ∈ L, all edges in supp(x∗) ∩EL have the same cy
∗
-cost. If the latter holds, then

(cy
∗
)ᵀx = (cy

∗
)ᵀx∗ for all x ∈ Q, since we have

∑
e c
y∗

e ze =
∑
L∈L

∑
e∈EL c

y∗

e ze for

any z ∈ RE as {EL}L∈L is a partition of E. Conversely, suppose for some L ∈ L
and e, f ∈ supp(x∗) ∩ EL, we have cy

∗

e < cy
∗

f . Then, one can obtain a point x′′

by shifting some ε > 0 weight from x∗f to x∗e, so that (cy
∗
)ᵀx′′ < (cy

∗
)ᵀx∗. For a

sufficiently small ε > 0, we can argue that x′′ ∈ PST(G) and supp(x′′) ⊆ supp(x∗),
and hence, x′′ ∈ Q by the same arguments as in the proof of Claim 3.5.

Lemma 3.8. We have
∑
S∈S bSy

∗
S ≤

(
OPT (1)−OPT (λ)

)
/(λ− 1).

Proof. By Lemma 3.4, we have that

OPT (λ) = gλ(y∗) = Gλ,y∗(x∗).

Using Lemma 3.4 again, now with λ = 1, and since y∗ is a feasible solution to
(LD1), we obtain that OPT (1) = maxy∈RS+ g1(y) ≥ g1(y∗). Note that the objective

functions of the LPs defining g1(y∗) and gλ(y∗) differ by a constant: G1,y∗(x) −
Gλ,y∗(x) = (λ − 1)

∑
S∈S bSy

∗
S for all x ∈ PST(G). Since x∗ is an optimal solution

to minx∈PST(G) Gλ,y∗(x), it is also an optimal solution to minx∈PST(G) G1,y∗(x). It
follows that

OPT (1) ≥ g1(y∗) = G1,y∗(x∗) .

Therefore, OPT (1)−OPT (λ) ≥ G1,y∗(x∗)−Gλ,y∗(x∗) = (λ−1)
∑
S∈S bSy

∗
S .

Proof of Theorem 3.3. As noted earlier, the bounds on δT (S) follow immediately
from Lemma 3.1 and Theorem 3.2: for any S ∈ S, we have |δT (S)| ≤ 9x′

(
δ(S)

)
≤

9x∗
(
δ(S)

)
≤ 9λbS . The bound on c(T ) follows from Lemmas 3.6 and 3.8 since∑

e cex
∗
e = OPT (λ).
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4 A reduction from weighted to unweighted problems

We now show that our ideas are applicable more generally, and yield bicrite-
ria approximation algorithms for any cost-minimization problem with packing
side-constraints, provided we have a suitable approximation algorithm for the
unweighted counterpart. Thus, our technique yields a reduction from weighted to
unweighted problems, which we believe is of independent interest.

To demonstrate this, we first isolate the key properties of the rounding al-
gorithm B used above for unweighted CCST that enable us to use it as a black
box to obtain our result for MCCST. Note that B is obtained by combining the
procedure in Lemma 3.1 and AOZ (Theorem 3.2). First, we of course utilize that
B is an approximation algorithm for unweighted CCST, so it returns a spanning
tree T such that |δT (S)| = O

(
x∗(δ(S))

)
for all S ∈ S. Second, we exploit the fact

that B returns a tree T such that χT lies on the minimal face of PST(G) containing

x∗ (i.e., T ⊆ supp(x∗), and all spanning-tree constraints tight at x∗ are tight at
T ; Claim 3.5). This is the crucial property that allows us to bound c(T ), since this

implies (as shown in Lemma 3.6) that cy
∗
(T ) =

∑
e c
y∗

e x∗e, which then yields the
bound on c(T ). In other words, while AOZ proceeds by exploiting the notions of
rainbow freeness and laminar decomposition, these notions are not essential to
obtaining our result; any rounding algorithm for unweighted CCST satisfying the
above two properties can be utilized to obtain our guarantee for MCCST.

We now formalize the above two properties for an arbitrary cost-minimization
problem with packing side-constraints, and prove that they suffice to yield a bicri-
teria guarantee. Consider the following abstract problem, where P ⊆ Rn+ is a fixed
polytope: given c ∈ Rn+, A ∈ Rm×n+ , and b ∈ Rm+ , find

min cᵀx s.t. x is an extreme point of P, Ax ≤ b. (QP)

Observe that we can cast MCCST as a special case of (QP), by taking P = PST(G)
(whose extreme points are spanning trees of G), c to be the edge costs, and Ax ≤ b
to be the degree constraints. Moreover, by taking P to be the convex hull of a
bounded set {x ∈ Zn+ : Cx ≤ d} we can use (QP) to encode a discrete-optimization
problem.

Definition 4.1. We say that B is a face-preserving rounding algorithm (FPRA) for
unweighted (QP) if given any point x ∈ P, B finds in polytime an extreme point
x̂ of P such that:
(P1) x̂ belongs to the minimal face of P that contains x.
We say that B is a β-approximation FPRA (where β ≥ 1) if we also have:
(P2) Ax̂ ≤ βAx.

Let (RPλ ) denote the LP min
{
cᵀx : x ∈ P, Ax ≤ λb

}
; note that (RP1 ) is

the LP-relaxation of (QP). Let opt(λ) denote the optimal value of (RPλ ), and let
opt := opt(1). We say that an algorithm is a (ρ1, ρ2)-approximation algorithm for
(QP) if it finds in polytime an extreme point x̂ of P such that cᵀx̂ ≤ ρ1opt and
Ax̂ ≤ ρ2b.

Theorem 4.2. Let B be a β-approximation FPRA for unweighted (QP). Then, given

any λ > 1, one can obtain a
(

λ
λ−1 , βλ

)
-approximation algorithm for (QP) using a

single call to B.
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Proof sketch. We dovetail the algorithm for MCCST and its analysis. We simply
compute an optimal solution x∗ to (RPλ ) and round it to an extreme point x̂ of P
using B. By property (P2), it is clear that Ax̂ ≤ β(Ax∗) ≤ βλb.

For y ∈ Rm+ , define cy := c + Aᵀy. To bound the cost, as before, we consider

the Lagrangian dual of (RPλ ) obtained by dualizing the side-constraints Ax ≤ λb.

max
y∈Rm+

(
hλ(y) := min

x∈P
Hλ,y(x)

)
, where Hλ,y(x) := (cy)ᵀx− λyᵀb.

Let y∗ = argmaxy∈Rm+ hλ(y). We can mimic the proof of Lemma 3.4 to show that

x∗ is an optimal solution to minx∈P Hλ,y∗(x). The set of optimal solutions to
this LP is a face of P. So all points on the minimal face of P containing x∗ are
optimal solutions to this LP. By property (P1), x̂ belongs to this minimal face and

so is an optimal solution to this LP. So (cy
∗
)ᵀx̂ = (cy

∗
)ᵀx∗ = cᵀx∗ + (y∗)ᵀAx∗ =

opt(λ)+λ(y∗)ᵀb, where the last equality follows by complementary slackness. Also,

by the same arguments as in Lemma 3.8, we have (y∗)ᵀb ≤ opt(1)−opt(λ)
λ−1 . Since

c ≤ cy
∗
, we have cᵀx̂ ≤ (cy

∗
)ᵀx̂ ≤ λ

λ−1 · opt.

5 Towards a
(
1, O(1)

)
-approximation algorithm for (QP)

A natural question that emerges from Theorems 3.3 and 4.2 is whether one can
obtain a

(
1, O(1)

)
-approximation, i.e., obtain a solution of cost at most opt that

violates the packing side-constraints by an (multiplicative) O(1)-factor. Such re-
sults are known for degree-bounded spanning tree problems with various kinds
of degree constraints [8,16,3,17], so, in particular, it is natural to ask whether
such a result also holds for MCCST. (Note that for MCCST, the dependent-
rounding techniques in [1,6] yield a tree T with c(T ) ≤ OPT and |δT (S)| ≤
min

{
O
( log |S|
log log |S|

)
bS , (1 + ε)bS + O

( log |S|
ε

)}
for all S ∈ S, while the iterative-

rounding algorithm in [2] yields c(T ) ≤ OPT and |δT (S)| ≤ bS + O(log |V |) for
all S ∈ S.) We show that our approach is versatile enough to yield such a guar-
antee provided we assume a stronger property from the rounding algorithm B for
unweighted (QP).

Let Ai denote the i-th row of A, for i = 1, . . . ,m. We say that B is an (α, β)-

approximation FPRA for unweighted (QP) if in addition to properties (P1) and
(P2), it satisfies:

(P3) it rounds a feasible solution x to (RPα ) to an extreme point x̂ of P satisfying

Aᵀ
i x̂ ≥

Aᵀ
i x
α for every i such that Aᵀ

i x = αbi.

(For MCCST, property (P3) requires that |δT (S)| ≥ bS for every set S ∈ S whose
degree constraint (in (Pα)) is tight at the fractional spanning tree x.)

Theorem 5.1. Let B be an (α, β)-approximation FPRA for unweighted (QP). Then,

one can obtain a (1, αβ)-approximation algorithm for (QP) using a single call to B.

Proof. We show that applying the algorithm from Theorem 4.2 with λ = α yields
the claimed result. It is clear that the extreme point x̂ returned satisfies Ax̂ ≤ αβb.
As in the proof of Theorem 4.2, let y∗ be an optimal solution to maxy∈Rm+ hλ(y)
(where λ = α). In Lemma 3.6 and the proof of Theorem 4.2, we use the weak
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bound cᵀx̂ ≤ (cy
∗
)ᵀx̂. We tighten this to obtain the improved bound on cᵀx̂. We

have cᵀx̂ = (cy
∗
)ᵀx̂− (y∗)ᵀAx̂, and

(y∗)ᵀAx̂ =
∑

i:Aᵀ
i x
∗=λbi

y∗i (Aᵀ
i x̂) ≥

∑
i:Aᵀ

i x
∗=λbi

y∗i A
ᵀ
i x
∗

α
=

∑
i:Aᵀ

i x
∗=λbi

y∗i bi = (y∗)ᵀb.

The first and last equalities above follow because y∗i > 0 implies that Aᵀ
i x
∗ =

λbi. The inequality follows from property (P3). Thus, following the rest of the
arguments in the proof of Theorem 4.2, we obtain that

cᵀx̂ ≤ (cy
∗
)ᵀx̂− (y∗)ᵀb = cᵀx∗ + (λ− 1)(y∗)ᵀb ≤ opt(1).

5.1 Obtaining an additive approximation for (QP) and cost at most opt via an
FPRA with two-sided additive guarantees

We now present a variant of Theorem 5.1 that shows that we can achieve cost
at most opt and additive approximation for the packing side constraints using an
FPRA with two-sided additive guarantees. We give an application of this result in
Section 5.2, where we utilize it to obtain improved guarantees for the k-budgeted
matroid basis problem.

Theorem 5.2. Let B be an FPRA for unweighted (QP) that given x ∈ P returns an

extreme point x̂ of P such that Ax−∆ ≤ Ax̂ ≤ Ax+∆, where ∆ ∈ Rm+ may depend

on A and c (but not on b). Using a single call to B, we can obtain an extreme point x̃

of P such that cᵀx̃ ≤ opt and Ax̃ ≤ b+ 2∆.

The above result is obtained via essentially the same arguments as those in
Theorems 4.2 and 5.1. For a vector ∆ ∈ Rm+ , let (WP∆) denote the LP min

{
cᵀx :

x ∈ P, Ax ≤ b + ∆
}

. Let 0 denote the all-zeros vector, and note that (WP0 ) is

the LP-relaxation of (QP). Let opt(∆) denote the optimum value of (WP∆), and
let opt := opt(0). The Lagrangian dual of (WP∆) obtained by dualizing the side-
constraints Ax ≤ b+∆ is

max
y∈Rm+

(
ϕ∆(y) := min

x∈P
Φ∆,y(x)

)
, (LD∆)

where Φ∆,y(x) := (cy)ᵀx − yᵀ(b + ∆). (Recall that cy := c + Aᵀy.) Let x∗ be an

optimal solution to (WP∆) and y∗ = argmaxy∈Rm+ ϕ∆(y). We have the following

variants of Lemmas 3.4 and 3.8.

Lemma 5.3. We have ϕ∆(y∗) = Φ∆,y∗(x
∗) = opt(∆).

Proof. This follows from the arguments used in the proof of Lemma 3.4.

Lemma 5.4. We have (y∗)ᵀ∆ ≤ opt(0)− opt(∆).

Proof. We mimic the proof of Lemma 3.8. By Lemma 5.3, we have that

opt(∆) = ϕ∆(y∗) = Φ∆,y∗(x
∗)
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and opt(0) = maxy∈RS+ ϕ0(y) ≥ ϕ0(y∗). Note that Φ0,y∗(x) − Φ∆,y∗(x) = (y∗)ᵀ∆,

which is independent of x. So since x∗ is an optimal solution to minx∈P Φ∆,y∗(x),
it is also an optimal solution to minx∈P Φ0,y∗(x). It follows that

opt(0) ≥ ϕ0(y∗) = Φ0,y∗(x
∗).

Hence, opt(0)− opt(∆) ≥ Φ0,y∗(x
∗)− Φ∆,y∗(x∗) = (y∗)ᵀ∆.

Proof of Theorem 5.2. The algorithm simply computes an optimal solution x∗ to
(WP∆), and rounds it to an extreme point x̃ of P using algorithm B.

It is clear that Ax̃ ≤ Ax∗ + ∆ ≤ (b + ∆) + ∆ = b + 2∆. Next we argue that

cᵀx̃ ≤ opt. We have cᵀx̃ = (cy
∗
)ᵀx̃− (y∗)ᵀAx̃, and

(y∗)ᵀAx̃ =
∑

i:Aᵀ
i x
∗=bi+∆i

y∗i (Aᵀ
i x̃) ≥

∑
i:Aᵀ

i x
∗=bi+∆i

y∗i (Aᵀ
i x
∗ −∆i)

=
∑

i:Aᵀ
i x
∗=bi+∆i

y∗i bi = (y∗)ᵀb.

By Lemma 5.3, x∗ is an optimal solution to minx∈P Ψ∆,y∗(x). So all points on the
minimal face of P containing x∗ are optimal solutions to this LP. In particular,
since x̃ belongs to this minimal face (by property (P1)), x̃ is an optimal solution to

this LP. This observation, along with the inequality above, yields cᵀx̃ ≤ (cy
∗
)ᵀx∗−

(y∗)ᵀb = opt(∆)+(y∗)ᵀ∆. Finally, using Lemma 5.4 yields cᵀx̃ ≤ opt(0) as required.

5.2 Application to k-budgeted matroid basis

Here, we seek to find a basis S of a matroid M = (U, I) satisfying k budget con-
straints {di(S) ≤ Bi}1≤i≤k, where di(S) :=

∑
e∈S di(e). Note that this can be

cast as a special case of (QP), where P = P(M) is the basis polytope of M , the
objective function encodes a chosen budget constraint (say the k-th budget con-
straint), and Ax ≤ b encodes the remaining budget constraints. We show that our
techniques, combined with a recent randomized algorithm of [4], yields a (random-

ized) algorithm that, for any ε > 0, returns in nO(k1.5/ε) time a basis that (exactly)
satisfies a chosen budget constraint, and violates the other budget constraints by
(at most) a (1 + ε)-factor, where n := |U | is the size of the ground-set of M . This
matches the current-best approximation guarantee of [9] (who give a deterministic
algorithm) and the current-best running time of [4].

Theorem 5.5 ([4]). For some constant ν > 0, there exists a randomized FPRA, BBN,

for unweighted (QP(M)) that rounds any x ∈ P(M) to an extreme point x̂ of P(M)
such that Ax − ν

√
k∆ ≤ Ax̂ ≤ Ax + ν

√
k∆, where ∆ = (max1≤j≤n aij)1≤i≤k−1 =

(maxe∈U di(e))1≤i≤k−1.

Lemma 5.6. There exists a polytime randomized algorithm that finds a basis S of M

such that dk(S) ≤ Bk, and di(S) ≤ Bi + 2ν
√
kmaxe∈U di(e) for all 1 ≤ i ≤ k − 1, or

determines that the instance is infeasible.
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Proof. As explained above, we cast the problem as a special case of (QP) by using
the k-th budget constraint as the objective function, and the remaining budget
constraints as packing side-constraints. If the LP-relaxation of (QP) is infeasi-
ble, then the budgeted-matroid-basis is infeasible. Otherwise, the above guarantee
follows by applying Theorem 5.2 with the algorithm B=BBN.

Using ideas from [4], we combine the algorithm from Lemma 5.6 with a partial
enumeration step as follows. We say an element e ∈ U is heavy if the inequality
di(e) >

ε
2ν
√
k
Bi holds for at least one index i ∈ {1, . . . , k}. Let H denote the set of

all heavy elements. We state our algorithm below. Let ε > 0 be a parameter.

1. For every set H̃ ⊆ H of size |H̃| ≤ 2νk1.5

ε , we do the following.

(a) Let M ′ be the matroid obtained from M by contracting the elements of H̃
and deleting the elements of H \ H̃.

(b) Compute residual budgets B′i := Bi − di(H̃), for i ∈ {1, . . . , k}.
(c) Run the algorithm from Lemma 5.6 on matroid M ′ with budgets {B′i}1≤i≤k.
(d) If the algorithm succeeds (that is, if the LP that it attempts to solve is

feasible), then let T be the set of elements returned, and let S := H̃ ∪ T . If
S is a basis of M , dk(S) ≤ Bk, and di(S) ≤ (1 + ε)Bi for all 1 ≤ i ≤ k − 1,
then return S.

2. If step 1 does not return any set S, then return that the instance is infeasible.

Theorem 5.7. The algorithm above, run with parameter ε > 0, finds in nO(k1.5/ε)

time a basis S of M such that dk(S) ≤ Bk and di(S) ≤ (1+ ε)Bi for all 1 ≤ i ≤ k−1,

or determines that the instance is infeasible.

Proof. Note that the number of iterations is at most n
2νk1.5

ε = nO(k1.5/ε). Since

steps 1(a)–1(d) run in poly(n) time, the overall running time is nO(k1.5/ε) as
claimed.

If the instance is infeasible, then any outcome of the algorithm (infeasible, or
a basis S) is correct. (Note that due to the verification done at the end of step
1(d), any set S returned must have the required properties.) So assume that the
instance is feasible, and let S∗ be a basis of M that exactly satisfies all the budget
constraints. We argue that in this case the algorithm does indeed return a basis
with the desired properties. Let H∗ := S∗ ∩H be the set of heavy elements that
S∗ contains. Note that since a heavy element uses up at least one budget to an
extent greater than ε

2ν
√
k

, and since S∗ satisfies all the k budget constraints, we

must have |H∗| ≤ k
ε

2ν
√
k

= 2νk1.5

ε . Note that at the iteration corresponding to

H̃ = H∗ (if the algorithm reaches it), the set S∗ \ H∗ is feasible for the residual
problem (with a matroid M ′ and residual budgets {B′i} defined in steps 1a and
1b). Further, note that this set also certifies that the resulting set S satisfies
dk(S) = dk(H∗) + dk(T ) ≤ dk(H∗) + dk(S∗ \H∗) = dk(S∗) ≤ Bk. Finally, for every
i ∈ {1, . . . , k − 1}, we have

di(S) = di(H
∗) + di(T ) ≤ di(H∗) +B′i + 2ν

√
k max
e∈U\H

di(e)

≤ Bi + 2ν
√
k

ε

2ν
√
k
Bi = (1 + ε)Bi,

and so the set S will pass the verification done at step 1(d) and will be returned
by the algorithm.
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A Proofs omitted from the main body

Proof of Lemma 2.1. Let span(x,L) denote the vector space spanned by {χx,E(A)}A∈L. We
say that two sets A,B ⊆ V cross, if A ∩ B,A \ B,B \ A are all non-empty. Suppose the
statement is false. Among all sets T whose spanning-tree constraints are tight at x and
χx,E(T ) /∈ span(x,L), pick one, say S, that crosses the fewest number of sets in L.

Note that S must cross a non-zero number of sets in L, otherwise this would contradict
the fact that L is a maximal laminar family of sets whose spanning-tree constraints are tight
at x. Let A ∈ L be an inclusion-wise minimal set of L such that S and A cross. Since the
function T 7→ x

(
E(T )

)
is supermodular, we have

x
(
E(S∩A)

)
+x
(
E(S∪A)

)
≥ x

(
E(S)

)
+x
(
E(A)

)
= |S|+ |A|−2 =

(
|S∩A|−1

)
+
(
|S∪A|−1

)
.

It follows that the spanning-tree constraints for S ∩ A and S ∪ A are also tight at x, and the
inequality above is in fact an equality. So xe = 0 for all edges e with one end in S\A and one end

in A\S, and hence χx,E(S∩A) +χx,E(S∪A) = χx,E(S) +χx,E(A). This implies that χx,E(S∩A)

and χx,E(S∪A) cannot both lie in span(x,L) as this would imply that χx,E(S) ∈ span(x,L).
Finally, note that both S∩A and S∪A cross fewer sets of L than S. This yields a contradiction
to our choice of S above.
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Proof of Lemma 3.1. This follows from essentially the same potential-function argument as
used in [14] to obtain a rainbow-free solution. Sort the edges of supp(x) in increasing order
of |Se| breaking ties arbitrarily. Let e1, e2, . . . , ek denote this ordering. Let w ∈ RE be any
weight function such that we1 < we2 < · · · < wek (e.g., wei = i for all i). Let x′ be an optimal
solution to the following LP. (Note that the LP has variables {ze}e∈E , and that the {xe}e∈E

values are fixed.)

min
∑
e

weze (P’)

s.t. z ∈ PST(G), ze = 0 ∀e /∈ supp(x)

z
(
δ(S)

)
≤ x

(
δ(S)

)
∀S ∈ S

z
(
E(L)

)
= |L| − 1 ∀L ∈ L.

Properties (i) and (iii) hold by construction. Since we force the spanning-tree constraints
corresponding to sets in L to be tight, we can start with L and extend it to obtain a laminar
decomposition L′ of x′ that refines L, so (ii) holds.

It remains to show that (x′,L′) is a rainbow-free decomposition. Consider any set L ∈ L′

and any two edges e, f ∈ supp(x′)∩EL′
L , and suppose that e, f form a rainbow. Let we < wf ,

so we must have Se ⊆ Sf . Now perturb x′ by adding ε to x′e (the argument below will show
that x′e < 1) and subtracting ε from x′f , where ε > 0 is chosen to be suitably small; let x′′

be this perturbed vector. Clearly, wᵀx′′ < wᵀx′, so if we show that x′′ is feasible to (P’),
then we obtain a contradiction. Clearly, supp(x′′) ⊆ supp(x). Since Se ⊆ Sf it follows that

x′′
(
δ(S)

)
≤ x

(
δ(S)

)
for all S ∈ S. Also, x′′

(
E(L)

)
= x′

(
E(L)

)
= |L| − 1 for all L ∈ L.

Finally, we show that x′′ ∈ PST(G) for a sufficiently small ε > 0. (Hence, x′e < x′′e ≤ 1.) For
A ⊆ V such that x′

(
E(A)

)
< |A| − 1, we obtain x′′

(
E(A)

)
≤ |A| − 1 by taking ε > 0 suitably

small; for A with x′
(
E(A)

)
= |A| − 1, we obtain x′′

(
E(A)

)
= |A| − 1 since the spanning-tree

constraints for all L ∈ L′ are tight at (x′ and) x′′ and these span all other spanning-tree
constraints that are tight at x′ (Lemma 2.1).


