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Abstract9

We consider a generalization of k-median and k-center, called the ordered k-median problem. In10

this problem, we are given a metric space (D, {cij}) with n = |D| points, and a non-increasing11

weight vector w ∈ Rn+, and the goal is to open k centers and assign each point j ∈ D to a12

center so as to minimize w1 · (largest assignment cost) + w2 · (second-largest assignment cost) +13

. . . + wn · (n-th largest assignment cost). We give an (18 + ε)-approximation algorithm for this14

problem. Our algorithms utilize Lagrangian relaxation and the primal-dual schema, combined15

with an enumeration procedure of Aouad and Segev. For the special case of {0, 1}-weights, which16

models the problem of minimizing the ` largest assignment costs that is interesting in and of by17

itself, we provide a novel reduction to the (standard) k-median problem, showing that LP-relative18

guarantees for k-median translate to guarantees for the ordered k-median problem; this yields a19

nice and clean (8.5 + ε)-approximation algorithm for {0, 1} weights.20
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1 Introduction26

Clustering is an ubiquitous problem that finds applications in various fields including data27

mining, machine learning, image processing, and bioinformatics. Many clustering problems28

involve finding a set F of at most k “centers” from an underlying set D of data points29

located in some metric space {cij}i,j∈D, and an assignment of data points to centers, so as30

to minimize some objective function of the assignment costs, i.e., the distances between data31

points and their assigned centers. These problems can typically also be stated as facility-32

location problems, wherein we seek a cost-effective way of opening facilities (≡ centers) and33

assigning clients (≡ data points) to open facilities. Given their widespread applicability,34

clustering and facility-location problems have been extensively studied in the Computer35

Science and Operations Research literature; see, e.g., [16, 22], as also the literature on36

the classical k-median (minimize sum of the assignment costs) [6, 13, 15, 4]), and k-center37

(minimize maximum assignment cost [10, 11]) problems.38

We consider a common generalization of k-median and k-center, called the ordered k-39

median problem [17, 9]. As before, we are given a metric space (D, {cij}i,j∈D), and an integer40
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k ≥ 0. We will often refer to points in D as clients. We are also given non-increasing,41

nonnegative weights w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, where n = |D|. For a vector v ∈ RD, we use42

v ↓ to denote the vector v with coordinates sorted in non-increasing order. That is, we have43

v ↓i = vσ(i), where σ is a permutation of D such that vσ(1) ≥ vσ(2) ≥ . . . vσ(n). The goal in the44

ordered k-median problem is to choose a set F of k points from D as centers (or “facilities”),45

and assign each client j ∈ D to a center i(j) ∈ F , so as to minimize46

cost
(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

∑n
j=1 wj~c

↓
j .

Observe that when all the wis are 1, we obtain the k-median problem; on the other hand,47

setting w1 = 1, w2 = . . . = wn = 0, yields the k-center problem. Indeed the special case with48

{0, 1} weights is already interesting: that is, for some ` ∈ [n], we have w1 = . . . = w` = 1 and49

all the remaining wis are 0; this captures the problem of minimizing the ` largest assignment50

costs, which Tamir [23] calls the `-centrum problem.51

The ordered k-median problem can be motivated from various perspectives. The problem52

was proposed in network location theory as a convenient way of unifying the k-median and53

k-center objectives, as also some other objective functions considered in location theory (see,54

e.g., [17]). Such a versatile model is also useful in the context of clustering applications,55

wherein the clustering objective (e.g., k-median or k-center) is often a means to an end,56

namely, producing a “good” clustering. The ordered k-median problem yields a suite of57

clustering objectives, including those that interpolate between the k-median and k-center58

objectives, and thereby offers a useful means of obtaining a variety of clustering solutions59

(which motivates the question of developing efficient algorithms for (approximately) solving60

this problem). Another motivation for studying ordered k-median comes from a fairness61

perspective: if the weights decrease geometrically (at a sufficiently large rate), then an62

optimal ordered-k-median solution yields a min-max fair assignment-cost vector: that is,63

a solution that minimizes the maximum assignment cost, subject to which, it minimizes64

the second largest assignment cost, and so on. Finally, the `-centrum problem can also be65

interpreted as the following robust-optimization version of k-median. Suppose there is some66

uncertainty in the client-set that needs to be clustered: in every scenario, some (at most)67

` clients need to be clustered, and we need to determine the k centers and the assignment68

of clients to centers before knowing the scenario realization. Robust optimization seeks to69

minimize the maximum scenario cost, which leads to precisely the `-centrum problem.70

While the special cases of k-median and k-center have been considered extensively71

from the viewpoint of developing approximation algorithms, much less is known about the72

approximability of the ordered k-median problem, especially in general metrics. Aouad73

and Segev [2] obtained a logarithmic-approximation ratio for general metrics, and Alamdari74

and Shmoys [1] obtain a bicriteria approximation for the special case, where w is a convex75

combination of (1, 0, . . . , 0) and
( 1
n ,

1
n , . . . ,

1
n

)
, which is called the centridian problem [12].76

Our results. We obtain constant-factor approximation algorithms for the ordered k-median77

problem. Together with the concurrent work of [3], these constitute the first constant-factor78

approximation guarantees for ordered k-median. Our main result is an (deterministic) (18+ε)-79

approximation algorithm for the ordered k-median problem (Theorem 7). Our algorithm80

utilizes the primal-dual schema and Lagrangian relaxation, and, hence, is combinatorial.81

En route, in Section 2, we first develop constant-factor approximation algorithms for82

the case of {0, 1}-weights. This introduces many of the ideas needed to handle the general83

setting. We design two algorithms for this setting. Both algorithms are derived using a novel84

LP-relaxation that we propose for the problem, which leverages a key insight to circumvent85

the issue that the natural LP-relaxation has a large (non-constant) integrality gap.86
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Our first algorithm is a clean, combinatorial (12+ε)-approximation algorithm that is based87

on the Jain-Vazirani primal-dual schema coupled with Lagrangian relaxation (Theorem 4).88

Both the algorithm and its analysis are versatile, and we show in Section 3 that the underlying89

ideas extend easily and, in combination with an enumeration procedure of [2], yield an90

(18 + ε)-approximation for the general setting. Our second algorithm for {0, 1}-weights is91

based on LP-rounding, and yields an improved approximation factor via a novel black-box92

reduction to LP-relative algorithms for (standard) k-median. We show that an LP-relative α-93

approximation for k-median yields (essentially) a 2(α+1)-approximation; taking α = 3.25 [7],94

we obtain an (8.5 + ε)-approximation for ordered k-median with {0, 1}-weights (Theorem 5);95

we believe that this reduction is of independent interest.96

Relationship with the work of [3]. Recently, we learnt that Byrka et al. [3] have also97

obtained a (randomized) O(1)-approximation guarantee (equal to 38 + ε) for the ordered98

k-median problem. Our work was done independently and concurrently; a manuscript with99

the same approximation guarantees was posted on the arXiv in November 2017 [5]. In100

particular, our results for {0, 1} weights were obtained without knowledge of the work of [3].101

But it was after we learnt of the results in [3] that we realized that our results can be102

extended to the general weighted setting.103

While we use similar LP relaxations, our techniques are different. Whereas [3] crucially104

exploit properties of the Charikar-Li [7] LP-rounding algorithm, we leverage the (primal-dual105

+ Lagrangian relaxation) methodology for k-median due to Jain and Vazirani [13]. Our106

algorithms are thus combinatorial. Our approximation factors improve upon those obtained107

in [3], both for {0, 1} weights and general weights; we believe that our algorithms and analyses108

are also simpler. Finally, our reduction to LP-relative algorithms for k-median shows that we109

do not need to rely on a specific k-median LP-rounding algorithm in order to tackle ordered110

k-median with {0, 1} weights, and suggests that the same might be true for general weights.111

Our techniques. It is instructive to first discuss the {0, 1}-weighted case. One of the112

main challenges is in coming up with a good LP-relaxation for this `-centrum problem.113

The natural LP-relaxation augments the natural LP for k-median by imposing constraints114

encoding that the total assignment cost of any set of ` clients is at most B, where B is a new115

variable that we seek to minimize. It is well known that, even for (standard) k-median, one116

cannot hope to round an LP solution while approximately preserving the assignment cost of117

each client [6].2 More significantly, whereas we can round and approximately preserve the118

sum of all assignment costs (as shown by k-median rounding), it turns out that we cannot119

preserve the sum of the ` largest assignment costs: the natural LP has a large (non-constant)120

integrality gap. This integrality gap is robust and cannot be alleviated by guessing the121

maximum assignment cost and incorporating this in the LP and the lower bound.3 In essence,122

the cause for this disparity (between k-median and `-centrum) is that the k-median objective123

crucially also includes the contribution from clients with small assignment costs.124

The key insight that allows us to circumvent this difficulty is the following. Suppose we125

aim to find a solution of objective value O(B). Then, it suffices to find a solution where the126

total assignment cost of clients having assignment cost at least B/` is O(B): the remaining127

clients can contribute at most additional B towards the `-centrum objective, since we consider128

at most ` clients in the `-centrum objective value. Moreover, if there is a solution of `-centrum129

2 This is possible if we open O(k) centers, using, e.g., the filtering-based algorithm of [21] for facility
location.

3 This is in contrast with k-center, where such preprocessing does mitigate the bad integrality gap of the
natural LP and reduces it to a constant.

ICALP 2018
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objective value at most B, then the total assignment cost of clients with assignment cost130

at least B/` is at most B. Thus, given a “guess” B of the optimal value, our new LP (PB)131

seeks to minimize the total assignment cost of clients having assignment cost larger than B/`.132

The LP (PB) corresponds to the LP-relaxation for k-median with non-metric distances133

given by {fB(cij)}i,j∈D, where fB(d) = d if d ≥ B/`, and is 0 otherwise. Despite this134

complication, we devise two ways of leveraging (PB) to obtain a solution of `-centrum cost135

O(OPTB + B) (which yields an O(1)-approximation for the correct choice of B), both of136

which involve simple procedures with a clean analysis; here, OPTB denotes the optimal137

value of (PB). Our first algorithm is based on the Jain-Vazirani (JV) template [13]. This138

is our main result for {0, 1} weights (see Section 2.1), and this algorithm extends easily to139

the setting with general weights. We Lagrangify the cardinality constraint and move to the140

facility-location (FL) version where we may choose any number of centers but incur a fixed141

cost of (say) λ for each center we choose. We adapt the JV primal-dual algorithm and its142

analysis to obtain a so-called Lagrangian-multiplier-preserving guarantee for this FL version.143

By fine-tuning λ, we can then find two solutions, one with less than k centers and the other144

with more than k centers, whose convex combination has low cost; rounding this bipoint145

solution yields the final solution. This yields our 12-approximation algorithm.146

The second algorithm utilizes LP-rounding. We show that after a clustering step, where147

we merge clients that are distance at most B
` -apart, the problem of rounding a solution to148

(PB) reduces to that of rounding a fractional k-median solution on the cluster centers. Thus,149

any LP-relative α-approximation algorithm for k-median can be used to obtain a solution of150

cost at most 2(α+ 1)B.151

For general weights, the key again is to consider k-median with suitable (non-metric)152

proxy distances analogous to the fB(cij)s. We utilize a clever enumeration idea due to [2] to153

obtain these proxy distances. Whereas with {0, 1} weights, we created two distance buckets154

(cij ≥ B/` and cij < B/`) with weight multipliers 1 and 0, we now create O
(
log1+ε(nε )

)
155

buckets by grouping distances in powers of (1 + ε). We guess the average weight (roughly156

speaking) incurred for a bucket by an optimal solution, and use this as the weight multiplier157

for the bucket. As argued in [2]: (a) if we enumerate average weights in powers of (1 + ε) then158

there are only polynomially many choices; and (b) the resulting proxy distances provide a good159

approximation for the actual cost(w; .)-cost. Finally, we show that the primal-dual algorithm160

and its analysis developed in Section 2.1 extends to solve the k-median problem with these161

new proxy distances. Combining these ingredients, we obtain an (18 + ε)-approximation.162

Other related work. While the ordered k-median problem, and its special cases, have been163

well studied in the Operations Research literature (see, e.g., [18, 14]), much of this work164

has focused either on modeling issues and formulations, or on solving the problem exactly165

in special cases, or via (non-polynomial time) heuristics. There is little prior work (i.e.,166

discounting [3]) on the design of approximation algorithms for this problem, in general167

metrics. As mentioned earlier, for general metrics, we are only aware of the work of [2], who168

obtain a logarithmic-approximation ratio, and [1], who obtain a bicriteria approximation for169

the special case of the centridian problem.170

A significant amount of research has taken place for special cases of the problem, e.g.,171

the k = 1 setting [17], and the “continuous” version of the problem where centers can also be172

opened “in the middle of an edge” [19]. For these settings, fast exact algorithms have been173

developed in many interesting cases; see, e.g., [8, 23, 20] and the references therein. There is174

also a large body of work looking at compact integer-programming formulations, branch and175

bound methods etc.; for a detailed account of this and other work related to location theory176

and ordered-median models, we refer the reader to the books [18, 14].177
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2 The setting with {0, 1}-weights178

We first consider the setting with {0, 1} weights. Let ` ∈ [n] be such w1 = . . . = w` = 1,179

w`+1 = 0 = . . . = wn. We abbreviate cost(w;~c) to cost(`;~c), or simply cost(~c). The {0, 1}-180

weight setting serves as a natural starting point for two reasons. First, the problem of181

minimizing the ` most expensive assignment costs is a natural, well-motivated problem that182

is interesting in its own right. Second, the study of the {0, 1}-case serves to introduce some183

of the key underlying ideas that are also used to handle the general setting. Notice also that184

a non-decreasing weight vector w can be written as a nonnegative linear-combination of such185

{0, 1} weight vectors.186

The natural LP-relaxation for this `-centrum problem has an Ω(`) integrality gap, and, as187

noted earlier, the integrality gap does not decrease even if we guess the maximum assignment188

cost and incorporate this in our LP and lower bound. Our constant-factor approximation189

algorithms are based on an alternate novel LP-relaxation, where, given a “guess” B of the190

optimal value, we seek to minimize the total assignment cost of clients having assignment191

cost at least B/`. The rationale is that assignment costs that are smaller than B/` can192

contribute at most B to the `-centrum cost, and can hence be ignored when searching for a193

solution of `-centrum cost O(B). For d ≥ 0, define fB(d) = d if d ≥ B/`, and 0 otherwise.194

Throughout, i and j index points of D. We consider the following LP.195

min
∑
j

∑
i

fB(cij)xij (PB)196

s.t.
∑
i

xij ≥ 1 for all j (1)197

0 ≤ xij ≤ yi for all i, j (2)198 ∑
i

yi ≤ k. (3)199

200

Variable yi indicates if facility i is open (i.e., i is chosen as a center), and xij indicates if client201

j is assigned to facility i. The first two constraints say that each client must be assigned to202

an open facility, and the third constraint encodes that at most k centers may be chosen.203

An atypical aspect of our relaxation is that, while an integer solution corresponds to204

a solution to our problem, its objective value under (PB) may underestimate the actual205

objective value; however, as alluded to above, the objective value of (PB) is within an206

additive B of the actual objective value. Let OPTB denote the optimal value of (PB), and207

opt denote the optimal value of the `-centrum problem.208

I Claim 1. If B ≥ opt, then OPTB ≤ opt ≤ B.209

Proof. Let (x̃, ỹ) be the integer point corresponding to an optimal solution. Clearly, (x̃, ỹ)210

is feasible to (PB). There are at most ` assignment costs that are at least opt/` (and hence211

at least B/`). Therefore, the objective value of (x̃, ỹ) is at most opt. J212

I Claim 2. Let ~c be an assignment-cost vector (where ~cj is the assignment cost of j). Then,213

cost(`;~c) ≤
∑
j fB(~cj) +B.214

I Claim 3. For anyB ≥ 0, we have: (i) fB(x) ≤ fB(y) if x ≤ y; (ii) max{fB(x), fB(y), fB(z)} ≥215

fB
(
x+y+z

3
)
for any x, y, z ≥ 0; and (iii) 3fB(x/3) = f3B(x) for any x ≥ 0.216

We may assume that we have B ≤ (1 + ε)opt (e.g., by enumerating all possible choices for217

opt in powers of (1 + ε), or using binary search to find, within a (1 + ε)-factor, the smallest218

B such that OPTB ≤ B). While (PB) closely resembles the LP-relaxation for k-median,219

ICALP 2018
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notice that the assignment costs {fB(cij)} used in the objective of (PB) do not form a220

metric. Despite this complication, we show that (PB) can be leveraged to obtain a solution221

of cost(`; .)-cost O(B). We devise two algorithms for obtaining such a guarantee. The first222

algorithm is based on the primal-dual method and the Jain-Vazirani (JV) template [13]; this223

yields a 12-approximation algorithm. The second algorithm is based on LP-rounding, and224

shows that any LP-relative α-approximation algorithm for k-median can be used to obtain a225

solution of cost(`.)-cost at most 2(α+ 1)B.226

I Theorem 4. We can obtain a solution to the `-centrum problem of cost at most
(
12 +227

O(ε)
)
·B ≤

(
12 +O(ε)

)
opt.228

I Theorem 5. Let (kmed-P) denote the k-median LP: min
{∑

j,i cijxij : (1)–(3)
}
. Let229

A be an α-approximation algorithm for k-median whose approximation guarantee is proved230

relative to (kmed-P). We can obtain a solution to the `-centrum problem of cost at most231

2(α + 1)B. Thus, taking A to be the 3.25-approximation algorithm in [7], we obtain an232

(8.5 + ε)-approximation algorithm for the `-centrum problem.233

Although Theorem 4 yields a worse approximation factor, the underlying primal-dual234

algorithm and analysis are quite versatile and extend easily to the setting with general235

weights. We prove Theorem 4 in this extended abstract. The proof of Theorem 5 can be236

found in Appendix A of the arXiv version [5] of the paper.237

2.1 Proof of Theorem 4238

As noted earlier, the proof relies on the primal-dual method. The dual of (PB) is as follows.239

max
∑
j

αj − k · λ (DB)240

s.t. αj ≤ fB(cij) + βij ∀i, j (4)241 ∑
j

βij ≤ λ ∀i (5)242

α, λ ≥ 0.243
244

Let OPT := OPTB denote the optimal value of (PB). We first fix λ and construct a solution245

that may open more than k centers but will have some near-optimality properties (see246

Theorem 6).247

P1. Dual-ascent. Initialize D′ = D, αj = βij = 0 for all i, j ∈ D, F = ∅. The clients in D′248

are called active clients. If αj ≥ fB(cij), we say that j reaches i. (So if cij ≤ B/`, then249

j reaches i from the very beginning.)250

We repeat the following until all clients become inactive. Uniformly raise the αjs of all251

active clients, and the βijs for (i, j) such that i /∈ F , j is active, and can reach i until252

one of the following events happen.253

• Some client j ∈ D reaches some i (and previously could not reach i): if i ∈ F , we254

freeze j, and remove j from D′.255

• Constraint (5) becomes tight for some i /∈ F : we add i to F ; for every j ∈ D′ that256

can reach i, we freeze j and remove j from D′.257

P2. Pruning. Pick a maximal subset T of F with the following property: for every j ∈ D,258

there is at most one i ∈ T such that βij > 0. Let P = {j : ∃i ∈ T s.t. βij > 0}.259

P3. Return T as the set of centers, and assign every j to the nearest point (in terms of cij)260

in T , which we denote by i(j).261
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I Theorem 6. The solution satisfies 3λ|T |+
∑
j∈P fB(ci(j)j) +

∑
j /∈P f3B(ci(j)j) ≤ 3

∑
j αj .262

Proof. The proof resembles the analysis of the JV primal-dual algorithm for facility location,263

but the subtlety is that we need to deal with the complication that the {fB(cij)}i,j∈D264

“distances” do not form a metric.265

Observe that for every i ∈ T , every client j ∈ P for which βij > 0 satisfies i(j) = i. So∑
j∈P

3αj ≥
∑
j∈P

(
3βi(j)j + fB(ci(j)j)

)
= 3λ|T |+

∑
j∈P

fB(ci(j)j).

We show that for each client j /∈ P , there is some i′′ ∈ T such that f3B(ci′′j) ≤ 3αj , which will266

complete the proof. Let i ∈ F be the facility that caused j to freeze, so fB(cij) ≤ αj . If i ∈ T ,267

then we are done. Otherwise, since T is maximal, there is some i′ ∈ T and some client k ∈ P268

such that βi′k, βik > 0. Notice that αj ≥ αk, since αj grows at least until the time point when269

i joins F , and αk grows until at most this time point. Therefore, fB(cik), fB(ci′k) ≤ αk ≤ αj .270

We have ci′j ≤ ci′k + cik + cij . Now, by Claim 3, we have f3B(ci′j) ≤ f3B(ci′k + cik + cij) =271

3fB((ci′k + cik + cij)/3) ≤ 3 max(fB(cik), fB(ci′k), fB(cij)) ≤ 3αj . J272

Using standard arguments, by performing binary search on λ, we can achieve one of the273

following two outcomes.274

(a) Obtain some λ such that the above algorithm returns a solution T with |T | = k: in this275

case, Theorem 6 implies that
∑
j f3B(ci(j)j) ≤ 3OPT , and Claim 2 then implies that the276

cost(`; .)-cost of our solution is at most 3OPT + 3B ≤ 6B.277

(b) Obtain λ1 < λ2 with λ2 − λ1 <
εB
n such that letting T1 and T2 be the solutions returned278

for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|. We describe below the procedure for279

extracting a low-cost feasible solution from T1 and T2, and analyze it, which will complete280

the proof of Theorem 4.281

Extracting a feasible solution from T1 and T2 in outcome (b). Let a, b ≥ 0 be such282

that ak1 + bk2 = k, a + b = 1. Thus, a convex combination of T1 and T2, called a bipoint283

solution, yields a feasible fractional solution and our task is to round this into a feasible284

solution. Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2 respectively.285

Let i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let286

d1,j = f3B(ci1(j)j) and d2,j = f3B(ci2(j)j). Let C1 :=
∑
j d1,j and C2 :=

∑
j d2,j . Then,287

aC1 + bC2 ≤ 3a
(∑

j

α1,j − k1λ1

)
+ 3b

(∑
j

α2,j − k2λ2

)
≤ 3a

(∑
j

α1,j − kλ2

)
+ 3b

(∑
j

α2,j − kλ2

)
+ 3ak1(λ2 − λ1) ≤ 3OPT + 3εB288

where the last inequality follows since (α1, β1, λ2), (α2, β2, λ2) are feasible solutions to (DB). If289

b ≥ 0.5, then T2 yields a feasible solution of cost(`; .)-cost at most C2 +3B ≤ 6OPT +(3+ε)B.290

So suppose a ≥ 0.5. The procedure for rounding the bipoint solution is as follows.291

B1. Clustering. We first match facilities in T2 with a subset of facilities in T1 as follows.292

Initialize D′ ← D, A ← ∅, and M ← ∅. While D′ 6= ∅, we repeatedly pick the client293

j ∈ D′ with minimum d1,j +d2,j value, and add j to A. We add the tuple (i1(j), i2(j)) to294

M , remove from D′ all clients k (including j) such that i1(k) = i1(j) or i2(k) = i2(j), and295

set σ(k) = j for all such clients. Let M1 = M denote the matching when D′ = ∅. Next,296

for each unmatched i ∈ T2, we pick an arbitrary unmatched facility i′ ∈ T1, and add (i′, i)297

to M . Let F1 be the set of T1-facilities that are matched, and S := {j ∈ D : i1(j) ∈ F1}.298

Note that |F1| = |M | = k2.299
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B2. Opening facilities. We will open k2 facilities at locations in A∪M , and k−k2 facilities300

from T1 \ F1. We solve the following LP to determine how to do this. Variables zi for301

every i ∈ T1 \ F1 indicate if we open facility i; variable θ indicates if we give preference302

to F1 (i.e., the T1-facilities in M), or the facilities in T2 (which are always matched).303

min
∑
j∈S

(
θd1,j+(1−θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k+(1−zi1(k))(d2,k+d1,σ(k)+d2,σ(k))

)
(R-P)304

305 s.t.
∑

i∈T1\F1

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F1.306

The above LP is integral. Given an integral optimal solution (θ̃, z̃) to (R-P), we open307

facilities as follows. We open the facilities in T1 \ F1 specified by the z̃i variables that308

are 1. If θ̃ = 1, we open all the T1-facilities in M \M1, and if θ̃ = 0, we open all the309

T2-facilities in M \M1. For some clients j ∈ A, we may open a facility at j (instead of310

at i1(j) or i2(j)). For every j ∈ A, if θ̃d1,j + (1− θ̃)d2,j = 0, then we open a facility at311

j; otherwise, we open a facility at i1(j) if θ̃ = 1 and at i2(j) if θ̃ = 0.312

Analysis. It suffices to show that (R-P) has a fractional solution of small objective value,313

and that the integral optimal solution (θ̃, z̃) yields a feasible solution to our problem whose314

cost(`; .)-cost is comparable to the objective value of (θ̃, z̃) in (R-P).315

For the former, we argue that setting θ = a, zi = a for all i ∈ T1 \ F1 yields a feasible316

solution of objective value at most 2(aC1 + bC2). We have
∑
i∈T1\F1

zi = a(k1−k2) = k−k2.317

Every j ∈ S contributes ad1,j + bd2,j to the objective value of (R-P), which is also its318

contribution to aC1 + bC2. Consider k /∈ S with σ(k) = j, so d1,j + d2,j ≤ d1,k + d2,k. Its319

contribution to the objective value of (R-P) is ad1,k+b(d2,k+d1,j+d2,j) ≤ (a+b)d1,k+2bd2,k,320

which is at most twice its contribution to aC1 + bC2.321

For the latter, we first show that every k ∈ S has assignment cost at most θ̃d1,k + (1−322

θ̃)d2,k + 6B/`. If a facility is opened in {k, i1(k), i2(k)}, then this clearly holds. Otherwise,323

it must be that k /∈ A. Let i = i1(k) if θ̃ = 1, and i2(k) if θ̃ = 0. Since i is not open, it must324

be that i belongs to a tuple (i1(j), i2(j)) of M . Then, j ∈ A, and a facility is opened at j.325

we have that ci,k ≤ θ̃d1,k + (1− θ̃)d2,k + 3B/` and ci,j ≤ 3B/`. The last inequality follows326

since the fact that none of i1(j), i2(j) is open implies that θ̃d1,j + (1− θ̃)d2,j = 0.327

Now consider k /∈ S with σ(k) = j. If z̃i1(k) = 1, it’s assignment cost is at most328

d1,k + 3B/`. Otherwise, a facility is opened in {j, i1(j), i2(j)}. If a facility is opened in329

{j, i2(j)}, then k’s assignment cost is at most ci2(k)k + ci2(j)j ≤ d2,k + d1,j + d2,j + 6B/`.330

Otherwise, it must be that θ̃ = 1 and d1,j = ci1(j)j > 3B/`; in this case, k’ assignment331

cost is at most ci2(k)k + ci2(j)j + ci1(j)j ≤ (d2,k + 3B/`) + (d2,j + 3B/`) + d1,j . Thus, the332

cost(`; .)-cost of our solution is at most the objective value of (θ̃, z̃) + 6B, which is at most333

2(aC1 + bC2) + 6B ≤ 6OPT + (6 + 3ε)B ≤
(
12 +O(ε)

)
B. This completes the proof.334

3 The general weighted case335

We now consider the general setting, where we have n = |D| non-increasing nonnegative336

weights w1 ≥ . . . ≥ wn ≥ 0, and the goal is to open k centers from D and assign each client337

j ∈ D to a center i(j) ∈ F , so as to minimize cost
(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

∑n
j=1 wj~c

↓
j .338

By combining the ideas in Section 2 with an enumeration procedure due to Aouad and339

Segev in [2], we obtain the following result.340

I Theorem 7. We can obtain an
(
18 +O(ε)

)
-approximation algorithm for ordered k-median341

that runs in time poly
(
(nε )1/ε).342
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As before, we define suitable proxy costs analogous to the fB(cij)s for the setting with343

general weights. By defining these appropriately, it will be easy to argue that the primal-dual344

algorithm and its analysis extend to the setting with general weights, since essentially the only345

property that we use about {fB(cij)} costs in Section 2 is that they satisfy Claim 3. Instead346

of creating two distance buckets in the {0, 1} weighted case (cij ≥ B/` and cij < B/`), with347

weight multipliers 1 and 0, we now create O
(
log1+ε(nε )

)
buckets and utilize an enumeration348

idea due to Aouad and Segev [2]. In Section 3.1, we describe this enumeration procedure using349

our notation, and restate the main claims in [2] in a simplified form. Next, in Section 3.2,350

we discuss how to adapt the ideas in Section 2 to the k-median problem for the proxy costs351

(given by (7)) that we obtain from Section 3.1. At the end of this section, we combine this352

ingredients to prove Theorem 7.353

3.1 Proxy costs and the enumeration idea of [2]354

Throughout, let ~o↓ denote the assignment-cost vector corresponding to an optimal solution,355

whose coordinates are sorted in non-increasing order. So the optimal cost opt is
∑n
i=1 wi~o

↓
i .356

By a standard argument, we can perturb w to eliminate very small weights wi: for i ∈ [n],357

set w̃i = wi if wi ≥ εw1
n , and w̃i = 0 otherwise.358

I Claim 8. For any vector v ∈ Rn+, we have (1− ε)cost(w; v) ≤ cost(w̃; v) ≤ cost(w; v).359

Proof. Since w̃i ≤ wi for all i ∈ [n], the upper bound on cost(w̃; v) is immediate. We have

cost(w̃; v) =
n∑
i=1

w̃iv
↓
i = cost(w; v)−

∑
i∈[n]:wi<εw1/n

wiv
↓
i ≥ cost(w; v)− εw1

n · nv
↓
1 . J

In the sequel, we always work with the w̃-weights. We guess an estimate M of ~o↓1 , and360

group distances in the range
[
εM
n ,M

]
(roughly speaking) by powers of (1 + ε). Let T be361

the largest integer such that εMn (1+ε)T ≤M . For r = 0, . . . , T , we define the distance interval362

Ir :=
[
εM
n (1+ε)T−r, εMn (1+ε)T−r+1). There are at most 1 + log1+ε

(
n
ε

)
= O

( 1
ε log n

ε

)
intervals.363

Finally, we guess a non-increasing vector west
0 ≥ west

1 ≥ . . . ≥ west
T , where the west

r s364

are powers of (1 + ε) in the range [ εw̃1
n , w̃1(1 + ε)). As argued in [2], there are only365

exp
(
O( 1

ε log(nε ))
)

= O
(
(nε )1/ε) choices for west := (west

0 , . . . , west
T ). The intention is for366

west
r to represent (within a (1 + ε)-factor) the average w̃-weight of the set {i ∈ [n] : ~o↓i ∈ Ir}.367

More precisely, we would like west
r to estimate the following quantity, for all r ∈ {0, . . . , T}.368

wavg
r :=


(∑

i∈[n]:~o↓
i
∈Ir

w̃i
)
/|{i ∈ [n] : ~o↓i ∈ Ir}| if {i ∈ [n] : ~o↓i ∈ Ir} 6= ∅;

min {w̃i : ~o↓i ∈
⋃
s<r Is} if

⋃
s<r Is 6= ∅;

w̃1 otherwise.
(6)369

The following claim will be useful.370

I Claim 9. For any r ∈ {0, . . . , T}, we have wavg
r ≥ max {w̃i : ~o↓i /∈

⋃
s≤r Is}.371

Proof. If wavg
r is defined by cases 1 or 2 of (6), then the inequality follows since for every372

i′ ∈
⋃
s≤r Ir and i /∈

⋃
s≤r Is, we have w̃i′ ≥ w̃i (since ~o↓i′ ≥ ~o

↓
i ). If wavg

r is defined by case 3373

of (6), then wavg
r = w̃1, and again, the inequality holds. J374
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Given M and the corresponding intervals I0, . . . , IT , and the vector west, we can now375

finally define our proxy costs as follows. For d ≥ 0 and γ ≥ 1, define376

gM,west(γ; d) =


w̃1(1 + ε)d if d/γ ≥ εM

n (1 + ε)T+1;
west
r d if d/γ ∈ Ir (where r ∈ {0, . . . , T})

0 if d/γ < εM
n .

(7)377

The above definition is essentially the scaled surrogate function in [2]. We abbreviate378

gM,west(1; d) to gM,west(d). The following two key lemmas are analogous to Claims 1 and 2,379

and show that for the right choice of M and west, evaluating the above proxy costs on an380

assignment-cost vector ~c yields a good estimate of the actual cost(w̃; .)-cost of ~c. Similar381

statements, albeit stated somewhat differently, are proved in [2].382

I Lemma 10 (adapted from [2]). Suppose M ≥ ~o↓1 and the west satisfies west
r ≤ (1 + ε)wavg

r383

for all r ∈ {0, . . . , T}. Then,
∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓).384

Proof. Since εM
n (1 + ε)T+1 > M ≥ ~o↓1 , there is no i such that ~o↓i ≥ εM

n (1 + ε)T+1. Fix385

r ∈ {0, . . . , T}, and consider all i ∈ [n] such that ~o↓i ∈ Ir. We have386 ∑
i∈[n]:~o↓

i
∈Ir

gM,west(~o↓i ) = west
r

∑
i∈[n]:~o↓

i
∈Ir

~o↓i ≤
εM

n
(1 + ε)T−r+1 · west

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
≤ (1 + ε) · εM

n
(1 + ε)T−r+1 · wavg

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
= (1 + ε) · εM

n
(1 + ε)T−r+1 ·

∑
i∈[n]:~o↓

i
∈Ir

w̃i ≤ (1 + ε)2
∑

i∈[n]:~o↓
i
∈Ir

w̃i~o
↓
i .387

It follows that
∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓). J388

I Lemma 11 (adapted from [2]). Let γ ≥ 1. LetM ≥ 0, and suppose west satisfies wavg
r ≤ west

r389

for all r ∈ {0, . . . , T}. Let ~c be an assignment-cost vector. Then, we have the upper bound390

cost(w̃;~c) ≤
∑n
i=1 gM,west(γ;~ci) + γ(1 + ε)cost(w̃;~o↓) + γεw̃1M .391

Proof. We have cost(w̃;~c) =
∑n
i=1 w̃i~c

↓
i ≤

∑n
i=1 gM,west(γ;~ci)+

∑
i: w̃i~c

↓
i
>gM,west (γ;~c↓

i
) w̃i~c

↓
i .392

Consider some i ∈ [n] for which w̃i~c↓i > gM,west(γ;~c↓i ). It must be that ~c↓i /γ < εM
n (1 + ε)T+1

393

as otherwise (see (7)), we have gM,west(γ;~c↓i ) = (1 + ε)w̃1~c
↓
i > w̃i~c

↓
i . If gM,west(γ;~c↓i ) = 0,394

then we have w̃i~c↓i /γ < w̃i · εMn ≤ w̃1 · εMn .395

Otherwise, we claim that ~c↓i /γ ≤ (1 + ε)~o↓i . Suppose not. Suppose ~c↓i /γ ∈ Ir, where396

r ∈ {0, . . . , T}. Since ~c↓
i
/γ

~o↓
i

> (1 + ε), we have that ~o↓i /∈
⋃
s≤r Is. So by Claim 9, we397

have wavg
r ≥ w̃i. Hence, gM,west(γ;~c↓i ) = west

r ~c
↓
i ≥ wavg

r ~c↓i ≥ w̃i~c
↓
i , which contradicts our398

assumption that w̃i~c↓i > gM,west(γ;~c↓i ).399

Putting everything together, we have that
∑
i:w̃i~c

↓
i
>gM,west (γ;~c↓

i
) w̃i~c

↓
i ≤ nγw̃1 · εMn + γ(1 +400

ε)
∑
i∈[n] w̃i~o

↓
i , which proves the lemma. J401

Finally, we show that gM,west satisfies the analogue of Claim 3, which will be crucial in402

arguing that our algorithms and analysis from Section 4 carry over and allow us to solve, in403

an approximate sense, the k-median problem with the {gM,west(cij)} proxy costs.404

I Lemma 12. For any γ ≥ 1, M ≥ 0, and west, we have: (i) gM,west(γ;x) ≤ gM,west(γ; y)405

if x ≤ y; and (ii) 3 max{gM,west(γ;x), gM,west(γ; y), gM,west(γ; z)} ≥ gM,west(3γ;x+ y + z) for406

any x, y, z ≥ 0.407
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3.2 Solving the k-median problem with the
{
gM,west(cij)

}
proxy costs408

We now work with a fixed guess M , west, and give an algorithm for finding a near-optimal409

k-median solution with the {gM,west(cij)} proxy costs. Our algorithm and analysis will be410

quite similar to the one in Section 4. The primal and dual LPs we consider are the same as411

(PB) and (DB), except that we replace all occurrences of fB(cij) and fB(cij) with gM,west(cij).412

Let OPTM,west denote the optimal value of this LP.413

The primal-dual algorithm for a given center-cost λ (steps P1–P3 in Section 4) is414

unchanged. The analysis also is essentially identical, since, previously, we only relied on415

the fact that the proxy costs satisfy an approximate triangle inequality, which is also true416

here (Lemma 12). We state below the guarantee from the primal-dual algorithm slightly417

differently, in the form suggested by part (ii) of Lemma 12; the proof mimics the proof of418

Theorem 6.419

I Theorem 13. For any λ ≥ 0, the primal-dual algorithm (P1)–(P3) returns a set T of420

centers, an assignment i(j) ∈ T for every j ∈ D, and a dual feasible solution (α, β, λ) such421

that 3λ|T |+
∑
j gM,west(3; ci(j)j) ≤ 3

∑
j αj.422

Given Theorem 13, we can use binary search on λ, to either obtain: (a) some λ such for423

which we return a solution T with |T | = k; or (b) λ1 < λ2 with λ2 − λ1 <
εw̃1M
n such that424

letting T1 and T2 be the solutions returned for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|.425

In case (a), Theorem 13 implies that
∑
j gM,west(3; ci(j)j) ≤ 3OPTM,west . In case (b), we426

again extract a low-cost feasible solution from T1 and T2 by rounding the bipoint solution427

given by their convex combination. As before, a, b ≥ 0 be such that ak1 + bk2 = k, a+ b = 1.428

Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2 respectively. Let429

i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let430

d1,j = gM,west(3; ci1(j)j) and d2,j = gM,west(3; ci2(j)j). Let C1 :=
∑
j d1,j and C2 :=

∑
j d2,j .431

Similar to before, we have aC1 + bC2 ≤ 3OPTM,west + 3εw̃1M . The procedure for rounding432

this bipoint solution requires only minor changes to steps B1, B2 in Section 4.433

Rounding the bipoint solution. If b ≥ 1/3, then T2 yields a feasible solution with434 ∑
j gM,west(3; ci2(j)j) = C2 ≤ 9OPTM,west + 9εw̃1M . So suppose a ≥ 2/3.435

G1. Clustering. We match facilities in T2 with a subset of facilities in T1 as follows. Initialize436

D′ ← D, A ← ∅, and M ← ∅. We repeatedly pick the client j ∈ D′ with minimum437

max{d1,j , d2,j} value, and add j to A. (This is the only change, compared to step438

B1.) We add the tuple (i1(j), i2(j)) toM , remove from D′ all clients k (including j) such439

that i1(k) = i1(j) or i2(k) = i2(j), and set σ(k) = j for all such clients. Let M1 = M440

denote the matching when D′ = ∅. Next, for each unmatched i ∈ T2, we pick an arbitrary441

unmatched facility i′ ∈ T1, and add (i′, i) to M . Let F1 be the set of T1-facilities that442

are matched, and S := {j ∈ D : i1(j) ∈ F1}. Note that |F1| = |M | = k2.443

G2. Opening facilities. This is almost identical to step B2, except that we decide which444

facilities to open by now solving the following LP.445

min
∑
j∈S

(
θd1,j+(1−θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k+(1−zi1(k)) ·3 max{d1,k, d2,k}

)
(GR-P)446

447 s.t.
∑

i∈T1\F

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F.448

Let (θ̃, z̃) be an optimal integral solution to (GR-P). If θ̃ = 1, we open all facilities in449

F1, and otherwise, all facilities in T2. We also open the facilities from T1 \ F1 for which450

z̃i = 1.451
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To analyze this, we first show that setting θ = a, zi = a for all i ∈ T1 \ F1 yields a
feasible solution to (GR-P) of objective value at most 3(aC1 + bC2). We have

∑
i∈T1\F1

zi =
a(k1 − k2) = k − k2. Every j ∈ S contributes ad1,j + bd2,j to the objective value of (GR-P).
Consider k /∈ S. Its contribution to the objective value of (GR-P) is

ad1,k + 3bmax{d1,k, d2,k} = max{(a+ 3b)d1,k, ad1,k + 3bd2,k} ≤ 3(ad1,k + bd2,k)

where the inequality follows since a + 3b ≤ 3a when a ≥ 2/3. Thus, for every j ∈ D, its452

contribution to the objective value of (GR-P) is at most thrice its contribution to aC1 + bC2.453

Suppose ~c is the assignment-cost vector resulting from (θ̃, z̃). We show that
∑
j gM,west(9;~cj)454

is at most the objective value of (θ̃, z̃) under (GR-P). For every k ∈ S, we have gM,west(9;~ck) ≤455

gM,west(3;~ck) ≤ θ̃d1,k + (1− θ̃)d2,k. Now consider k /∈ S with σ(k) = j, so max{d1,j , d2,j} ≤456

max{d1,k, d2,k}. If z̃i1(k) = 1, then gM,west(9;~ck) ≤ gM,west(3;~ck) ≤ d1,k. Otherwise,457

~ck ≤ ci2(k)k + ci1(j)j + ci2(j)j , and so by Lemma 12, we have458

gM,west(9;~ck) ≤ gM,west(9; ci2(k)k + ci1(j)j + ci2(j)j)
≤ 3 max{gM,west(3; ci2(k)), gM,west(3; ci1(j)j), gM,west(3; ci2(j)j)} ≤ 3 max{d1,k, d2,k}.459

So in every case, gM,west(9;~ck) is bounded by the contribution of k to the objective value of460

(θ̃, z̃). Thus, we have proved the following theorem.461

I Theorem 14. For any M ≥ 0, west, we can obtain a solution opening k centers whose462

assignment-cost vector ~c satisfies
∑
j gM,west(9;~cj) ≤ 9OPTM,west + 9εw̃1M .463

Proof of Theorem 7. The proof follows by combining Theorem 14, Lemmas 10 and 11, and464

Claim 8. Recall that ~o↓ is the assignment-cost vector corresponding to an optimal solution465

with coordinates sorted in non-increasing order, and opt =
∑n
i=1 wi~o

↓
i is the optimal cost.466

There are only n2 choices forM , and O
(
(nε )1/ε) choices for west, so we may assume that in467

polynomial time, we have obtained M = ~o↓1 , and west
r s satisfying wavg

r ≤ west
r ≤ (1+ ε)wavg

r for468

all r ∈ {0, . . . , T}. By Lemma 10, we know that OPTM,west ≤ (1+ε)2cost(w̃;~o↓) ≤ (1+ε)2opt.469

Let ~c be the assignment-cost vector of the solution returned by Theorem 14 for this M , west.470

Combining Theorem 14, Lemma 11, and Claim 8, we obtain that471

(1− ε)cost(w;~c) ≤ cost(w̃;~c) ≤
(
9OPTM,west + 9εw̃1M

)
+ 9(1 + ε)cost(w̃;~o↓) + 9εw̃1M

≤ 9(1 + ε)2opt + 9opt +O(ε)opt =
(
18 +O(ε)

)
opt.472

4 Conclusions and discussion473

We have described algorithms achieving approximation guarantees of 12 + ε and 18 + ε for474

the `-centrum and ordered k-median problems. Our algorithms are combinatorial, utilizing475

the primal-dual schema and Lagrangian relaxation, and improve upon the algorithms in [3],476

both in terms of approximation factors and simplicity of analysis.477

One interesting research direction suggested by our work is to investigate the ordered-478

median and `-centrum (i.e., ordered median with {0, 1}-weights) versions of other optimization479

problems. In further work, we have been able to develop a general framework for devising480

algorithms for ordered-median problems. Our framework also yields improved guarantees481

for the `-centrum and ordered k-median problems studied here. We obtain analogous482

improvements for ordered k-median. We defer details to a forthcoming manuscript.483
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