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Abstract

We consider a generalization of k-median and k-center, called the ordered k-median problem. In
this problem, we are given a metric space (D, {cij}) with n = |D| points, and a non-increasing weight
vector w ∈ Rn

+, and the goal is to open k centers and assign each point each point j ∈ D to a center
so as to minimize w1 · (largest assignment cost) + w2 · (second-largest assignment cost) + . . . + wn ·
(n-th largest assignment cost). We give an (18 + ε)-approximation algorithm for this problem. Our
algorithms utilize Lagrangian relaxation and the primal-dual schema, combined with an enumeration
procedure of Aouad and Segev. For the special case of {0, 1}-weights, which models the problem of
minimizing the ` largest assignment costs that is interesting in and of by itself, we provide a novel re-
duction to the (standard) k-median problem, showing that LP-relative guarantees for k-median translate
to guarantees for the ordered k-median problem; this yields a nice and clean (8.5 + ε)-approximation
algorithm for {0, 1} weights.

1 Introduction

We consider the following common generalization of k-median and k-center, which has been referred to
as the ordered k-median problem [9]. We are given a metric space (D, {cij}i,j∈D), and an integer k ≥ 0.
We will often refer to points in D as clients. We are also given non-increasing nonnegative weights w1 ≥
w2 ≥ . . . ≥ wn ≥ 0, where n = |D|. For a vector v ∈ RD, we use v ↓ to denote the vector v with
coordinates sorted in non-increasing order. That is, we have v ↓i = vσ(i), where σ is a permutation of D such
that vσ(1) ≥ vσ(2) ≥ . . . vσ(n). The goal in the ordered k-median problem is to choose a set F of k points
from D as centers (or “facilities”), and assign each client j ∈ D to a center i(j) ∈ F , so as to minimize

cost
(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

n∑
j=1

wj~c
↓
j .

Observe that we may assume that, without loss of generality, each client j is assigned to the center i(j) in F
that is nearest to it. We may assume that |D| > k, otherwise the problem becomes trivial. It will be useful
to notice that, equivalently, we have

cost(w;~c) = max
permutations π of D

n∑
i=1

wi~cπ(i)

which shows that cost(w;x) is a convex function of x, and in fact a seminorm on RD.
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Observe that setting w1 = 1 = w2 = . . . = wn yields the k-median problem; on the other hand, by
setting w1 = 1, w2 = 0 = w3 = . . . = wn, we obtain the k-center problem. Thus, the ordered k-median
problem nicely interpolates between the k-median and k-center problems. In particular, an interesting case
is the setting with {0, 1} weights, which means that for some ` ∈ [n], we have w1 = . . . = w` = 1, and
w`+1 = 0 = . . . = wn; this captures the problem of minimizing the ` largest assignment costs, which
Tamir [10] calls the `-centrum problem.

While the special cases of k-median and k-center have been considered extensively from the viewpoint
of developing approximation algorithms, much less is known about the approximability of the ordered k-
median problem, especially in general metrics. Aouad and Segev [2] obtained a logarithmic-approximation
ratio for general metrics, and Alamdari and Shmoys [1] obtain a bicriteria approximation for the special
case, wherew is a convex combination of (1, 0, . . . , 0) and

(
1
n ,

1
n , . . . ,

1
n

)
. For other work related to location

theory and ordered-median models, we refer the reader to [8, 7].
In our work, we develop an (18 + ε)-approximation algorithm for the ordered k-median problem. In

Section 2, we first develop constant-factor approximation algorithms for the case of {0, 1}-weights, which
introduces many of the ideas needed to handle the general setting. In Section 3, we generalize these ideas to
obtain constant-factor approximation algorithms for the ordered k-median problem with general weights.

1.1 Relationship with the work of Byrka et al. [3]

Very recently, we learnt that Byrka et al. [3] have also obtained an O(1)-approximation guarantee (equal to
38+ε) for the ordered k-median problem. Our work was done independently and concurrently. In particular,
our results for {0, 1} weights were obtained independently. We use somewhat different techniques, and
obtain an approximation factor that is better than the one obtained in [3] (for {0, 1} weights) via a simpler
algorithm and analysis.

But we would like to make it clear that it was after we learnt of the work of [3] that we realized that
our results can be extended to the general weighted setting. Again, our algorithms and analyses here utilize
somewhat different techniques.

2 The setting with {0, 1}-weights

We first consider the setting with {0, 1} weights. Let ` ∈ [n] be such w1 = . . . = w` = 1, w`+1 = 0 =
. . . = wn. We abbreviate cost(w;~c) to cost(`;~c), or simply cost(~c). The {0, 1}-weight setting serves as
a natural starting point for two reasons. First, the problem of minimizing the ` most expensive assignment
costs is a natural, well-motivated problem that is interesting in its own right. Second, the study of the {0, 1}-
case serves to introduce some of the key underlying ideas that are also used to handle the general setting.
Notice also that a non-decreasing weight vector w can be written as a nonnegative linear-combination of
such {0, 1} weight vectors.

The natural LP-relaxation for this `-centrum problem is to augment the natural LP-relaxation for k-
median by introducing a new variable λ to denote the objective value and impose constraints enforcing that
the total assignment cost of any set of ` clients is at most λ. One can show however that this natural LP has
an Ω(`) integrality gap.

Our constant-factor approximation algorithm is based on an alternate novel LP-relaxation of the prob-
lem. Our relaxation is based on the following key insight. Suppose there is a solution of objective value
B, and we aim to find a solution of objective value O(B). Then, it suffices to find a solution where the
total assignment cost of clients having assignment cost larger than B/` is O(B): the remaining clients can
contribute an additional cost of at most B, since at most ` such clients count towards the objective value of
our solution. Thus, instead of bounding the cost of every set of ` clients, our LP seeks to minimize the total
assignment cost of clients having assignment cost larger than B/`.
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More precisely, given a “guess” B of the optimal value, we consider the following LP. For d ≥ 0, define
fB(d) = d if d > B/`, and 0 otherwise. Throughout, i and j index points of D.

min
∑
j

∑
i

fB(cij)xij (PB)

s.t.
∑
i

xij ≥ 1 ∀j (1)

0 ≤ xij ≤ yi ∀i, j (2)∑
i

yi ≤ k. (3)

Variable yi indicates if facility i is open (i.e., i is chosen as a center), and xij indicates if client j is assigned
to facility i. The first two constraints say that each client must be assigned to an open facility, and the third
constraint encodes that at most k centers may be chosen.

An atypical aspect of our relaxation is that, while an integer solution corresponds to a solution to our
problem, its objective value under (PB) may underestimate the actual objective value; however, as alluded to
above, the objective value of (PB) is within an additive B of the actual objective value. Let OPTB denote
the optimal value of (PB), and opt denote the optimal value of the `-centrum problem.

Claim 2.1. If B ≥ opt , then OPTB ≤ opt ≤ B.

Proof. Let (x̃, ỹ) be the integer point corresponding to an optimal solution. It is clear that (x̃, ỹ) is feasible
to (PB). Also, there can be at most ` assignment costs that are larger than opt/`, and hence at most `
assignment costs are larger than B/`. Therefore, the objective value of (x̃, ỹ) is at most opt .

Claim 2.2. Let ~c be an assignment-cost vector (where ~cj is the assignment cost of j). Then, cost(`;~c) ≤∑
j fB(~cj) +B.

Proof. For any client j for which ~cj is counted towards cost(`;~c) but fB(~cj) = 0, we have ~cj ≤ B/`; there
can be at most ` such clients, so the statement follows.

The following claim shows that the weighted distances {fB(cij)} satisfy an approximate form of triangle
inequality.

Claim 2.3. For any B ≥ 0, we have: (i) fB(x) ≤ fB(y) if x ≤ y; (ii) max{fB(x), fB(y), fB(z)} ≥
fB
(x+y+z

3

)
for any x, y, z ≥ 0; and (iii) 3fB(x/3) = f3B(x) for any x ≥ 0.

Using binary search, we can find, within a (1 + ε)-factor, the smallest B such that OPTB ≤ B. Let B
be this B. (Alternatively, we may enumerate all possible choices for opt in powers of (1 + ε), and return
the best solution among the solutions found for each B.) By Claim 2.1, we have that B ≤ (1 + ε)opt .

While (PB) closely resembles the LP-relaxation for k-median, notice that the assignment costs {fB(cij)}
used in the objective of (PB) do not form a metric. Despite this complication, we show that (PB) can be
leveraged to obtain a solution of (actual, cost(`; .)-) cost O(B). We describe two ways of obtaining such
a guarantee, both of which are obtained via simple procedures and a clean analysis. The first is a primal-
dual based algorithm based on the Jain-Vazirani (JV) template [6]. We Lagrangify (3) and move to the
facility-location version where we may choose any number of centers but incur a fixed cost of (say) λ for
each center we choose. By fine-tuning λ, we can find two solutions, one opening less than k centers, and
the other opening more than k centers; rounding a convex combination of these solutions yields the final
solution. This yields a 12-approximation algorithm. The second algorithm is based on LP-rounding, and
shows that any α-approximation algorithm for k-median whose guarantee is with respect to the natural LP
for k-median, can be used to obtain a solution of cost at most 2(α+ 1)B.
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Theorem 2.4. We can obtain a solution to the `-centrum problem of cost at most
(
12 + O(ε)

)
· B ≤(

12 +O(ε)
)
opt .

Theorem 2.5. Let (kmed-P) denote the k-median LP: min
{∑

j,i cijxij : (1)–(3)
}

. Let A be an α-
approximation algorithm for k-median whose approximation guarantee is proved relative to (kmed-P). We
can obtain a solution to the `-centrum problem of cost at most 2(α + 1)B. Thus, taking A to be the 3.25-
approximation algorithm in [5], we obtain an (8.5+ε)-approximation algorithm for the `-centrum problem.

In our algorithms and analysis, we have chosen to keep the exposition simple and not sought to overly
optimize the constants. Although Theorem 2.4 yields a worse approximation guarantee, the underlying
primal-dual algorithm and analysis are quite versatile and extend fairly easily to the setting with general
weights. The remainder of this section is devoted to proving Theorem 2.4. We defer the proof of Theo-
rem 2.5 to Appendix A.

2.1 Proof of Theorem 2.4

As noted earlier, the proof relies on the primal-dual method. The dual of (PB) is as follows.

max
∑
j

αj − k · λ (DB)

s.t. αj ≤ fB(cij) + βij ∀i, j (4)∑
j

βij ≤ λ ∀i (5)

α, λ ≥ 0.

Let OPT := OPTB denote the optimal value of (PB). We first fix λ and construct a solution that may open
more than k centers but will have some near-optimality properties (see Theorem 2.6) as follows.

P1. Dual-ascent. Initialize D′ = D, αj = βij = 0 for all i, j ∈ D, F = ∅. The clients in D′ are called
active clients. If αj ≥ fB(cij), we say that j reaches i. (So if cij ≤ B/`, then j reaches i from the very
beginning.)

We repeat the following until all clients become inactive. Uniformly raise the αjs of all active clients,
and the βijs for (i, j) such that i /∈ F , j is active, and can reach i until one of the following events
happen.

• Some client j ∈ D reaches some i (and previously could not reach i): if i ∈ F , we freeze j, and
remove j from D′.
• Constraint (5) becomes tight for some i /∈ F : we add i to F ; for every j ∈ D′ that can reach i, we

freeze j and remove j from D′.
P2. Pruning. Pick a maximal subset T of F with the following property: for every j ∈ D, there is at most

one i ∈ T such that βij > 0.

P3. Return T as the set of centers, and assign every j to the nearest point in T , which we denote by i(j).

Let S = {j : ∃i ∈ T s.t. βij > 0}.

Theorem 2.6. The solution computed above satisfies 3λ|T | +
∑

j∈S fB(ci(j)j) +
∑

j /∈S f3B(ci(j)j) ≤
3
∑

j αj .

Proof. The proof resembles the analysis of the JV primal-dual algorithm for facility location, but the subtlety
is that we need to deal with the complication that the {fB(cij)}i,j∈D “distances” do not form a metric.
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Observe that for every i ∈ T , every client j ∈ S for which βij > 0 satisfies i(j) = i. So we have∑
j∈S

3αj ≥
∑
j∈S

(
3βi(j)j + fB(ci(j)j)

)
= 3λ|T |+

∑
j∈S

fB(ci(j)j).

We show that for each client j /∈ S, there is some i′′ ∈ T such that f3B(ci′′j) ≤ 3αj , which will complete
the proof. Let i ∈ F be the facility that caused j to freeze, so fB(cij) ≤ αj . If i ∈ T , then we are
done. Otherwise, since T is maximal, there is some i′ ∈ T and some client k ∈ S such that βi′k, βik > 0.
Notice that αj ≥ αk, since αj grows at least until the time point when i joins F , and αk grows until at
most this time point. Therefore, fB(cik), fB(ci′k) ≤ αk ≤ αj . So by Claim 2.3, we have f3B(ci′j) ≤
f3B(ci′k + cik + cij) ≤ 3αj .

At λ = 0, the above algorithm will open a center at every point inD, so open more than k centers. Using
standard arguments, by performing binary search on λ, we can achieve one of the following two outcomes.

(a) Obtain some λ such that the above algorithm returns a solution T with |T | = k: in this case, Theo-
rem 2.6 implies that

∑
j f3B(ci(j)j) ≤ 3OPT , and Claim 2.2 then implies that the cost(`; .)-cost of

our solution is at most 3OPT + 3B ≤ 6B.
(b) Obtain λ1 < λ2 with λ2 − λ1 < εB

n such that letting T1 and T2 be the solutions returned for λ1 and
λ2, we have k1 := |T1| > k > k2 := |T2|. We describe below the procedure for extracting a low-cost
feasible solution from T1 and T2, and analyze it, which will complete the proof of Theorem 2.4.

Extracting a feasible solution from T1 and T2 in outcome (b). Let a, b ≥ 0 be such that ak1 + bk2 = k,
a+ b = 1. Thus, a convex combination of T1 and T2 yields a feasible fractional solution that is sometimes
called a bipoint solution, and our task is to round this into a feasible solution. Let (α1, β1), (α2, β2) denote
the dual solutions obtained for λ1 and λ2 respectively. Let i1(j) and i2(j) denote the centers to which j is
assigned in T1 and T2 respectively. Let d1,j = f3B(ci1(j)j) and d2,j = f3B(ci2(j)j). Let C1 :=

∑
j d1,j and

C2 :=
∑

j d2,j . Then,

aC1 + bC2 ≤ 3a
(∑

j

α1,j − k1λ1
)

+ 3b
(∑

j

α2,j − k2λ2
)

≤ 3a
(∑

j

α1,j − kλ2
)

+ 3b
(∑

j

α2,j − kλ2
)

+ 3ak1(λ2 − λ1) ≤ 3OPT + 3εB

where the last inequality follows since (α1, β1, λ2), (α2, β2, λ2) are feasible solutions to (DB). If b ≥ 0.5,
then T2 yields a feasible solution of cost(`; .)-cost at most C2 + 3B ≤ 6OPT + (3 + ε)B. So suppose
a ≥ 0.5. The procedure for rounding the bipoint solution is as follows.

B1. Clustering. We first match facilities in T2 with a subset of facilities in T1 as follows. InitializeD′ ← D,
A ← ∅, and M ← ∅. We repeatedly pick the client j ∈ D′ with minimum d1,j + d2,j value, and add
j to A. We add the tuple (i1(j), i2(j)) to M , remove from D′ all clients k (including j) such that
i1(k) = i1(j) or i2(k) = i2(j), and set σ(k) = j for all such clients. Let M1 = M denote the
matching so far. Next, for each unmatched i ∈ T2, we pick an arbitrary unmatched facility i′ ∈ T1, and
add (i′, i) to M . Let F be the set of T1-facilities that are matched, and S := {j ∈ D : i1(j) ∈ F}.
Note that |F | = |M | = k2.

B2. Opening facilities. We will open either all facilities in F , or all facilities in T2 (which are always
matched). Additionally, we will open k − k2 facilities from T1 \ F . We formulate the following LP to
determine how to do this. Variable θ indicates if we open the facilities in F , and variables zi for every
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i ∈ T1 \ F indicate if we open facility i.

min
∑
j∈S

(
θd1,j + (1− θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k + (1− zi1(k))(d2,k + d1,σ(k) + d2,σ(k))

)
(R-P)

s.t.
∑

i∈T1\F

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F. (6)

The above LP is integral, and opening the facilities specified by an integral optimal solution (as dis-
cussed above) yields a solution of cost(`; .)-cost at most 15B. In Remark 2.7, we show that a slight
modification yields an improved cost(`; .)-cost of at most 12B.

Analysis. It suffices to show that (R-P) has a fractional solution of small objective value, and that any integral
solution yields a feasible solution to our problem whose cost(`; .)-cost is comparable to the objective value
of (R-P).

For the former, we argue that setting θ = a, zi = a for all i ∈ T1 \ F yields a feasible solution of
objective value at most 2(aC1 + bC2). We have

∑
i∈T1\F zi = a(k1 − k2) = k − k2. Every j ∈ S

contributes ad1,j+bd2,j to the objective value of (R-P), which is also its contribution to aC1+bC2. Consider
k /∈ S with σ(k) = j, so d1,j + d2,j ≤ d1,k + d2,k. Its contribution to the objective value of (R-P) is
ad1,k + b(d2,k + d1,j + d2,j) ≤ (a+ b)d1,k + 2bd2,k, which is at most twice its contribution to aC1 + bC2.

For the latter, suppose we have an integral solution (θ̃, z̃) to (R-P). For every k ∈ S, the assignment
cost is at most θ̃d1,k + (1 − θ̃)d2,k + 3B/`. Now consider k /∈ S with σ(k) = j. If z̃i1(k) = 1, it’s
assignment cost is at most d1,k + 3B`. Otherwise, it’s assignment cost is at most ci2(k)k + ci1(j)j + ci2(j)j ≤
d2,k+d1,j+d2,j+9B/`. Thus, the cost(`; .)-cost of our solution is at most the objective value of (θ̃, z̃)+9B,
which is at most 2(aC1 + bC2) + 9B ≤ 6OPT + (9 + 3ε)B ≤

(
15 +O(ε)

)
B.

Remark 2.7 (Improvement to the guarantee stated in Theorem 2.4). The following slightly modified way
of opening facilities given an integral optimal solution (θ̃, z̃) to (R-P) yields a solution of cost(`; .)-cost at
most 12B.

As before, we open the facilities in T1 \ F specified by the z̃i variables that are 1. If θ̃ = 1, we open all
the T1-facilities in M \M1, and if θ̃ = 0, we open all the T2-facilities in M \M1. For some clients j ∈ A,
we may now open a facility at j (instead of at i1(j) or i2(j)). For every j ∈ A, if θ̃d1,j + (1 − θ̃)d2,j = 0,
then we open a facility at j; otherwise, we proceed as before, and open a facility at i1(j) if θ̃ = 1 and at
i2(j) if θ̃ = 0.

To bound the cost, we first show that every k ∈ S has assignment cost at most θ̃d1,k+(1−θ̃)d2,k+6B/`.
If a facility is opened in {k, i1(k), i2(k)}, then this clearly holds. Otherwise, it must be that k /∈ A and
a facility is opened at j = σ(k); taking i = i1(k) if θ̃ = 1 and i2(k) if θ̃ = 0, we have that cik ≤
θ̃d1,k + (1− θ̃)d2,k + 3B/` and cij ≤ 3B/`.

Now consider k /∈ S with σ(k) = j. If z̃i1(k) = 1, it’s assignment cost is at most d1,k+3B`. Otherwise,
a facility is opened in {j, i1(j), i2(j)}. If a facility is opened in {j, i1(j)}, then k’s assignment cost is at most
ci2(k)k + ci2(j)j ≤ d2,k + d1,j + d2,j + 6B/`. Otherwise, it must be that θ̃ = 1 and d1,j = ci1(j)j > 3B/`;
in this case, k’ assignment cost is at most ci2(k)k + ci2(j)j + ci1(j)j ≤ (d2,k + 3B/`) + (d2,j + 3B/`) + d1,j .
Thus, the cost(`; .)-cost of our solution is at most the objective value of (θ̃, z̃) + 6B, which is at most
2(aC1 + bC2) + 6B ≤ 6OPT + (6 + 3ε)B ≤

(
12 +O(ε)

)
B. This concludes the proof of Theorem 2.4.

3 The general weighted case

We now consider the general setting, where we have n = |D| non-increasing nonnegative weights w1 ≥
w2 ≥ . . . ≥ wn ≥ 0, and the goal is to open k centers from D and assign each client j ∈ D to a center
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i(j) ∈ F , so as to minimize

cost
(
w;~c := {ci(j)j}j∈D

)
:= wT~c↓ =

n∑
j=1

wj~c
↓
j .

By combining the ideas in Section 2 with an enumeration procedure due to [2], we obtain the following
result.

Theorem 3.1. We can obtain an
(
18 + O(ε)

)
-approximation algorithm for ordered k-median that runs in

time poly
(
(nε )1/ε

)
.

The key again is to define suitable proxy costs analogous to the fB(cij)s for the setting with general
weights. By defining these appropriately, it will be easy to argue that the primal-dual algorithm and its
analysis extend to the setting with general weights, since essentially the only property that we use about
{fB(cij)} costs in Section 2 is that they satisfy Claim 2.3. A direct extension of fB(.), based on estimating
the optimal cost(w; .)-cost and defining suitable thresholds, does not yield anO(1)-approximation.1 Instead,
we utilize a clever enumeration idea due to Aouad and Segev [2].

In Section 3.1, we describe this enumeration procedure using our notation, and restate the main claims
in [2] in a simplified form. Next, in Section 3, we discuss how to adapt the ideas in Section 2.4 to the
k-median problem for the proxy costs (given by (8)) that we obtain from Section 3.1. At the end of this
section, we combine this ingredients to prove Theorem 3.1.

3.1 Proxy costs and the enumeration idea of [2]

Throughout, let ~o↓ denote the assignment-cost vector corresponding to an optimal solution, whose coordi-
nates are sorted in non-increasing order. So the optimal cost opt is

∑n
i=1wi~o

↓
i . By a standard argument,

we can perturb w to eliminate very small weights wi: for i ∈ [n], set w̃i = wi if wi ≥ εw1
n , and w̃i = 0

otherwise.

Claim 3.2. For any vector v ∈ Rn+, we have (1− ε)cost(w; v) ≤ cost(w̃; v) ≤ cost(w; v).

Proof. Since w̃i ≤ wi for all i ∈ [n], the upper bound on cost(w̃; v) is immediate. We have

cost(w̃; v) =
n∑
i=1

w̃iv
↓
i = cost(w; v)−

∑
i∈[n]:wi<εw1/n

wiv
↓
i ≥ cost(w; v)− εw1

n · nv
↓
1 .

In the sequel, we always work with the w̃-weights. We guess an estimate M of ~o↓1 , and group distances
in the range

[
εM
n ,M

]
(roughly speaking) by powers of (1 + ε). Let T be the largest integer such that

εM
n (1+ε)T ≤M . For r = 0, . . . , T , we define the distance interval Ir :=

(
εM
n (1+ε)T−r, εMn (1+ε)T−r+1

]
.

Note that there are at most 1 + log1+ε
(
n
ε

)
= O

(
1
ε log n

ε

)
intervals.

Finally, we guess a non-increasing vector west
0 ≥ west

1 ≥ . . . ≥ west
T , where the west

r s are powers of
(1 + ε) in the range [ εw̃1

n , w̃1(1 + ε)). As argued in [2], there are only exp
(
O(1ε log(nε ))

)
= O

(
(nε )1/ε

)
choices for west := (west

0 , . . . , west
T ). The intention is for west

r to represent (within a (1 + ε)-factor) the
average w̃-weight of the set {i ∈ [n] : ~o↓i ∈ Ir}. More precisely, we would like west

r to estimate the
following quantity, for all r ∈ {0, . . . , T}.

wavg
r :=


(∑

i∈[n]:~o↓i ∈Ir
w̃i
)
/|{i ∈ [n] : ~o↓i ∈ Ir}| if {i ∈ [n] : ~o↓i ∈ Ir} 6= ∅;

min {w̃i : ~o↓i ∈
⋃
s<r Is} if

⋃
s<r Is 6= ∅;

w̃1 otherwise.

(7)

1It does however lead to an O(logn)-approximation.
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The following claim will be useful.

Claim 3.3. For any r ∈ {0, . . . , T}, we have wavg
r ≥ max {w̃i : ~o↓i /∈

⋃
s≤r Is}.

Proof. If wavg
r is defined by cases 1 or 2 of (7), then the inequality follows since for every i′ ∈

⋃
s≤r Ir and

i /∈
⋃
s≤r Is, we have w̃i′ ≥ w̃i (since ~o↓i′ ≥ ~o↓i ). If wavg

r is defined by case 3 of (7), then wavg
r = w̃1, and

again, the inequality holds.

Given M and the corresponding intervals I0, . . . , IT , and the vector west, we can now finally define our
proxy costs as follows. For d ≥ 0 and γ ≥ 1, define

gM,west(γ; d) =


w̃1(1 + ε)d if d/γ > εM

n (1 + ε)T+1;

west
r d if d/γ ∈ Ir (where r ∈ {0, . . . , T})

0 if d/γ ≤ εM
n .

(8)

The above definition is essentially the scaled surrogate function in [2]. We abbreviate gM,west(1; d) to
gM,west(d). The following two key lemmas are analogous to Claims 2.1 and 2.2, and show that for the
right choice of M and west, evaluating the above proxy costs on an assignment-cost vector ~c yields a good
estimate of the actual cost(w̃; .)-cost of ~c. Similar statements, albeit stated somewhat differently, are proved
in [2].

Lemma 3.4 (adapted from [2]). Suppose M ≥ ~o↓1 and the west satisfies west
r ≤ (1 + ε)wavg

r for all r ∈
{0, . . . , T}. Then,

∑n
i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓).

Proof. Since M ≥ ~o↓1 , there is no i such that ~o↓i >
εM
n (1 + ε)T+1. Fix r ∈ {0, . . . , T}, and consider all

i ∈ [n] such that ~o↓i ∈ Ir. We have∑
i∈[n]:~o↓i ∈Ir

gM,west(~o↓i ) = west
r

∑
i∈[n]:~o↓i ∈Ir

~o↓i ≤
εM

n
(1 + ε)T−r+1 · west

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
≤ (1 + ε) · εM

n
(1 + ε)T−r+1 · wavg

r ·
∣∣{i ∈ [n] : ~o↓i ∈ Ir}

∣∣
= (1 + ε) · εM

n
(1 + ε)T−r+1 ·

∑
i∈[n]:~o↓i ∈Ir

w̃i ≤ (1 + ε)2
∑

i∈[n]:~o↓i ∈Ir

w̃i~o
↓
i .

It follows that
∑n

i=1 gM,west(~o↓i ) ≤ (1 + ε)2cost(w̃;~o↓).

Lemma 3.5 (adapted from [2]). Let γ ≥ 1. Let M ≥ 0, and suppose west satisfies wavg
r ≤ west

r for
all r ∈ {0, . . . , T}. Let ~c be an assignment-cost vector. Then, we have the upper bound cost(w̃;~c) ≤∑n

i=1 gM,west(γ;~ci) + γ(1 + ε)cost(w̃;~o↓) + γεw̃1M .

Proof. We have

cost(w̃;~c) =
n∑
i=1

w̃i~c
↓
i ≤

n∑
i=1

gM,west(γ;~ci) +
∑

i: w̃i~c
↓
i >gM,west (γ;~c

↓
i )

w̃i~c
↓
i .

Consider some i ∈ [n] for which w̃i~c
↓
i > gM,west(γ;~c↓i ). It must be that ~c↓i /γ ≤

εM
n (1 + ε)T+1 as

otherwise (see (8)), we have gM,west(γ;~c↓i ) = (1 + ε)w̃1~c
↓
i > w̃i~c

↓
i . If gM,west(γ;~c↓i ) = 0, then we have

w̃i~c
↓
i /γ ≤ w̃i ·

εM
n ≤ w̃1 · εMn .

8



Otherwise, we claim that ~c↓i /γ ≤ (1 + ε)~o↓i . Suppose not. Suppose ~c↓i /γ ∈ Ir, where r ∈ {0, . . . , T}.
Since ~c↓i /γ

~o↓i
> (1 + ε), we have that ~o↓i /∈

⋃
s≤r Is. So by Claim 3.3, we have wavg

r ≥ w̃i. Hence,

gM,west(γ;~c↓i ) = west
r ~c
↓
i ≥ w

avg
r ~c↓i ≥ w̃i~c

↓
i , which contradicts our assumption that w̃i~c

↓
i > gM,west(γ;~c↓i ).

Putting everything together, we have that
∑

i:w̃i~c
↓
i >gM,west (γ;~c

↓
i )
w̃i~c
↓
i ≤ nγw̃1· εMn +γ(1+ε)

∑
i∈[n] w̃i~o

↓
i ,

which proves the lemma.

Finally, we show that gM,west satisfies the analogue of Claim 2.3, which will be crucial in arguing that
our algorithms and analysis from Section 2.4 carry over and allow us to solve, in an approximate sense, the
k-median problem with the {gM,west(cij)} proxy costs.

Lemma 3.6. For any γ ≥ 1, M ≥ 0, and west, we have: (i) gM,west(γ;x) ≤ gM,west(γ; y) if x ≤ y; and
(ii) 3 max{gM,west(γ;x), gM,west(γ; y), gM,west(γ; z)} ≥ gM,west(3γ;x+ y + z) for any x, y, z ≥ 0.

Proof. Part (i) follows readily from the definition (8). Part (ii) follows from part (i) by noting that
gM,west(3γ;x+ y + z) = 3gM,west

(
γ; x+y+z3

)
.

3.2 Solving the k-median problem with the
{
gM,west(cij)

}
proxy costs

We now work with a fixed guess M , west, and give an algorithm for finding a near-optimal k-median
solution with the {gM,west(cij)} proxy costs. Our algorithm and analysis will be quite similar to the one in
Section 2.4. The primal and dual LPs we consider are the same as (PB) and (DB), except that we replace all
occurrences of fB(cij) and fB(cij) with gM,west(cij). Let OPTM,west denote the optimal value of this LP.

The primal-dual algorithm for a given center-cost λ (steps P1–P3 in Section 2.4) is unchanged. The
analysis also is essentially identical, since, previously, we only relied on the fact that the proxy costs satisfy
an approximate triangle inequality, which is also true here (Lemma 3.6). We state the guarantee from the
primal-dual algorithm slightly differently, in the form suggested by part (ii) of Lemma 3.6. The proof of the
following theorem simply mimics the proof of Theorem 2.6.

Theorem 3.7. For any λ ≥ 0, the primal-dual algorithm (P1)–(P3) returns a set T of centers, an assignment
i(j) ∈ T for every j ∈ D, and a dual feasible solution (α, β, λ) such that 3λ|T | +

∑
j gM,west(3; ci(j)j) ≤

3
∑

j αj .

Given Theorem 3.7, we can use binary search on λ, to either obtain: (a) some λ such for which we
return a solution T with |T | = k; or (b) λ1 < λ2 with λ2 − λ1 < εw̃1M

n such that letting T1 and T2 be the
solutions returned for λ1 and λ2, we have k1 := |T1| > k > k2 := |T2|. In case (a), Theorem 3.7 implies
that

∑
j gM,west(3; ci(j)j) ≤ 3OPTM,west . In case (b), we again extract a low-cost feasible solution from T1

and T2 by rounding the bipoint solution given by their convex combination. As before, a, b ≥ 0 be such
that ak1 + bk2 = k, a + b = 1. Let (α1, β1), (α2, β2) denote the dual solutions obtained for λ1 and λ2
respectively. Let i1(j) and i2(j) denote the centers to which j is assigned in T1 and T2 respectively. Let
d1,j = gM,west(3; ci1(j)j) and d2,j = gM,west(3; ci2(j)j). Let C1 :=

∑
j d1,j and C2 :=

∑
j d2,j . Similar to

before, we have aC1 + bC2 ≤ 3OPTM,west + 3εw̃1M . The procedure for rounding this bipoint solution
requires only minor changes to steps B1, B2 in Section 2.4, as we now describe.

Rounding the bipoint solution obtained from T1, T2. If b ≥ 1/3, then T2 yields a feasible solution with∑
j gM,west(3; ci2(j)j) = C2 ≤ 9OPTM,west + 9εw̃1M . So suppose a ≥ 2/3.

G1. Clustering. We match facilities in T2 with a subset of facilities in T1 as follows. Initialize D′ ← D,
A ← ∅, and M ← ∅. We repeatedly pick the client j ∈ D′ with minimum max{d1,j , d2,j} value, and
add j to A. (This is the only change, compared to step B1.) We add the tuple (i1(j), i2(j)) to M ,
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remove from D′ all clients k (including j) such that i1(k) = i1(j) or i2(k) = i2(j), and set σ(k) = j
for all such clients. Let M1 = M denote the matching so far. Next, for each unmatched i ∈ T2, we
pick an arbitrary unmatched facility i′ ∈ T1, and add (i′, i) to M . Let F be the set of T1-facilities that
are matched, and S := {j ∈ D : i1(j) ∈ F}. Note that |F | = |M | = k2.

G2. Opening facilities. This is almost identical to step B2, except that we decide which facilities to open
by now solving the following LP.

min
∑
j∈S

(
θd1,j + (1− θ)d2,j

)
+
∑
k/∈S

(
zi1(k)d1,k + (1− zi1(k)) · 3 max{d1,k, d2,k}

)
(GR-P)

s.t.
∑

i∈T1\F

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ T1 \ F.

Let (θ̃, z̃) be an optimal integral solution to (GR-P). As before, if θ̃ = 1, we open all facilities in F ,
and otherwise, all facilities in T2. We also the facilities from T1 \ F for which z̃i = 1.

To analyze this, we first show that setting θ = a, zi = a for all i ∈ T1 \ F yields a feasible solution to
(GR-P) of objective value at most 3(aC1 +bC2). We have

∑
i∈T1\F zi = a(k1−k2) = k−k2. Every j ∈ S

contributes ad1,j + bd2,j to the objective value of (GR-P). Consider k /∈ S. Its contribution to the objective
value of (GR-P) is

ad1,k + 3bmax{d1,k, d2,k} = max{(a+ 3b)d1,k, ad1,k + 3bd2,k} ≤ 3(ad1,k + bd2,k)

where the inequality follows since a + 3b ≤ 3a when a ≥ 2/3. Thus, for every j ∈ D, its contribution to
the objective value of (GR-P) is at most thrice its contribution to aC1 + bC2.

Suppose ~c is the assignment-cost vector resulting from (θ̃, z̃). We show that
∑

j gM,west(9;~cj) is at most
the objective value of (θ̃, z̃) under (GR-P). For every k ∈ S, we have gM,west(9;~ck) ≤ gM,west(3;~ck) ≤
θ̃d1,k + (1 − θ̃)d2,k. Now consider k /∈ S with σ(k) = j, so max{d1,j , d2,j} ≤ max{d1,k, d2,k}. If
z̃i1(k) = 1, then gM,west(9;~ck) ≤ gM,west(3;~ck) ≤ d1,k. Otherwise, ~ck ≤ ci2(k)k + ci1(j)j + ci2(j)j , and so
by Lemma 3.6, we have

gM,west(9;~ck) ≤ gM,west(9; ci2(k)k + ci1(j)j + ci2(j)j)

≤ 3 max{gM,west(3; ci2(k)), gM,west(3; ci1(j)j), gM,west(3; ci2(j)j)} ≤ 3 max{d1,k, d2,k}.

So in every case, gM,west(9;~ck) is bounded by the contribution of k to the objective value of (θ̃, z̃). Thus,
we have proved the following theorem.

Theorem 3.8. For any M ≥ 0, west, we can obtain a solution opening k centers whose assignment-cost
vector ~c satisfies

∑
j gM,west(9;~cj) ≤ 9OPTM,west + 9εw̃1M .

Proof of Theorem 3.1. The proof follows by combining Theorem 3.8, Lemmas 3.4 and 3.5, and Claim 3.2.
Recall that ~o↓ is the assignment-cost vector corresponding to an optimal solution with coordinates sorted

in non-increasing order, and opt =
∑n

i=1wi~o
↓
i is the optimal cost.

There are only n2 choices forM , andO
(
(nε )1/ε

)
choices for west, so we may assume that in polynomial

time, we have obtainedM = ~o↓1 , and west
r s satisfying wavg

r ≤ west
r ≤ (1+ε)wavg

r for all r ∈ {0, . . . , T}. By
Lemma 3.4, we know that OPTM,west ≤ (1 + ε)2cost(w̃;~o↓) ≤ (1 + ε)2opt . Let ~c be the assignment-cost
vector of the solution returned by Theorem 3.8 for this M , west. Combining Theorem 3.8, Lemma 3.5, and
Claim 3.2, we obtain that

(1− ε)cost(w;~c) ≤ cost(w̃;~c) ≤
(
9OPTM,west + 9εw̃1M

)
+ 9(1 + ε)cost(w̃;~o↓) + 9εw̃1M

≤ 9(1 + ε)2opt + 9opt +O(ε)opt =
(
18 +O(ε)

)
opt .
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A Proof of Theorem 2.5

Recall that B ≤ (1 + ε)opt is such that OPTB ≤ B, and A is an α-approximation algorithm for k-
median whose approximation guarantee is proved relative to the natural LP (kmed-P) for k-median. Let
(x, y) denote an optimal solution to (PB), whose objective value is OPT := OPTB . Define LPj :=∑

i fB(cij)xij to be the cost incurred for client j by the LP (PB).
Our rounding algorithm is quite simple: we perform clustering and demand consolidation to merge

clients that are (roughly speaking) within distance B/` of each other. This reduces our instance to a k-
median instance, and we then run algorithm A on this instance.

R1. Clustering and demand consolidation. Set d′j ← 0 for every j. Consider the clients in increasing
order of LPj . For each client k encountered, if there exists a client j such that d′j > 0 and cjk ≤ 2B/`,
set d′j ← d′j + 1, otherwise set d′k ← 1. Let D′ = {j ∈ D : d′j > 0}. Each client in D′ is a cluster
center. For k ∈ D \D′, we set σ(k) = j, if k’s demand was moved to j above; we set σ(j) = j for all
j ∈ D′.

R2. Running k-median. Consider the k-median instance I ′ consisting of the weighted point-set {d′j}j∈D′
(and the cij-distances between these points). Note that the points in D \D′ do not appear in I ′. We run
algorithm A to solve instance I ′ and obtain our k centers.
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Analysis. Let OPT ′ :=
∑

j∈D′,i d
′
jfB(cij)xij denote the LP-cost of (x, y) for the modified instance con-

sisting of the cluster centers. For each j ∈ D′, define Fj to be all the points i ∈ D′ such that j is the point
in D′ closest to i, that is, Fj := {i ∈ D′ : cij = minj′∈D′ cij′}. We break ties arbitrarily, so the Fjs are
disjoint.

Claim A.1. (i) If j, k ∈ D′, then cjk > 2B/`, and (ii) OPT ′ ≤ OPT .

Proof. Suppose k was considered after j. Then d′j > 0 at this time, as d′j becomes positive when j is added
to D′. So if cjk ≤ 2B/` then d′k would remain at 0, giving a contradiction. It is clear that if we move the
demand of client k to client j, then LPj ≤ LPk and cjk ≤ 2B/`. So OPT ′ =

∑
j d
′
jLPj ≤

∑
j LPj =

OPT .

Lemma A.2. There is a fractional solution to (kmed-P) for the k-median instance I ′ of objective value at
most 2OPT ′.

Proof. Consider the following fractional solution. For each j ∈ D′, set Xjj =
∑

i∈Fj
yi = Yj ; for every

distinct j, j′ ∈ D′, set Xj′j =
∑

i∈Fj′
xij . It is easy to verify that (X,Y ) is a feasible solution to (kmed-P).

Since yi ≥ xij for all i, j ∈ D′, we have
∑

j′∈D′ Xj′j ≥
∑

i∈D′ xij ≥ 1 for every j ∈ D′, and Xj′j ≤ Yj′

for every distinct j, j′ ∈ D′; also
∑

j∈D′ Yj =
∑

i∈D′ yi ≤ k.
We now bound the objective value of (X,Y ) in (kmed-P) (for the weighted point set in I ′). Observe that

for any j ∈ D′ and any i ∈ Fj′ , where j′ 6= j, we have cij > B/`, as otherwise cjj′ ≤ 2B/`, contradicting
part (i) of Claim A.1. Therefore, fB(cij) = cij , and cjj′ ≤ 2cij ≤ 2fB(cij). So we have∑

j,j′∈D′
d′jcjj′Xjj′ ≤

∑
j,j′∈D′:j 6=j′

∑
i∈Fj′

2d′jfB(cij)xij ≤
∑
j∈D′

∑
i

2d′jfB(cij)xij = 2OPT ′.

Lemma A.3. Any (integer) solution to the k-median instance I ′ of cost C, yields a solution to the original
`-centrum instance of cost(`; .)-cost of at most C + 2B.

Proof. For j ∈ D′, let i(j) ∈ D′ denote the facility to which j is assigned in the solution to I ′. For any
k ∈ D \D′ with σ(k) = j, its assignment cost for the original instance is at most ci(j)k ≤ ci(j)j + 2B/`.
Thus, the assignment cost of any set of ` clients of the original instance is at most C + 2B.

Theorem 2.5 follows immediately from Lemmas A.2 and A.3 and part (ii) of Claim A.1: the cost(`; .)-
cost of the solution obtained is at most α(2OPT ′) + 2B ≤ 2αOPT + 2B ≤ 2(α+ 1)B.

12


